
Practice questions
416 2016 W2 (Winter 2017)

PQ 1

• Assume you were designing a protocol between
two hosts that communicate over links that
guarantee 0 packet loss.

Would you still need to implement reliability
measures like retransmission? Why or why not?

PQ 1
• Assume you were designing a protocol between

two hosts that communicate over links that
guarantee 0 packet loss.

Would you still need to implement/consider
reliability measures like retransmission? Why or
why not?

Yes. Routers could drop packets, as can the
end-host software (OS). i.e., Links are just one
part of a much larger picture.

PQ 2
• You are designing the printing service on campus

with physical “printing cards” given to students. You
can choose to store the printing balance information
in the cloud, in on-campus servers, or on the card.

To have a higher degree of fate sharing in your
system, where should you store the printing balance?

PQ 2
• You are designing the printing service on campus

with physical “printing cards” given to students. You
can choose to store the printing balance information
in the cloud, in on-campus servers, or on the card.

To have a higher degree of fate sharing in your
system, where should you store the printing
balance?

On the card. Lose state for ability to print if and
only if the card (that is necessary to print) is lost.

PQ 2
• You are designing the printing service on campus

with physical “printing cards” given to students. You
can choose to store the printing balance information
in the cloud, in on-campus servers, or on the card.

To have a higher degree of fate sharing in your
system, where should you store the printing
balance?

On the card. Lose state for ability to print if and
only if the card (that is necessary to print) is lost.

(What if you stored the balance on each printer?)

PQ 3
• You are designing an IoT lock device that receives

commands from an iPhone via the cloud. You are
considering different semantics for the command
that actuates the device to lock the door. Which
semantics is the most appropriate?

• At least once

• At most once

• Zero or once

PQ 3
• You are designing an IoT lock device that receives

commands from an iPhone via the cloud. You are
considering different semantics for the command
that actuates the device to lock the door. Which
semantics is the most appropriate?

• At least once [lock means lock + idempotent]

• At most once

• Zero or once

PQ 4

• Traditional NFS has a stateless server, allowing it to
reboot without impacting existing client
connections (much). What does NFS trade-off to
gain this stateless server advantage? i.e., where
does it lose in return?

PQ 4
• Traditional NFS has a stateless server, allowing it to

reboot without impacting existing client
connections (much). What does NFS trade-off to
gain this stateless server advantage?

1. Client have to maintain more state (more
memory usage at client)

2. Clients must continuously pass the
necessary client operation state to the server
(less bandwidth-efficient)

PQ 5

• Consider the assignment 1 goldilocks fortune
protocol. In this protocol the server, disregarding
the right-number/fortune, is stateless, but the client
is stateful.

• True

• False

PQ 5
• Consider the assignment 1 goldilocks fortune

protocol. In this protocol the server, disregarding
the right-number/fortune, is stateless, but the client
is stateful.

• True: server replies with high/low while client
maintain protocol state (id)

• False

PQ 6

• In the goldilocks fortune protocol a client restart
loses all of its “work” (explored id space). How
would you (minimally) change this system so that a
client restart does not lose the client’s work?

• Hint: introduce server state and change the protocol

PQ 6
• In the goldilocks fortune protocol a client restart loses all of its

“work” (explored id space). How would you (minimally) change
this system so that a client restart does not lose the client’s work?

• (1) Introduce server state (closest id to right number used by
client) and (2) change the protocol (attach the closest id to
each reply from server, e.g., “high, 42”)

• More efficient: attach closest id to reply if have not heard
from client for a while

• More complex: add handshake protocol for client to
determine current closest id

PQ 7
• Assume a case in which there are no failures and

there is a single process in the system that is
accessing a file for the first time that is hosted by a
distributed file server. In this case both AFS and
NFS provide identical semantics to this process.

• True

• False

PQ 7
• Assume a case in which there are no failures and there is a

single process in the system that is accessing a file for the
first time that is hosted by a distributed file server. In this
case both AFS and NFS provide identical semantics to this
process.

• True: can’t tell difference between AFS/NFS/local FS
if no failures and no concurrent clients (except
performance).

• False

PQ 8
• You are running a single process on a client machine that

is using a distributed file system. You see the following
sequence of operations:

 fd=open(‘foo’) // open file ‘foo’
 lseek(fd, 0) // goto position 0 in file

read(fd, buf, 1024) // buf contains ‘hello’
 lseek(fd, 0) // goto position 0 in file

read(fd, buf, 1024) // buf contains ‘refrigerator’
close(fd) // close file

Based on above could the client be using NFS or AFS?

