
Practice questions
416 2017 W2 (Winter 2018)

PQ 1

• True/False: In a practical system that uses proof-of-
work, the checking of the proof has to be easy
relative to the generation of the proof.

PQ 1

• True/False: In a practical system that uses proof-of-
work, the checking of the proof has to be easy
relative to the generation of the proof.

• True!

• (If not, your system’s performance has to scale
with the number of CPUs that use it)

PQ 2
• You are designing a protocol stack. You have

narrowed down your design to two choices. And,
you know that the specification for protocol C is
likely to change. Which stack design should you
use?

protocol A

protocol B

protocol C

protocol A

protocol B

protocol C

(a) (b)

PQ 2
• You are designing a protocol stack. You have

narrowed down your design to two choices. And,
you know that the specification for protocol C is
likely to change. Which stack design should you
use?

protocol A

protocol B

protocol C

protocol A

protocol B

protocol C

(a) (b)
• If protocol C changes then only protocol

B would need to adapt, and not A

PQ 3
• A network element can inspect any of the protocols

present in the packet. So, why not build e.g., a
switch that is aware of HTTP and have it route
packets based on HTTP information that it can
extract from the packet?

PQ 3
• A network element can inspect any of the protocols

present in the packet. So, why not build e.g., a
switch that is aware of HTTP and have it route
packets based on HTTP information that it can
extract from the packet?

• Expensive! Line-rate HTTP processing. Also requires interpreting all the
protocol below HTTP (e.g., TCP/IP)

• Higher-level protocols change, often more frequently (HTTP 2.0)

• More software can access/manipulate HTTP content (not just your OS
TCP/IP stack). Requires more robustness/more security considerations.

PQ 4
• Which of these design scenarios contain elements of fate

sharing?

1. Authenticating an ATM card by requiring a retina scan

2. Placing a passenger’s checked baggage on the same
flight as the passenger

3. Attaching a spare car key to the inside of the car’s
bumper

PQ 4
• Which of these design scenarios contain elements of fate

sharing?

1. Authenticating an ATM card by requiring a retina scan

2. Placing a passenger’s checked baggage on the same
flight as the passenger

3. Attaching a spare car key to the inside of the car’s
bumper

Fate sharing: lose state information for an entity if and only if the entity itself is lost.

PQ 4

• Which of these design scenarios contain elements of fate sharing?

1. Authenticating a debit card by requiring a retina scan

• Not really. People with eye injuries may want to use debit cads. And, debit card
loss does not result in losing your retinas!

2. Placing a passenger’s checked baggage on the same flight as the passenger

• Some! If lose plane, then lose both. If passenger is “lost”, chances are the
baggage is lost too. If baggage is lost/destroyed, then probably passenger is lost,
too. (But, they don’t fate share when not in the air!)

3. Attaching a spare car key to the inside of the car’s bumper

• Complete fate sharing. If car is lost, then key is also lost. And, key can’t really be
lost without the car (it’s attached). i.e., key is lost, the car is lost, too.

Fate sharing: lose state information for an entity if and only if the entity itself is lost.

PQ 5
• True/False: remote procedure call systems provide

the same semantics as local procedure calls.

• True

• False

PQ 5
• True/False: remote procedure call systems provide

the same semantics as local procedure calls.

• True

• False

LPC provides exactly once semantics; RPC
cannot provide this (in the presence of failures).

PQ 6

• You decide to extend DFS in A2 with DWRITE
mode (disconnected writes). What are the DFS
semantics you will have to revisit in your DWRITE
design? (List all that come to mind)

PQ 6.1
• You decide to extend DFS in A2 with DWRITE mode

(disconnected writes). What are the DFS semantics you will
have to revisit in your DWRITE design?

• Revisit READ mode semantics — what’s the “latest chunk
version” if there are multiple identical versions available?
Which one should win? How would you solve this?

• Revisit DREAD mode semantics —- should reads in
DREAD mode observe writes in DWRITE mode?

• Revisit Open file fetch semantics — why require a fetch for
a file opened in DWRITE mode (for disconnected writing)?

PQ 6.2
• You decide to extend DFS in A2 with DWRITE mode (disconnected writes). What

are the DFS semantics you will have to revisit in your DWRITE design?

