
Errors and Failures
Feb 9, 2018

416 Distributed Systems

Types of Errors

• Hard errors: The component is dead.

• Soft errors: A signal or bit is wrong, but it doesn’t
mean the component must be faulty

• Note: You can have recurring soft errors due to
faulty, but not dead, hardware

2

Examples

• DRAM errors

• Hard errors: Often caused by motherboard - faulty
traces, bad solder, etc.

• Soft errors: Often caused by cosmic radiation or alpha
particles (from the chip material itself) hitting memory
cell, changing value. (Remember that DRAM is just
little capacitors to store charge... if you hit it with
radiation, you can add charge to it.)

3

Some fun #s

• Both Microsoft and Google have recently
started to identify DRAM errors as an
increasing contributor to failures... Google in
their datacenters, Microsoft on your
desktops.

• We�ve known hard drives fail for years, of
course. :)

4

Replacement Rates

HPC1 COM1 COM2
Component % Component % Component %

Hard drive 30.6 Power supply 34.8 Hard drive 49.1
Memory 28.5 Memory 20.1 Motherboard 23.4
Misc/Unk 14.4 Hard drive 18.1 Power supply 10.1
CPU 12.4 Case 11.4 RAID card 4.1
motherboard 4.9 Fan 8 Memory 3.4
Controller 2.9 CPU 2 SCSI cable 2.2
QSW 1.7 SCSI Board 0.6 Fan 2.2
Power supply 1.6 NIC Card 1.2 CPU 2.2
MLB 1 LV Pwr Board 0.6 CD-ROM 0.6
SCSI BP 0.3 CPU heatsink 0.6 Raid Controller 0.6

5

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/eurosys84-nightingale.pdf

TACT: Total Accumulated CPU Time
MCE : This failure occurs when the CPU issues a machine-check exception (MCE) [Intel], which
indicates a detected violation of an internal invariant. Causes include bus errors, microcode bugs,
and parity errors in the CPU’s caches

Replacement Rates

6

Millions of consumer PCs; 2016 study
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/eurosys84-nightingale.pdf

TACT: Total Accumulated CPU Time

MCE : When CPU issues a machine-check exception (MCE) [Intel], which indicates a detected
violation of an internal invariant. Causes include bus errors, microcode bugs, and parity errors in
the CPU’s caches

Failure min TACT Pr[1st failure] Pr[2nd fail | 1 fail] Pr[3rd fail | 2 fails]
CPU subsystem (MCE) 5 days 1 in 330 1 in 3.3 1 in 1.8
CPU subsystem (MCE) 30 days 1 in 190 1 in 2.9 1 in 1.7
Memory (DRAM one-bit flip) 5 days 1 in 2700 1 in 9.0 1 in 2.2
Memory (DRAM one-bit flip) 30 days 1 in 1700 1 in 12 1 in 2.0
Disk subsystem 5 days 1 in 470 1 in 3.4 1 in 1.9
Disk subsystem 30 days 1 in 270 1 in 3.5 1 in 1.7

Figure 2. The (conditional) probability of an OS crash from various hardware failures

crashing due to an MCE during the 8 month observation pe-
riod. After a machine has crashed once, its crash probability
increases by a factor of 100, and the probability continues
to increase with subsequent crashes. The second row in the
figure shows that the same trend holds for machines with at
least 30 days of TACT, but the initial probability of failure is
higher. Further analysis shows that, of the machines with at
least 5 days of TACT that experience a recurring crash from
an MCE, 84% of machines experience a recurrence within
10 days of TACT, and 97% of machines experience a recur-
rence within a month.

4.2 One-bit DRAM failures

The middle two rows of Figure 2 show the crash probabil-
ity for one-bit DRAM failures, which are broadly similar to
the trends for CPU subsystem failures: The failure proba-
bility jumps by more than two orders of magnitude after a
first failure is observed, and the probability further increases
with subsequent crashes. The initial failure probabilities are
nearly an order of magnitude lower than those for CPU fail-
ures, but this gap is almost erased after two repeated crashes.
In addition, since we are capturing DRAM errors in only
1.5% of the address space, it is possible that DRAM error
rates across all of DRAM may be far higher than what we
have observed. Further analysis shows that, of the machines
with at least 5 days of TACT that crash from a repeated one-
bit DRAM failure, 94% experience the second crash within
10 days of TACT, and 100% crash within 30 days.