• NFS • AFS • Either • Neither

PQ 8
• You are running a single process on a client machine that

is using a distributed file system. You see the following
sequence of operations:

 fd=open(‘foo’) // open file ‘foo’
 lseek(fd, 0) // goto position 0 in file

read(fd, buf, 1024) // buf contains ‘hello’
 lseek(fd, 0) // goto position 0 in file

read(fd, buf, 1024) // buf contains ‘refrigerator’
close(fd) // close file

Based on above could the client be using NFS or AFS?
• NFS (impossible with AFS — it provides session

consistency)

PQ 9

• A mutual exclusion lock (i.e., mutex) is a form of
pessimistic concurrency control mechanism

• True

• False

PQ 9

• Using a mutual exclusion mutex (i.e., lock) is a form
of pessimistic concurrency control

• True: you use locking under the assumption
that there are other concurrent, competing,
clients who might execute the critical section

• False

PQ 10

• Is a lease a performance-improving mechanism?

• If yes, how does it improve performance?

• If no, how does it degrade performance?

PQ 10
• Is a lease a performance-improving mechanism? If

so, how does it improve performance?

• Yes. A lease improves performance by removing
the need for coordination — it allows the lease-
holder to proceed with an operation unilaterally.

• Note: answer partly depends on how you define
performance (e.g., No if you consider AFS with one
client — a lease would actually degrade (server)
performance, though just slightly).

PQ 11

• Assume that the peers in assignment 2 had
synchronized clocks. Would this help in maintaining
constraint 2 (two consecutive GetResource
invocations cannot come from the same peer)?

• If yes, then state how it would help.

• If no, then state why it would not help.

PQ 11
• Assume that the peers in assignment 2 had

synchronized clocks. Would this help in maintaining
constraint 2 (two consecutive GetResource
invocations cannot come from the same peer)?

• In general No, b/c operating in an
asynchronous network and network latency is
unbounded.

• i.e., even if peers synchronized when to invoke
the RPC, no guarantee that their invocations
would reach the server in the right order.

PQ 12
• Consider the following three topologies (e.g., in A3):

• Which topology makes it easiest for peers to detect peer failures?

• Assuming a large N, which topology (on average) impacts the
fewest peers when a peer fails?

(a) all-to-all (b) linked-list (c) star

Peer 2

Peer N

…

Peer 1

Peer 2

Peer N

…

Peer 1

Peer 2 Peer N…

Peer 1

PQ 12
• Consider the following three topologies (e.g., in A3):

• Which topology makes it easiest for peers to detect peer failures? A

• Assuming a large N, which topology (on average) impacts the
fewest peers when a peer fails? C

(a) all-to-all (b) linked-list (c) star

Peer 2

Peer N

…

Peer 1

Peer 2

Peer N

…

Peer 1

Peer 2 Peer N…

Peer 1

PQ 13
• You are building a distributed system and are using logical

clocks. You find that two events, a and b, are ordered
according to your logical clock mechanism as L(a) > L(b).
From this you deduce that b happened before a. Which
logical clock mechanism are you using?

A. Lamport cocks

B. Vector clocks

C. NTP

D. This is all very confusing, I can’t tell

PQ 13
• You are building a distributed system and are using logical

clocks. You find that two events, a and b, are ordered according
to your logical clock mechanism as L(a) > L(b). From this you
deduce that b happened before a. Which logical clock
mechanism are you using?

A. Lamport cocks

B. Vector clocks — remember the ‘if and only if’ holds for
VClocks but not for Lamport clocks

C. NTP

D. This is all very confusing, I can’t tell

PQ 14

• A node failure in the classic Ricart-Agrawala
algorithm causes a deadlock (other nodes to block
indefinitely)

• True

• False

PQ 14

• A node failure in the classic Ricart-Agrawala
algorithm causes a deadlock (other nodes to block
indefinitely)

• True — no built-in fault tolerance

• False

PQ 15
• You decide to optimize the vector clock algorithm by using

a single index for two machines, A and B (and not
changing anything else). Given vclock timestamps for
events a at A, b at B, c at C, and d at D. Which of these
statements can you deduce?

A. a happened before b

B. b happened before c

C. a happened before c

D. c happened before d

PQ 15
• You decide to optimize the vector clock algorithm by using a

single index for two machines, A and B (and not changing
anything else). Given vclock timestamps for events a at A, b at
B, c at C, and d at D. Which of these statements can you
deduce?