• Revisit READ mode semantics — what’s the “latest chunk version” if there are
multiple identical versions available? Which one should win? How would you
solve this?

• Change READ mode to not be ‘latest’ but “most up to date, or local first if
multiple identical versions” ?

• Decide latest chunk based on clocks; use clock synchronization to
decide versions offline.

• When offline assign non-deterministic versions to writes (random offline
writer wins)

• Let server arbitrate multiple offline writes and pick winner

• Return all the writes and let the application figure it out (conflict resolution)

PQ 7
All problems in computer science can be solved by adding
another level of indirection. But that will usually create
another problem.” -- David Wheeler

• A2 design uses indirection. What does it use it for?
(i.e., what advantages do you get from indirection
in A2)?

PQ 7
All problems in computer science can be solved by adding
another level of indirection. But that will usually create
another problem.” -- David Wheeler

• A2 design uses indirection. What does it use it for?
(i.e., what advantages do you get from indirection
in A2)?

• Server interposes on client requests: clients don’t
know each other identities, who has which chunks,
who has which files open, do not observe client
failures

PQ 8

• GlobalFileExists() in A2 is an idempotent operation

• True

• False

PQ 8

• GlobalFileExists() in A2 is an idempotent operation

• True (with 1 client in the system)

• False (with multiple clients in the system)
Clients can make that same call repeatedly while
producing the same result. In other words, making
multiple identical requests has the same effect as
making a single request.

PQ 9

• A2 design assumes the server never fails. How
would you extend the design to handle server
failures?

PQ 9
• A2 design assumes the server never fails. How would you

extend the design to handle server failures?

• Treat server failures as disconnections at the client!

• All distributed state at the server must be stored durably on
disk

• Introduce server restart/recovery procedure

• All operations that modify server state (e.g., write of a chunk
generates a new chunk version) must use a logging protocol
to ensure durability (same as the suggested write protocol,
but server-side)

• A2 design assumes the server never fails. How would you
extend the design to handle server failures?

• Treat server failures as disconnections at the client!

• All distributed state at the server must be stored durably on
disk

• Introduce server restart/recovery procedure

• All operations that modify server state (e.g., write of a chunk
generates a new chunk version) must use a logging protocol
to ensure durability (same as the suggested write protocol,
but server-side)

PQ 9

Points where server could fail

PQ 10
• An API critically determines the design of the

system. Imagine that the DFS API in A2 was
changed such that there was no DREAD mode and
no LocalFileExists call.

Assuming that file contents would still be stored
at clients, how would your design change in
response?

PQ 10
• An API critically determines the design of the

system. Imagine that the DFS API in A2 was
changed such that there was no DREAD mode and
no LocalFileExists call.

Assuming that file contents would still be stored
at clients, how would your design change in
response?

• Clients no longer fetch content on open. All read/write
operations streamed to the remote client replica. No
disconnected mode operations means MountDFS does
not need to succeed in disconnected mode.

PQ 11
• A2 makes disconnections visible to applications.

Assume you changed A2 such that disconnections
were invisible to the application. How would you
change the DFS API and the DFS API semantics to
accomplish this?

PQ 12
• The bitcoin blockchain serializes concurrent

transactions into a single totally-ordered sequence

• True

• False

PQ 12
• The bitcoin blockchain serializes concurrent

transactions into a single totally-ordered sequence

• True : key feature/purpose of blockchain

• False

PQ 13
• The BitCoin protocol is a public ledger that

maintains a set of accounts. Each block in the
blockchain records the updated balance of bitcoins
in each account that was part of a transaction.

• True

• False

PQ 13
• The BitCoin protocol is a public ledger that

maintains a set of accounts. Each block in the
blockchain records the updated balance of bitcoins
in each account that was part of a transaction.

• True

• False : each block records a set of
transactions, the blockchain does not
explicitly store account balances

PQ 14
Session semantics means that the first person to
close the file “wins” (their copy will persist, while
copies generated by later close calls will not)

• True

• False

PQ 14
Session semantics means that the first person to
close the file “wins” (their copy will persist, while
copies generated by later close calls will not)

• True

• False : session semantics = last close wins

PQ 15
Which of the following P2P systems use flooding?

