
1 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Trans in Distributed Systems
●  A distributed transaction involves

*  updates at multiple nodes

*  and the messages between those nodes

●  For example, buying widgets

Inv Order Cust

Buyer

2 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Distributed Atomic Commit
Requirements

1.  All workers that reach a decision reach the
same one

2.  Workers cannot change their decisions on
commit or abort once a decision is made

3.  To commit all workers must vote commit
4.  If all workers vote commit and there are no

failures the transaction will commit
5.  If all failures are repaired and there are no

more failures each worker will eventually
reach a decision (In fact it will be the same
decision)

3 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Decentralized and linear 2PC

●  Alternative communication topologies in 2PC context
*  Why funnel messages through the coordinator?

●  Topologies may reduce time or message complexity for the basic 2PC
protocol.

●  Two extremes: decentralized and linear.

●  Decentralized 2PC: all workers can communicate with one another
*  Build a protocol that has fewer rounds (but more messages!) than 2PC

●  Linear 2PC: coordinator, and all workers in a single line/chain
*  Build a protocol that has fewer messages (but more rounds!) than 2PC

4 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Process uncertainty in atomic commit

●  Uncertainty period for a process
*  Time between the moment a process votes Yes (commit) and the moment it knows

the txn decision (tx-abort or tx-commit)

●  While process is uncertain it is blocked: process cannot make progress

●  Blocking also arises when process must wait for failures to be repaired
before proceeding

5 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Hard failure constraints on distributed
atomic commit with failures

●  A non-blocking distributed atomic commit protocol that handles node
failures and communication failures is impossible (i.e., none can exist)

●  Cannot solve it with communication failures. Why?

6 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Hard failure constraints on distributed
atomic commit with failures

●  In general, a non-blocking distributed atomic commit protocol that
handles node failures and communication failures is impossible (i.e.,
none can exist)

●  Cannot solve it with communication failures. Why?
*  Cannot eliminate uncertainty periods: process has to cast vote AND learn all other

votes simultaneously!

●  Therefore, any ACP (atomic commit protocol) may cause processes to
become blocked during communication failures (or total site failures)

7 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Hard failure constraints on distributed
atomic commit with failures

●  In general, a non-blocking distributed atomic commit protocol that
handles node failures and communication failures is impossible (i.e.,
none can exist)

●  2PC: can block in both cases (examples?)
*  Does 2PC topology matter?

●  3PC: solves atomic distributed commit with node failures

 (but not communication failures)

8 © 2015 Donald Acton et al Computer Science 416 – 2014W2

2PC is a blocking protocol

●  Coordinator could fail after having decided the outcome, which would
lead all worker nodes to block
*  Key issue: If all nodes are uncertain, then they are blocked

9 © 2015 Donald Acton et al Computer Science 416 – 2014W2

2PC is a blocking protocol

●  Coordinator could fail after having decided the outcome, which would
lead all worker nodes to block
*  Key issue: If all nodes are uncertain, then they are blocked

●  3PC: solves atomic distributed commit with node failures (but not
communication failures)

●  How? 3PC satisfies the following key condition:

●  Cond: if any operational node is uncertain then no process
(operational or failed) can have decided to Commit.
*  i.e., if working node discovers it is uncertain, it can decide to abort: no blocking!

10 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Why 2PC not satisfy cond

●  Coord sends tx-commit to p,q
*  p receives tx-commit before q

*  p will decide to commit before q (which is uncertain)

*  i.e., it’s a kind of a race condition!

11 © 2015 Donald Acton et al Computer Science 416 – 2014W2

How 3PC solves this
●  Coord sends pre-commit messages if all votes were to

commit

●  When worker receive a pre-commit it knows that all
participants voted to commit. But, it does not commit at this
time

●  Each worker acks the pre-commit

●  Coord receipts acks, and when all recvd, knows no node is
uncertain

●  At this point it decides commit and sends a tx-commit

12 © 2015 Donald Acton et al Computer Science 416 – 2014W2

How 3PC solves this
●  Note: acks from nodes and tx-commit from coord is known

to nodes ahead of time! Weird..?

●  Their purpose is to signal events, not to communicate info
*  Receipt of ack from p: tells coord p is not uncertain

*  Receipt of tx-commit at p: tells p that that no worker is uncertain

*  This last statement is key: it allows p to commit without violating
Cond

13 © 2015 Donald Acton et al Computer Science 416 – 2014W2

● Okay, but how does 3PC handle a coord failure?

● New coordinator boots up and must complete any
outstanding transactions, using collected process
states:
* TR1: if someone is aborted, decide abort

* TR2: if some is committed, decide commit

* TR3: if all uncertain, decide abort

* TR4: If some committable, but none committed, do another
round of pre-commit, get acks, then decide commit.

Termination rules