Memory manufacturers often use a metric called FITS
(failures per billion hours of uptime) [Micron 1994] to de-
scribe the probability of an Alpha particle or neutrino flip-
ping a bit in memory. Our data suggests that FITS is an in-
sufficient metric upon which to make decisions for building
software reliability or determining whether hardware pro-
tections such as ECC should be used. Unfortunately, ECC
memory is seen as a “premium” part, and is often used
only in server machines. Field studies—such as ours—may
observe many different environmental effects, such as dirt,
heat, or assembly defects, all of which all can conspire to
increase the probability of memory errors.

4.3 Spatial analysis of one-bit DRAM failures

DRAM faults provide a unique opportunity to gain more
insight into recurring hardware faults. Each mini-dump sent
to Microsoft contains sufficient information to determine the

memory location of a one-bit fault. We can thus determine
whether recurring one-bit faults show spatial locality, which
would substantiate the hypothesis that such recurrences are
not merely coincidental.

Unfortunately, we have a fairly limited set of crash reports
on which to base this analysis, for two reasons. First, the
RAC database contains only post-processed crash results,
not actual mini-dumps, so we must analyze mini-dumps
from ATLAS instead. Therefore, we analyzed 381,315 one-
bit failures reported to the ATLAS database, only 22,319 of
which are recurrent. Second, we can determine the physical
address only for the 2707 recurrent failures that occurred
within a particular 3 MB portion of the 30 MB Windows
kernel image, because the remainder of the image is not
loaded at a deterministic physical address.

Our result is that, among machines that experienced re-
current DRAM failures, 79% experienced at least two such
failures at the same physical address with the same bit
flipped. In fact, the rate of spatial locality may even be
higher, due to a weakness in the ATLAS data set: Each ma-
chine in ATLAS is tagged with an ID that is not guaranteed
to be unique, so many observations of two failures on the
“same” machine at different locations may in fact be fail-
ures on two different machines. The identifier collision rate
is hard to quantify but known to be non-zero, so 79% is a
conservative value for spatial locality.

There is one important caveat to this result: The 3 MB
portion of the kernel image used for this analysis is the only
part of kernel code not protected by the MMU, so it is pos-
sible that the one-bit errors are due to erratic software rather
than DRAM failures. However, we observed zero spatial lo-
cality among failures on different machines. Therefore, for
software to cause the behavior we have seen, a stray thread
would have to flip the same bit across different boots of the
same machine, but never flip the same bit across two differ-
ent machines. Although this is possible, we conjecture it to
be considerably more probable that these recurring crashes
are caused by a spatially local defect in a DRAM chip.

4.4 Disk subsystem

The last two rows of Figure 2 show the crash probability
for disk subsystem failures. The first-failure probability is
one in several hundred, followed by a roughly two-order-
of-magnitude increase after a machine has failed once, and
increasing thereafter. Further analysis found that, of the ma-

Measuring Availability

• Mean time to failure (MTTF)
• Mean time to repair (MTTR)
• MTBF = MTTF + MTTR (mean time between failure)

• Availability = MTTF / (MTTF + MTTR)
• Suppose OS crashes once per month, takes 10min to

reboot.
• MTTF = 720 hours = 43,200 minutes

MTTR = 10 minutes
• Availability = 43200 / 43210 = 0.997 (~�3 nines�)

7

8.2 Measures of Reliability and Failure Tolerance 8–9

the system cannot be used until it is repaired, perhaps by replacing the failed component,
so we are equally interested in the time to repair (TTR). If we observe a system through
N run–fail–repair cycles and observe in each cycle i the values of TTFi and TTRi, we can
calculate the fraction of time it operated properly, a useful measure known as availability:

time system was runningAvailability = --
time system should have been running

N

∑ TTFi

i = 1= -- Eq. 8–1N

∑ (TTFi + TTRi)

i = 1

By separating the denominator of the availability expression into two sums and dividing
each by N (the number of observed failures) we obtain two time averages that are fre-
quently reported as operational statistics: the mean time to failure (MTTF) and the mean
time to repair (MTTR):

N N
MTTF = ---1 -∑ TTFi MTTR = ---1 -∑ TTRi Eq. 8–2

N Ni = 1 i = 1

The sum of these two statistics is usually called the mean time between failures (MTBF).
Thus availability can be variously described as

MTTF MTTF MTBF – MTTRAvailability = ---------------- = --------------------------------------- = --------------------------------------- Eq. 8–3MTBF MTTF + MTTR MTBF

In some situations, it is more useful to measure the fraction of time that the system is not
working, known as its down time:

MTTRDown time = (1 – Availability) = ---------------- Eq. 8–4
MTBF

One thing that the definition of down time makes clear is that MTTR and MTBF are
in some sense equally important. One can reduce down time either by reducing MTTR
or by increasing MTBF.