• Napter

• Gnutella

• BitTorrent

PQ 15
Which of the following P2P systems use flooding?

• Napter

• Gnutella : flood with TTL to search for items

• BitTorrent

PQ 16

• Event A with vector clock timestamp [1,2,3]
happened before event B with timestamp [3,2,1].

• True

• False

• Can’t tell from timestamps alone

PQ 16
• Event A with vector clock timestamp [1,2,3]

happened before event B with timestamp [3,2,1].

• True

• False: A and B are concurrent according to
their vector clocks

• Can’t tell from timestamps alone

PQ 17

• If you are running on an unreliable network and you
cannot reach a node using RPC then the node has
failed.

• True

• False

PQ 17
• If you are running on an unreliable network and you

cannot reach a node using RPC then the node has
failed.

• True

• False: network unreliable, could be
unavailable during your RPC call.

PQ 18

• Assume you are running Ricart-Agrawala algorithm
and assume that the critical section takes a long
time to run. How could each node reconstruct the
sequence in which the critical section was
executed?

PQ 18
• Assume you are running Ricart-Agrawala algorithm

and assume that the critical section takes a long
time to run. How could each node reconstruct the
sequence in which the critical section was
executed?

• Use request ids issued by each node to order
acquisition, since R-A respects that ordering

• Observe deferred set (who the node blocks on
and who the node is blocking)

PQ 19
• Your distributed system was running for 30 days

during which time you had two outages: a disk
failed and you had to replace it (outage of 3 days),
and a faulty OS update had to be reverted (outage
of 2 days). How many 9s of availability did your
system achieve during this time?

• 0

• 1

• 2

• 3

PQ 19
• You were operating your distributed system for 30

days during which time you had two outages: a
disk failed and you had to replace it (outage of 3
days), and a faulty OS update had to be reverted
(outage of 2 days).

• How many 9s of availability did your system achieve during this time?
=> What was your system’s availability during this time?

• Availability = time running / time should have been running

• = (30-2-3) / 30 = 25 / 30 = 83% => 0 9s of avail.

PQ 20
• Compared to a central file hosting server, a

BitTorrent swarm has which of the following
features:

o Higher scalability

o Higher availability

o Higher performance

PQ 20
• Compared to a central file hosting server, a

BitTorrent swarm has which of the following
features:

o Higher scalability (supports more clients)

o Higher availability (can survive more failures)

o Higher performance (perf scales with peers)

PQ 21
• Which of the following RAID levels has the worst

capacity (for a fixed set of N drives)?

• RAID 0

• RAID 1

• RAID 4

• RAID 5

PQ 21
• Which of the following RAID levels has the worst

capacity (for a fixed set of N drives)?

• RAID 0 (capacity = N)

• RAID 1 (mirroring; capacity = N/2)

• RAID 4 (capacity = N-1)

• RAID 5 (capacity = N-1)

PQ 22

• RAID provides partition tolerance

• True

• False

PQ 22

• RAID provides partition tolerance

• True

• False (fault model assume disk fail-stop, with
partitions have to reason about unreachable,
but fully functional disk subset; RAID doesn’t
do that)

PQ 23
• Consider the following three topologies (e.g., in A3):

• Which topology makes it easiest for peers to detect peer failures?

• Assuming a large N, which topology (on average) impacts the
fewest peers when a peer fails?

(a) all-to-all (b) linked-list (c) star

Peer 2

Peer N

…

Peer 1

Peer 2

Peer N

…

Peer 1

Peer 2 Peer N…

Peer 1

PQ 23
• Consider the following three topologies (e.g., in A3):

• Which topology makes it easiest for peers to detect peer failures? A

• Assuming a large N, which topology (on average) impacts the
fewest peers when a peer fails? C

(a) all-to-all (b) linked-list (c) star

Peer 2

Peer N

…

Peer 1

Peer 2

Peer N

…

Peer 1

Peer 2 Peer N…

Peer 1

PQ 24

• A blockchain (e.g., in blockart) implements
pessimistic concurrency control

• True

• False

PQ 24

• A blockchain (e.g., in blockart) implements
pessimistic concurrency control

• True

• False (Most blockchains have optimistic CC: add
block, figure out any forks later)

PQ 25

• BitCoin uses a “longest chain” wins policy to
resolve conflicts. What if the policy was instead
“shortest chain” wins. What would happen in such
a system?

