
CPSC 416 - Distributed 
program analysis and  

Invariant Inference

March 28, 2018
Lecturer Stewart Grant

1



The problem: distributed systems are complex!

Difficulty Factors

Understandability ● Concurrency
● Decentralized State
● No centralized clock

Debug ● Nondeterminism
● Changing environment (network)

Test ● State space is massive
● Exhaustive testing is impractical
● Configuration space is even larger
● Cost of large scale deployments

2



How do you know that a distributed system works?
● Logging

○ Open log in emacs/vi, brew coffee, get 
comfortable!

○ Maybe use ShiViz on the logs if you are 
debugging protocol issues

● Test as much as you can 
(Unit/Integration/Stress)

● Mathematically prove correct?
○ (No one does that really)

Figure (1) A typical distributed systems developers 
desktop [my desktop]

3



What other techniques are available?
Static analysis:

Analyze a programs source 
code, without running the 
program.

● Type Checker
● Linter
● Symbolic Execution

Complete but over-approximate 
and expensive.

Dynamic analysis:

Analyze a programs behavior 
as it runs, usually by logging.

● Testing
● Profiling
● Deadlock detection
● Memory profiling (valgrind)

Incomplete but scalable

4



Today’s lecture
● Program analysis background

○ Static analysis
○ Dynamic analysis

● Dinv’s tool and analyses
○ Data invariants
○ Static: program slicing
○ Dynamic: distributed lattice construction

● Answer any Dinv questions you might have

5



Program Properties: Data invariants
● An invariant is a property that holds on 

data at all times
● A data invariant can hold between 1 or 

more variables
● Data invariants are type dependent

Knowledge of a programs invariants is important 
for understanding if it is correct or faulty. Example Invariants:

i < TOTAL // loop invariant
i >= 0
sum >= i

Example Program:

var sum = 0
for i:=0;i<TOTAL;i++{

sum += i
}

7



What is a Distributed Data Invariant?
● Distributed data invariants hold across 1 or 

more nodes in a distributed system
● Some hold globally at all times
● Some are protocol specific

Ex) Distributed Key Value Store Invariant. No 
two nodes serve the same keys.

8



Dinv Overview

1. Distributed Invariant Inference Challenges
a. What state should be logged and when?
b. How to infer distributed invariants from logged state?
c. How to enforce distributed invariants?

9

Static Analysis Dynamic Analysis



What variables should be logged?
● Massive variable state space
● Exponentially larger invariant state space
● Arbitrary distributed invariants be minimized

10

Static Analysis Dynamic Analysis



Example Code: Serf

11



Example Code: Serf

12



Example Code: Serf

13



What state should be logged and when?

Insight: Important distributed state 
must have dataflow to and from the 
network.

Technique: Program slicing [Ottenstein 84]

14



What state should be logged and when?

Insight: Important distributed state 
must have dataflow to and from the 
network.

Technique: Program slicing [Ottenstein 84]

● Transitively track assignments to 
variables

● A slice is the complete set of 
statements over which marked 
data flows

15



What state should be logged and when?

Insight: Important distributed state 
must have dataflow to and from the 
network.

Technique: Program slicing [Ottenstein 84]

● Transitively track assignments to 
variables

● A slice is the complete set of 
statements over which marked 
data flows

16Q: What do you think the challenges of dataflow analysis are?



Some Answers:
● Aliasing (when one bit of data can be confused with many)
● Pointer analysis
● Interprocedural flow
● Thread interleaving
● Distributed dataflow

17



Where should state be logged?
Location and frequency of logging correspond to invariant accuracy

 

18

Instrumentation 
Strategy

Location choice Variable Choice

Function 
entrances/exits

Auto Auto

Network calls Auto Auto

User-defined 
annotations

Manual Manual or auto



How to Instrument with Dinv

Pre Instrumentation:

Two annotations:

@Track & @Dump

Track Recommended 
(Reduces Output Size)

Source: $REPOLOCATION/dinv/examples/helloDinv/ClientServer.go

19



How to Instrument with Dinv

Instrumentation Command:

dinv -i 

-file=ClientServer.go

The resulting source code is 
Instrumented to log variables.

Revert Instrumentation

dinv -i -c 

-file=ClientServer.go

Source: $REPOLOCATION/dinv/examples/helloDinv/ClientServer.go

20



Vector clock refresher
● Distributed systems lack a 

centralized clock
● Ordering events is therefore hard
● Fundamentally the best that can be 

done is a partial order with happens 
before

● If A receives a message from B, 
the sending event on B happened 
before the receive event on A

Algorithm:
1) Increment own index on send & receive
2) Take max of all indexes on receive

21



Tracking time: Vector Clock Instrumentation
● Establish partial event ordering
● Manual and automatic options
● Covers Go standard net library

22

Repository:  https://github.com/DistributedClocks

Static Analysis Dynamic Analysis

https://github.com/DistributedClocks


Example Vector Clock: Pack/Unpack
Pre-manual Instrumentation:

● network write line 58
● Network read line 62

23



Example Vector Clock: Pack/Unpack
Pre-manual Instrumentation:

● Pack line 57

Pack(payload interface{}) []byte

● Unpack line 64

Unpack(buf []byte, toFill interface{})

24



VC Instrumentation Options
● Dinv Pack/Unpack take care of marshalling structs!

