
RPC Day 2
Jan 12, 2018

416 Distributed Systems

1

Last class

•  Finish networks review
•  Fate sharing
•  End-to-end principle
•  UDP versus TCP; blocking sockets
•  IP thin waist, smart end-hosts, dumb (stateless)

network

•  Start RPC (remote procedure calls)
•  What is an RPC, goals/benefits of RPC

RPC land

•  RPC overview

•  RPC challenges

•  RPC other stuff

3

RPC

•  A type of client/server communication

•  Attempts to make remote procedure
calls look like local ones

figure from Microsoft MSDN

{ ...
 foo()
}
void foo() {
 invoke_remote_foo()
}

Go Example

•  Need some setup in advance of this but…

// Synchronous call

args := &server.Args{7,8}

var reply int

err = client.Call("Arith.Multiply", args, &reply)
if err != nil {

 log.Fatal("arith error:", err)

}

fmt.Printf("Arith: %d*%d=%d", args.A, args.B, reply)

5

RPC Goals

•  Ease of programming

•  Hide complexity

•  Automates task of implementing distributed
computation

•  Familiar model for programmers (just make a
function call)

Historical note: Seems obvious in retrospect, but RPC was only invented in the ‘80s.
See Birrell & Nelson, “Implementing Remote Procedure Call” ... or
Bruce Nelson, Ph.D. Thesis

Remote procedure call

•  A remote procedure call makes a call to a remote
service look like a local call
•  RPC makes transparent whether server is local or

remote
•  RPC allows applications to become distributed

transparently
•  RPC makes architecture of remote machine transparent

Emphasis on transparency

7

Remote procedure call

•  A remote procedure call makes a call to a remote
service look like a local call
•  RPC makes transparent whether server is local or

remote
•  RPC allows applications to become distributed

transparently
•  RPC makes architecture of remote machine transparent

Emphasis on transparency

 What are some problems with this transparency?

8

RPC: it’s not always simple

•  Calling and called procedures run on different
machines, with different address spaces
•  And perhaps different environments .. or operating

systems ..
•  Must convert to local representation of data
•  Machines and network can fail

Two styles of RPC implementation

•  Shallow integration. Must use lots of library calls
to set things up:
•  How to format data
•  Registering which functions are available and how they

are invoked.

•  Deep integration.
•  Data formatting done based on type declarations
•  (Almost) all public methods of object are registered.

•  Go is the latter.

10

Stubs: obtaining transparency

•  Compiler generates from API stubs for a
procedure on the client and server

•  Client stub
•  Marshals arguments into machine-independent format
•  Sends request to server
•  Waits for response
•  Unmarshals result and returns to caller

•  Server stub
•  Unmarshals arguments and builds stack frame
•  Calls procedure
•  Server stub marshals results and sends reply

11

Marshaling and Unmarshaling

•  (From example) hotnl() -- “host to network-byte-
order, long” (in C)
•  network-byte-order (big-endian) standardized to deal with

cross-platform variance
•  (in prev. lecture) Note how we arbitrarily decided to

send the string by sending its length followed by L
bytes of the string? That’s marshaling, too.

•  Floating point...
•  Nested structures? (Design question for the RPC

system - do you support them?)
•  Complex data structures? (Some RPC systems let

you send lists and maps as first-order objects)

“stubs” and IDLs

•  RPC stubs do the work of marshaling and
unmarshaling data

•  But how do they know how to do it?
•  Typically: Write a description of the function

signature using an IDL -- interface definition
language.
•  Lots of these. Some look like C, some look like XML, ...

details don’t matter much.

Remote Procedure Calls (1)

•  A remote procedure call occurs in the following steps:

1.  The client procedure calls the client stub in the normal
way.

2.  The client stub builds a message and calls the local
operating system.

3.  The client’s OS sends the message to the remote OS.
4.  The remote OS gives the message to the server stub.
5.  The server stub unpacks the parameters and calls the

server.

 Continued …

14

Remote Procedure Calls (2)

•  A remote procedure call occurs in the following steps
(continued):

6. The server does the work and returns the result to the
stub.

7. The server stub packs it in a message and calls its
local OS.

8. The server’s OS sends the message to the client’s
OS.

9. The client’s OS gives the message to the client stub.
10. The stub unpacks the result and returns to the client.

15

Passing Value Parameters (1)

•  The steps involved in doing a
remote computation through RPC.

16

Passing Reference Parameters

•  Replace with pass by copy/restore
•  Need to know size of data to copy

•  Difficult in some programming languages

•  Solves the problem only partially
•  What about data structures containing pointers?
•  Access to memory in general?