A. a happened before b (nope, not with virtual Lamport clock)

B. b happened before c (nope; not without coordination btw A
and B)

C. a happened before c (nope; by symmetry with B)

D. c happened before d

PQ 16

• You decide to use a join design in A3 in which
joining node (1) learns from the node it is joining
through of other nodes, (2) advertises itself to these
nodes, (3) waits to receive acknowledgements from
all nodes, and then (4) calls JoinPrint.

• What are the issues with using this algorithm, and
how would you fix them?

PQ 16
• You decide to use a join design in A3 in which joining node

(1) learns from the node it is joining through of other
nodes, (2) advertises itself to these nodes, (3) waits to
receive acknowledgements from all nodes, and then (4)
calls JoinPrint.

• One of other nodes could join; ack never arrives

• Another node joins simultaneously; joining nodes do not
learn about each other (race condition)

• Alg does not mention resource transfer, if all other nodes
fail after it joins, it needs to remember past resources

PQ 17

• If you are running on an unreliable network and you
cannot reach a node using RPC then the node has
failed.

• True

• False

PQ 17
• If you are running on an unreliable network and you

cannot reach a node using RPC then the node has
failed.

• True

• False: network unreliable, could be
unavailable during your RPC call.

(In A3, we won’t make the network more
unreliable, e.g., by dropping packets)

PQ 18

• You are using Ricart-Agrawala on a network that
might experience partition failures. You decide that
you want to prioritize safety over all else (mutual
exclusion should be guaranteed at all times).

• With above as a hard design constraint; when your
system experiences a network partitioning, what
should the set of nodes in a partition that is not
currently holding the mutex do?

PQ 18
• You are using Ricart-Agrawala on a network that

might experience partition failures. You decide that
you want to prioritize safety over all else (mutual
exclusion should be guaranteed at all times).

• With above as a hard design constraint; when your
system experiences a network partitioning, what
should the set of nodes in a partition that is not
currently holding the mutex do?

• Fail, or wait.

PQ 19

• The most space efficient RAID level is RAID-1

• True

• False

PQ 19

• The most space efficient RAID level is RAID-1

• True

• False (RAID-0 is more space efficient)

PQ 20

• RAID provides partition tolerance

• True

• False

PQ 20

• RAID provides partition tolerance

• True

• False (fault model assume disk fail-stop, with
partitions have to reason about writes; RAID
doesn’t do that)

PQ 21

• Event A with timestamp [1,2,3] happened before
event B with timestamp [3,2,1].

• True

• False

• Can’t tell from timestamps alone

PQ 21
• Event A with timestamp [1,2,3] happened before

event B with timestamp [3,2,1].

• True

• False: A and B are concurrent according to
their vector clocks

• Can’t tell from timestamps alone

PQ 22

45

• A content distribution network provides a way for
content providers to shed load from their servers

• True

• False

PQ 22

46

• A content distribution network provides a way for
content providers to shed load from their servers

• True [A CDN is fancy cache]

• False

PQ 23

47

• You are considering a startup that will use a peer-
to-peer architecture. Your co-founder is a
psychology major. Explain (all the possible)
advantages of a peer-to-peer design to your
business partner.

PQ 23

48

• Elastic: scales with demand (peers bring resources to
support more peers)

• Cheap: resources are not centrally provided/
administered

• Peer diversity = higher resilience to failures (e.g.,
geographical/network diversity)

• No single point of failure = more fault tolerant

• Resilient to gov. oversight/control

PQ 24

• For A5 you decide to implement messaging
between workers by routing all messages through
the server. What are the advantages and
disadvantages of this design decision?

PQ 24
• Advantages:

• Simple: centralized comm. between all workers (e.g., debugging is easy)

• Single point of control/policy enforcement — (e.g., preventing some workers from
communicating is easy)

• Fate sharing of outstanding client request and msgs to get it processed

• Short worker unavailability can be hidden by the server (appears as delay to other worker)

• Can use worker names independent of physical identifiers (IPs/ports); e.g., allows workers
to be mobile

• Disadvantages:

• Server load: bottleneck

• Extra latency in communication (particularly bad if worker in another data center!)

PQ 25

51

• RAID uses complement sum for error detection

A. Yes

B. No

PQ 25

52

• RAID uses complement sum for error detection

A. Yes

B. No [RAID uses Parity]

PQ 26

53

• In A4/A5 workers do not fail. What if workers could
fail in a fail-stop manner. How would you re-design
your A5 system to provide identical guarantees to
clients even if workers fail?

PQ 26

54

• Need a failure detector, either at server or workers.