○ Allows for custom messages to be logged along side vector clocks

● Govector automatically instruments if marshalling is already done
○ Automatic!

GoVector Repository
https://github.com/DistributedClocks/GoVe
ctor

Command:
GoVector -file=filename

Method of Injection: AST Rotation

Before:
Err = conn.Write(buf)

After
GoVector.Write(conn.Write,buf)

25

https://github.com/DistributedClocks/GoVector
https://github.com/DistributedClocks/GoVector


Example Output
GoVector filename format <nodename>.log-Log.txt

Example Govector output:

26



ShiViz.sh and dinv-shiviz
Communication patterns can be 
visualized by merging clock files.

To generate ShiViz parseable logs run 
either

$PATHTOREPO/dinv/ShiViz.sh

Or

dinv -l -shiviz *log-Log.txt

27

https://bestchai.bitbucket.io/shiviz/


Log Collection (begin dynamic analysis)
● Analysis - performed on logs collected system execution
● Collection - execute a test suite on an instrumented system
● Quality - of Dinv’s invariants improve relative to test exhaustiveness

28

Static Analysis Dynamic Analysis



Dinv Overview

29

1. Distributed Invariant Inference Challenges
a. What state should be logged and when?
b. How to infer distributed invariants from logged state?
c. How to enforce distributed invariants?

Static Analysis Dynamic Analysis



Consistent Cuts
Consistent cut: A partition of an 
execution, such that causality is 
preserved.

A consistent cut is a global observation 
of a distributed systems state

Example: Ping and Ack from Serf

30



Consistent Cuts
● Green lines mark consistent cuts

○ No messages are in flight
○ Message is in flight

● The red line is not a consistent cut 
○ The ping sent by Node 0 happened before the 

pings receipt on node 1.

31



Consistent Cuts
● Executions have an exponential 

number of consistent cuts
● Set of all consistent cuts compose 

every observable execution path.

32



Lattice Representation
● Cuts are naturally 

represented as a lattice
● Any path (downward), 

is a potential execution
● Trillions of points
● Exponentially more 

paths

33

Corresponding lattice
(bold: no msgs in network)



Ground States
● Consistent cut is massive
● Require sampling heuristic
● Ground States: A consistent 

cut with no in flight messages
● Dramatically collapses search 

space

34

Consistent Cuts Ground States



How to infer distributed invariants from global states
● Individual global states are a single instance in time
● Some invariants hold globally, others are protocol specific
● What state should be tested for invariants?

35

1) All - States global merge
2) Send-Receive - communication merge
3) Total order - transitive merge

Static Analysis Dynamic Analysis



All-State Merging

36



All-State Merging

37



All-State Merging

38



All-State Merging

39



All-State Merging

40



All-State Merging

41



Inferring Invariants
● Daikon tool infers data invariants on data traces
● Insufficient for distributed systems (no partial order)

42

● Merged states are grouped by IDs and form 
serialized traces

● Extension for n-ary invariants

Static Analysis Dynamic Analysis



Daikon Bucketing

43

● Distributed States of the same signature 
are bucketed together



Daikon Bucketing

44

● Distributed States of the same signature 
are bucketed together

● More states means stronger invariants



Daikon Bucketing

45

● Distributed States of the same signature 
are bucketed together

● More states means stronger invariants
● Each new global state provides more 

evidence that an invariant is true



Daikon Bucketing

46

Distributed Invs

● Distributed States of the same signature 
are bucketed together

● More states means stronger invariants
● Each new global state provides more 

evidence that an invariant is true
● Ex) N1_Events == N2_Events == N3_Events



Daikon Template Invariant inference

Daikon systematically tests 
variables for invariants

Invariants are pre set in 
templates

Example operators)

==, >, >=, <, <=, 

var1 + var2 = var3

For all ints i,j {
If i > j {

GreaterThan[i][j].Evidence++
} Else {

GreaterThan[i][j].Invariant = false
}

}

Algorithm - Greater Than 

47



Dinv Overview

48

1. Distributed Invariant Inference Challenges
a. What state should be logged and when?
b. How to infer distributed invariants from logged state?
c. How to enforce distributed invariants?

Static Analysis Dynamic Analysis



Assertions
● Dinv has distributed assertions 

to enforce predicates at 
runtime

● See me after class if you want 
an overview!

 

 
49



Dinv Limitations
● Dinv’s dynamic analysis is 

incomplete
● Ground state sampling is poor on 

loosely coupled systems
● Temporal invariants are currently 

out of scope

51



Final take-aways
● Introduced dynamic and static analysis
● Discussed consistent+inconsistent cuts, distributed lattice, ground states
● Dinv tool for detecting data invariants in distributed systems + how it works:

○ Static identification of distributed state
○ Automatic static instrumentation 
○ Post-execution merging of distributed states

52

Source code: https://bitbucket.org/bestchai/dinv

Demo: https://www.youtube.com/watch?v=n9fH9ABJ6S4

https://bitbucket.org/bestchai/dinv
https://www.youtube.com/watch?v=n9fH9ABJ6S4