• And, what if the policy was “shortest chain” wins
with a max branching factor of 2. How would such
a system behave?

PQ 26
A block mined at node A in a project 1
deployment is flooded to a network of
nodes that looks like this:

What is the minimum number of rounds
before all nodes in the network receive
the block?

A

A. 1

B. 2

C. 3

D. 4

E. 5

F. 6

PQ 26
A block mined at node A in a project 1
deployment is flooded to a network of
nodes that looks like this:

What is the minimum number of rounds
before all nodes in the network receive
the block?

A. 1

B. 2

C. 3

D. 4

E. 5

F. 6
A

PQ 27

• Three-phase commit is a blocking protocol (blocks
indefinitely during failures)

• True

• False

PQ 27

• Three-phase commit is a blocking protocol (blocks
indefinitely during failures)

• True

• False : 3PC trades off safety for liveness, it
does not block during failures

PQ 28

• Paxos is always safe, but not always live

• True

• False

PQ 28

• Paxos is always safe, but not always live

• True : has an execution that never terminates,
but will never violate safety conditions

• False

PQ 29
• Given a paxos system with 2n+1 nodes, how many nodes

can paxos survive (continue to operate even though this
number of nodes have failed)?

• 2

• n

• n+1

• 2n

• 2n-1

PQ 29
• Given a paxos system with 2n+1 nodes, what’s the largest

number of nodes can paxos survive (continue to operate even
though this number of nodes have failed)?

• 2

• n : if n fail, then n+1 remain, which is the smallest
majority possible (for 2n+1 nodes).

• n+1

• 2n

• 2n-1

PQ 30
• You are building a Paxos-based system with n

acceptors and each node is contributed by an
organization that wants a “seat at the voting table”.
However, some organization nodes are more
important than others (think EU). You are tasked with
re-designing the Paxos semantics such that
(1) enough ‘important’ nodes must accept a value to
achieve consensus, (2) if the important nodes fail,
then Paxos should block (as if a majority has failed)

• How would you re-design Paxos for such semantics?

PQ 30
• You are building a Paxos-based system with n acceptors and each node is

contributed by an organization that wants a “seat at the voting table”.
However, some organization nodes are more important than others (think
EU). You are tasked with re-designing the Paxos semantics such that (1)
enough ‘important’ nodes must accept a value to achieve consensus, (2) if
the important nodes fail, then Paxos should block (as if a majority has failed)

• Define a static “importance” value/weight associated with each acceptor.
Define “acceptor majority” as an importance threshold value (sum of
importance weights of the accepting acceptors must clear this threshold).

• If alive acceptors cannot clear the threshold, then the system blocks and
cannot make progress.

• Defining threshold requires care: what if majority clears threshold but doesn’t
know past state!?

PQ 31: Bug in slide?

(2,2)

(3,2)

(4,1)

S

(psn, value)

(4,1)

(4,1)

PQ 31: Bug in slide?

(2,2)

(3,2)

(4,1)

S

(psn, value)

(4,1)

(4,1)

Yes!

Majority has to be evaluated
relative to original size of the
Paxos group (5, not 3). So,
majority should include 3
nodes (not 2).

PQ 32
• Mark each statement below as TRUE or FALSE

• Paxos has the same round complexity as
centralized 2PC (assuming majority accept a
proposal without failures/dueling proposers)

• Paxos has the same round complexity as
centralized 3PC (assuming majority accept a
proposal without failures/dueling proposers)

• Paxos has arbitrarily high round complexity in
the worst case

PQ 32
• Mark each statement below as TRUE or FALSE

• Paxos has the same round complexity as centralized
2PC (assuming majority accept a proposal without
failures/dueling proposers) TRUE

• Paxos has the same round complexity as centralized
3PC (assuming majority accept a proposal without
failures/dueling proposers) FALSE

• Paxos has arbitrarily high round complexity in the worst
case TRUE