17

RPC land

•  RPC overview

•  RPC challenges

•  RPC other stuff

18

RPC vs. LPC

•  3 properties of distributed computing that make
achieving transparency difficult:
•  Partial failures
•  Latency
•  Memory access

19

RPC failures

• What could go wrong:
•  Request from cli à srv lost

•  Reply from srv à cli lost

•  Server crashes after receiving request

•  Client crashes after sending request

Partial failures

•  In local computing:
•  if machine fails, application fails
•  (fate sharing!)

•  In distributed computing:
•  if a machine fails, part of application fails
•  cannot tell the difference between a machine failure and

network failure
•  How to make partial failures transparent to client?

21

Strawman solution

•  Make remote behavior identical to local behavior:
•  Every partial failure results in complete failure

•  You abort and reboot the whole system
•  You wait patiently until system is repaired

•  Problems with this solution:
•  Many catastrophic failures
•  Clients block for long periods

•  System might not be able to recover

22

Real solution: break transparency

•  Possible semantics for RPC:
•  Exactly-once (what local procedure calls provide)

•  Impossible in practice
•  At least once:

•  Only for idempotent operations
•  At most once

•  Zero, don’t know, or once
•  Zero or once

•  Transactional semantics (databases!)

23

Exactly-Once?

•  Sorry - no can do in general.

•  Imagine that message triggers an external
physical thing (say, a drone fires a nerf dart
at the professor)

•  The drone could crash immediately before or
after firing and lose its state. Don’t know
which one happened.

Real solution: break transparency

•  At-least-once: Just keep retrying on client side until you get a
response.
•  Server just processes requests as normal, doesn’t remember

anything. Simple!
•  At-most-once: Server might get same request twice...

•  Must re-send previous reply and not process request (implies:
keep cache of handled requests/responses)

•  Must be able to identify requests
•  Strawman: remember all RPC IDs handled. -> Ugh! Requires

infinite memory.
•  Real: Keep sliding window of valid RPC IDs, have client number

them sequentially.

Implementation Concerns

•  As a general library, performance is often a big
concern for RPC systems

•  Major source of overhead: copies and
marshaling/unmarshaling overhead

•  Zero-copy tricks:
•  Representation: Send on the wire in native format and

indicate that format with a bit/byte beforehand. What
does this do? Think about sending uint32 between two
little-endian machines

•  Scatter-gather reads/writes (readv/writev() and friends)

Dealing with Environmental Differences

•  If my function does: read(foo, ...)
•  Can I make it look like it was really a local

procedure call??
•  Maybe!

•  Distributed filesystem...

•  But what about address space?
•  This is called distributed shared memory
•  People have kind of given up on it - it turns out often

better to admit that you’re doing things remotely

Summary:
expose remoteness to client

•  Expose RPC properties to client, since you cannot
hide them

•  Application writers have to decide how to deal with
partial failures
•  Consider: E-commerce application vs. game

28

Important Lessons

•  Procedure calls
•  Simple way to pass control and data
•  Elegant/transparent way to distribute application
•  Not only way…

•  Hard to provide true transparency
•  Failures
•  Performance
•  Memory access
•  Etc.

•  How to deal with hard problem à give up and let
programmer deal with them
•  “Worse is better”
•  https://en.wikipedia.org/wiki/Worse_is_better

29

RPC land

•  RPC overview

•  RPC challenges

•  RPC other stuff

30

Asynchronous RPC (1)

•  The interaction between client and
server in a traditional RPC.

31

Asynchronous RPC (2)

•  The interaction using asynchronous RPC.

32

Asynchronous RPC (3)

•  A client and server interacting through
two asynchronous RPCs.

33

Go Example

// Asynchronous call

quotient := new(Quotient)

divCall := client.Go("Arith.Divide", args, quotient, nil)

replyCall := <-divCall.Done // will be equal to divCall

// check errors, print, etc.

34

Using RPC

•  RequestàServeràResponse: Classic synchronous
RPC

•  Consider scenario1: Worker—notify—>Server.
•  Synch RPC, but no return value.
•  "I'm a worker and I'm listening for you on host XXX, port

YYY."

•  Consider scenario2: Server—do work—>Worker.
•  Synch RPC? No that would be a bad idea. Better be

Asynch.
•  Otherwise, it would have to block while worker does its work,

which misses the whole point of having many workers.

35

Binding a Client to a Server

•  Registration of a server makes it possible for a client
to locate the server and bind to it

•  Server location is done in two steps:
•  Locate the server’s machine.
•  Locate the server on that machine.

36

Other RPC systems

•  ONC RPC (a.k.a. Sun RPC). Fairly basic. Includes
encoding standard XDR + language for describing data
formats.

•  Java RMI (remote method invocation). Very elaborate.
Tries to make it look like can perform arbitrary methods on
remote objects.

•  Thrift. Developed at Facebook. Now part of Apache Open
Source. Supports multiple data encodings & transport
mechanisms. Works across multiple languages.

•  Avro. Also Apache standard. Created as part of Hadoop
project. Uses JSON. Not as elaborate as Thrift.

37