• Need to store crawled worker state — can replicate to other works, but they can
fail, so have to continuously replicate/migrate state. Or, store it at server. Crawled
state = URLs crawled by worker (assuming can re-crawl to get exact state lost)

• On failure, notify workers if they are coupled (e.g., direct comm link). If not, then
decouple further and delay requests to failed worker until new worker catches up.

• Determine workers who will take over domains of failed worker — trigger latency
compute to URLs, aggregate at server, farm out URLs to crawl to the right
workers.

• Determine if existing client operation is impacted. If so, cancel operation at other
workers (e.g., overlap) if coupling between workers; restart operation (blocking
client does not observe this). If no impact, continue operation.

PQ 27

• Which file system can support more clients, given a
server that runs on identical hardware? [Choose
one answer]

A. NFS

B. AFS

55

PQ 27

56

• Which file system can support more clients, given a
server that runs on identical hardware? [Choose
one answer]

A. NFS

B. AFS [AFS pushes client load from the server
by caching entire files on the client side. It is
strictly more scalable (in terms of number of
clients) than NFS.]

PQ 28
• Compared to a central file hosting server, a

BitTorrent swarm has which of the following
features:

o High scalability

o Higher availability

o Higher performance

PQ 28
• Compared to a central file hosting server, a

BitTorrent swarm has which of the following
features:

o High scalability

o Higher availability

o Higher performance

PQ 29

59

• In A5 a single client makes blocking requests. How
would you redesign your A5 to support an arbitrary
number of clients who make blocking requests?
(Without changing the client-server API)

PQ 29

60

• Non-conflicting operations can run concurrently. But, conflicting
operations require concurrency control.

• We also need to extend semantics of API for concurrent ops — e.g.,
serializable semantics?

• Conflict: crawl(u1), crawl(u2) where u1, u2 in same domain

• Conflict: crawl(u1), overlap(u2,u3,) where u1, u2 in same domain

• Conflict: crawl(u1,d1), crawl(u2,d2) where u1 and some crawl depth < d1
reaches a domain that u2 reaches at crawl depth < d2

• Optimistic: Locking! (key question: what granularity?)

• Pessimistic: Run first, check for conflicts later (possibly recompute)

PQ 30

61

• You plan to build a CDN based on Akamai that not
only caches static content, but also caches
dynamically-generated results. Sketch out a high-
level design for this kind of CDN. (Hint: what
properties must this kind of CDN provide?)

PQ 30

62

• Basic design:

• Server S computing the dynamically-generated content embeds a special hash H along with
the Akamai link to the content

• H is a pointer to state necessary to generate the content, this state can be maintained at S
until some timeout. Assumption: given two requests, if they resolve to the same hash H,
then the dynamic content response is identical.

• Client requests and downloads index.html containing Akamai links. Client resolves Akamai
links to the Akamai servers in the usual way.

• Akamai server A sees the hash H, and first determines if the (dynamic) content corresponding
to H is in its cache.

• If content for H is in cache, A checks if this content has expired. If not expired then return
the content to client.

• If content is not in the cache, contact S, sending along H, and receive the generated
content. S will also send along an expiration TTL for the dynamically generated content in
its reply. Cache this content, then reply to client.

PQ 31

• Transactions in A6 mix put and get operations.
Imagine a different API that allowed transactions
containing either puts or gets, but never both. How
and why would this change simplify your system?

PQ 31
• Conflicts between operations more structured: get TXs

never conflict, put TXs only conflict when overlap on
keys.

• Knowledge of keys involved in put TXs can be
aggregated before the puts are executed — can lock in
batch at commit time.

• Can retry put TXs! Application does not see intermediate
failure of a put TXs (but it does see intermediate values
for a get TXs, making those more complex from a
concurrency control pov)

PQ 32

• In A6, supporting nodes that restart is more
complicated than supporting nodes that fail and
never come back

• True

• False

PQ 32
• In A6, supporting nodes that restart is more

complicated than supporting nodes that fail and
never come back

• True: not knowing when a node restarts makes the
problem as hard as nodes that never come back.
Nodes that do come back require extra logic/
coordination. If you assume no durable state, then
this is identical to supporting node joins!

• False

PQ 33

• Cars are transactions and intersections are shared
data. In this context, traffic lights (red/yellow/green)
are a form of optimistic concurrency control.

• True

• False

PQ 33
• Cars are transactions and intersections are shared

data. In this context, traffic lights (red/yellow/green)
are a form of optimistic concurrency control.

• True

• False. Analogy is a stretch (cars can’t change
traffic lights), but it’s certainly exclusionary/
preventative measure. Thus, pessimistic, not
optimistic.