Components are often repaired by simply replacing them with new ones. When failed
components are discarded rather than fixed and returned to service, it is common to use
a slightly different method to measure MTTF. The method is to place a batch of N com-
ponents in service in different systems (or in what is hoped to be an equivalent test
environment), run them until they have all failed, and use the set of failure times as the
TTFi in equation 8–2. This procedure substitutes an ensemble average for the time aver-
age. We could use this same procedure on components that are not usually discarded
when they fail, in the hope of determining their MTTF more quickly, but we might
obtain a different value for the MTTF. Some failure processes do have the property that
the ensemble average is the same as the time average (processes with this property are

Saltzer & Kaashoek Ch. 8, p. 9 June 24, 2009 12:24 am

8.2 Measures of Reliability and Failure Tolerance 8–9

the system cannot be used until it is repaired, perhaps by replacing the failed component,
so we are equally interested in the time to repair (TTR). If we observe a system through
N run–fail–repair cycles and observe in each cycle i the values of TTFi and TTRi, we can
calculate the fraction of time it operated properly, a useful measure known as availability:

time system was runningAvailability = --
time system should have been running

N

∑ TTFi

i = 1= -- Eq. 8–1N

∑ (TTFi + TTRi)

i = 1

By separating the denominator of the availability expression into two sums and dividing
each by N (the number of observed failures) we obtain two time averages that are fre-
quently reported as operational statistics: the mean time to failure (MTTF) and the mean
time to repair (MTTR):

N N
MTTF = ---1 -∑ TTFi MTTR = ---1 -∑ TTRi Eq. 8–2

N Ni = 1 i = 1

The sum of these two statistics is usually called the mean time between failures (MTBF).
Thus availability can be variously described as

MTTF MTTF MTBF – MTTRAvailability = ---------------- = --------------------------------------- = --------------------------------------- Eq. 8–3MTBF MTTF + MTTR MTBF

In some situations, it is more useful to measure the fraction of time that the system is not
working, known as its down time:

MTTRDown time = (1 – Availability) = ---------------- Eq. 8–4
MTBF

One thing that the definition of down time makes clear is that MTTR and MTBF are
in some sense equally important. One can reduce down time either by reducing MTTR
or by increasing MTBF.

Components are often repaired by simply replacing them with new ones. When failed
components are discarded rather than fixed and returned to service, it is common to use
a slightly different method to measure MTTF. The method is to place a batch of N com-
ponents in service in different systems (or in what is hoped to be an equivalent test
environment), run them until they have all failed, and use the set of failure times as the
TTFi in equation 8–2. This procedure substitutes an ensemble average for the time aver-
age. We could use this same procedure on components that are not usually discarded
when they fail, in the hope of determining their MTTF more quickly, but we might
obtain a different value for the MTTF. Some failure processes do have the property that
the ensemble average is the same as the time average (processes with this property are

Saltzer & Kaashoek Ch. 8, p. 9 June 24, 2009 12:24 am

Availability

Availability % Downtime
per year

Downtime per
month*

Downtime per
week

90% ("one nine") 36.5 days 72 hours 16.8 hours
95% 18.25 days 36 hours 8.4 hours
97% 10.96 days 21.6 hours 5.04 hours
98% 7.30 days 14.4 hours 3.36 hours
99% ("two nines") 3.65 days 7.20 hours 1.68 hours
99.50% 1.83 days 3.60 hours 50.4 minutes
99.80% 17.52 hours 86.23 minutes 20.16 minutes
99.9% ("three nines") 8.76 hours 43.8 minutes 10.1 minutes
99.95% 4.38 hours 21.56 minutes 5.04 minutes
99.99% ("four nines") 52.56 minutes 4.32 minutes 1.01 minutes
99.999% ("five nines") 5.26 minutes 25.9 seconds 6.05 seconds
99.9999% ("six nines") 31.5 seconds 2.59 seconds 0.605 seconds
99.99999% ("seven nines") 3.15 seconds 0.259 seconds 0.0605 seconds

8

For a reliable component, may have to wait a
long time to determine its availability/downtime!

Availability in practice

• Carrier airlines (2002 FAA fact book)
• 41 accidents, 6.7M departures
• 99.9993% availability

• 911 Phone service (1993 NRIC report)
• 29 minutes per line per year
• 99.994%

• Standard phone service (various sources)
• 53+ minutes per line per year
• 99.99+%

• End-to-end Internet Availability
• 95% - 99.6%

9

Real Devices

10

Real Devices – the small print

11

