
Time Synchronization
(Part 2: Lamport and vector clocks)

Feb 5, 2018

1

416 Distributed Systems

Important Lessons (last lecture)

• Clocks on different systems will always behave differently
• Skew and drift between clocks

• Time disagreement between machines can result in undesirable
behavior

• Clock synchronization
• Rely on a time-stamped network messages
• Estimate delay for message transmission
• Can synchronize to UTC or to local source
• Clocks never exactly synchronized

• Often inadequate for distributed systems
• might need totally-ordered events
• might need millionth-of-a-second precision

2

Today's Lecture

• Need for time synchronization

• Time synchronization techniques

• Lamport Clocks

• Vector Clocks

3

Logical time

• Capture just the “happens before” relationship
between events
• Discard the infinitesimal granularity of time
• Corresponds roughly to causality

Logical time and logical clocks
(Lamport 1978)

• Events at three processes

5

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

Logical time and logical clocks
(Lamport 1978)

• Instead of synchronizing clocks, event ordering can be used

1. If two events occurred at the same process pi (i = 1, 2, … N) then
they occurred in the order observed by pi, that is the definition of:
® i

2. When a message, m is sent between two processes, send(m)
‘happens before’ receive(m)

3. The ‘happened before’ relation is transitive

• The happened before relation (®) is necessary for causal
ordering

6

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

Logical time and logical clocks
(Lamport 1978)

• a ® b (at p1) c ®d (at p2)
• b ® c because of m1

• also d ® f because of m2

7

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

Logical time and logical clocks
(Lamport 1978)

• Not all events are related by ®
• Consider a and e (different processes and no chain

of messages to relate them)
• they are not related by ® ; they are said to be concurrent
• written as a || e

8

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

Lamport Clock (1)

• A logical clock is a monotonically increasing software counter
• It need not relate to a physical clock.

• Each process pi has a logical clock, Li which can be used to apply
logical timestamps to events

• Rule 0: initially all clocks are set to 0
• Rule 1: Li is incremented by 1 before each event at process pi
• Rule 2:

• (a) when process pi sends message m, it piggybacks t = Li
• (b) when pj receives (m,t) it sets Lj := max(Lj, t) and applies rule 1 before timestamping the

event receive (m)

9

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

Lamport Clock (1)

• each of p1, p2, p3 has its logical clock initialised to zero,
• the clock values are those immediately after the event.
• e.g. 1 for a, 2 for b.

• for m1, 2 is piggybacked and c gets max(0,2)+1 = 3

10

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

Lamport Clock (1)

• e ®e’ (e happened before e’) implies L(e)<L(e’)
(where L(e) is Lamport clock value of event e)

• The converse is not true, that is L(e)<L(e') does not
imply e ®e’. What’s an example of this above?

11

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

Lamport Clock (1)

• e ®e’ (e happened before e’) implies L(e)<L(e’)

• The converse is not true, that is L(e)<L(e') does not
imply e ®e’
• e.g. L(b) > L(e) but b || e

12

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

Lamport logical clocks

• Lamport clock L orders events consistent with
logical “happens before” ordering
• If e → e’, then L(e) < L(e’)

• But not the converse
• L(e) < L(e’) does not imply e → e’

• Similar rules for concurrency
• L(e) = L(e’) implies e║e’ (for distinct e,e’)
• e║e’ does not imply L(e) = L(e’)
• i.e., Lamport clocks arbitrarily order some concurrent

events

Total-order Lamport clocks

• Many systems require a total-ordering of events,
not a partial-ordering

• Use Lamport’s algorithm, but break ties using the
process ID; one example scheme:
• L(e) = M * Li(e) + i

• M = maximum number of processes
• i = process ID

Question Break

•

2/6/18 15

Today's Lecture

• Need for time synchronization

• Time synchronization techniques

• Lamport Clocks

• Vector Clocks

16

Vector Clocks

• Vector clocks overcome the shortcoming of
Lamport logical clocks
• L(e) < L(e’) does not imply e happened before e’

• Goal
• Want ordering that matches happened before
• V(e) < V(e’) if and only if e → e’

• Method
• Label each event by vector V(e) [c1, c2 …, cn]

• ci = # events in process i that precede e

17

Vector Clock Algorithm

• Initially, all vectors [0,0,…,0]
• For event on process i, increment own ci

• Label message sent with local vector
• When process j receives message with vector

[d1, d2, …, dn]:
• Set each local vector entry k to max(ck, dk)
• Increment value of cj

Vector Clocks

• At p1
• a occurs at (1,0,0); b occurs at (2,0,0)
• piggyback (2,0,0) on m1

• At p2 on receipt of m1 use max ((0,0,0), (2,0,0)) = (2, 0, 0)
and add 1 to own element = (2,1,0)

• Meaning of =, <=, max etc for vector timestamps
• compare elements pairwise

19

a b

c d

e f

m1

m2

(2,0,0)(1,0,0)

(2,1,0) (2,2,0)

(2,2,2)(0,0,1)

p1

p2

p3

Physical
time

Vector Clocks

• Note that e → e’ implies V(e)<V(e’). The
converse is also true

• Can you see a pair of concurrent events; Can you
infer they are concurrent from their vectors
clocks?

20

a b

c d

e f

m1

m2

(2,0,0)(1,0,0)

(2,1,0) (2,2,0)

(2,2,2)(0,0,1)

p1

p2

p3

Physical
time

Vector Clocks

• Note that e ® e’ implies V(e)<V(e’). The converse
is also true

• Can you see a pair of concurrent events?
• c || e (concurrent) because neither V(c) <= V(e) nor V(e) <= V(c)

21

a b

c d

e f

m1

m2

(2,0,0)(1,0,0)

(2,1,0) (2,2,0)

(2,2,2)(0,0,1)

p1

p2

p3

Physical
time

Implementing logical clocks

• Positioning of logical timestamping in distributed
systems.

22

Distributed time
• Premise

• The notion of time is well-defined (and measurable) at
each single location

• But the relationship between time at different
locations is unclear
• Can minimize discrepancies, but never eliminate

them
• Reality

• Stationary GPS receivers can get global time with <
1µs error

• Few systems designed to use this; logical clocks key
mechanism for ordering
• Recent exception: (Spanner system from Google)

Important Points

• Physical Clocks
• Can keep closely synchronized, but never perfect

• Logical Clocks
• Encode happens before relationship (necessary for

causality)
• Lamport clocks provide only one-way encoding
• Vector clocks precedence necessary for causality (but

not sufficient: could have been caused by some event
along the path, not all events)

