AN

MySsaLs

Transactions

Intel (TX memory): PostgreSQL
Transactional

Synchronization
Extensions (TSX)

i

Goal - A Distributed Transaction

® We want a transaction that involves multiple nodes
® Review of transactions and their properties

® Things we need to implement transactions
* Locks
* Achieving atomicity through logging
- Roll ahead, roll back, write ahead logging

® Finally, 2 Phase Commit (aka 2PC) and 3PC
® Lead into Paxos (again!)

Computer Science 416 - 2014W2 © 2015 Donald Acton et al

Transactions - Definition

@® A transaction is a sequence of data operations with the
following properties:
* A Atomic
- All or nothing
* C Consistent
- Consistent state in => consistent state out

*1 Independent (Isolated)
- Partial results are not visible to concurrent transactions

* D Durable

- Once completed, new state survives crashes

THE UNIVERSITY OF BRITISH COLUMBIA Computer Science 416 - 2014W?2 © 2015 Donald Acton et al

Summary

|Isolation and serializability

@® Definitions

* jsolation

- no transaction can see incomplete results of another
* serializability

- actual execution same as some serial order

® Algorithms (based on locks)

* two-phase locking
- serializability
* strict two-phase locking
- isolation and serializability

T emeiny o BRITISH CoLUMBIA Computer Science 416 - 2014W?2 © 2015 Donald Acton et al

Two Possible (pessimistic)

Approaches

® Two Phase Locking
@® Strict Two Phase Locking

Computer Science 416 - 2014W2 © 2015 Donald Acton et al

Two Phase Locking

® Locks

* reader/writer locks
* acquired as transaction proceeds
* no more acquires after first release

® Phase 1

- acquire locks and access data, but release no locks

® Phase 2

- access data, release locks, but acquire no new locks

UBC a place of mind

:@ THE UNIVERSITY OF BRITISH COLUMBIA CompUter SCience 4] 6 - 20] 4W2 © 20] 5 Donald ACton et al

() Semantics of two-phase locking

® Does the Two-Phase Locking protocol ensure
* serializability?
* independence?

® How?

T emeiny o BRITISH CoLUMBIA Computer Science 416 - 2014W?2 © 2015 Donald Acton et al

Semantics of two-phase locking

® Ensures serializability
* if transactions have no conflicting lock access
- order arbitrarily
* for any transactions with conflicting lock access
- order transactions based on order lock is acquired
* transactions are serialized
- because, no lock is acquired after first release
- deadlocks are still possible

@® Does not ensure independence
* we still have premature write problem
* t1 releases x, t2 acquires X, then t1 aborts

T emeiny o BRITISH CoLUMBIA Computer Science 416 - 2014W?2 © 2015 Donald Acton et al

Strict two phase locking

® Like two-phase locking, but
* release no locks until transaction commits

® Phase 1:
-acquire locks and access data, but release no locks

@® Phase 2:
- Commit/abort transaction and then release all locks

® Ensures both serializability and independence

) e onveRsi or samsw cowmana Computer Science 416 - 2014W?2 © 2015 Donald Acton et al

10

Serializability and two-phase

locking

® Two-phase locking and ordering
* serial order is acquisition order for shared locks
* two-phase ensures that ordering is unambiguous
® Simple illustration of potential deadlock

* t1 acquires a then b
* t2 acquires b then a

e t1 holdsa.
*ﬂ holds a *t1 waits for b
*t1 holds b *t2 holds b " t2 holds b
*t2 holds a *2 waits for a
> >
............... Computer Science 416 - 2014W2 © 2015 Donald Acton et al

BC

NC

€

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA

Deadlock Wait Graph

waiting for waiting for

Computer Science 416 - 2014W2 © 2015 Donald Acton et al

Deadlock

® Transactions increase likelihood of deadlock

* must hold lock until transaction commits

* model encourages programmers to forget about locks
® Dealing with deadlock

* try to prevent it

* detect it and abort transactions to break deadlock

T emeiny o BRITISH CoLUMBIA Computer Science 416 - 2014W?2 © 2015 Donald Acton et al

Detecting and breaking deadlock

® Construct a Wait Graph as program executes
* all deadlocks appear as cycles in graph

® Abort transactions until cycles are broken

A

v
< lockb_
() []

) e onveRsi or samsw cowmana Computer Science 416 - 2014W?2 © 2015 Donald Acton et al

Optimistic concurrency control

® Two-Phase locking is a approach
* creates more lock conflicts than necessary
* especially for long running transactions

® Optimistic concurrency control

* no locks - process works on copies of data

* during commit, check for conflicts and abort if any
otherwise write the copies

@® Analysis
* (+) no overhead locking when there’s no conflict
* (-) copies of data
* (=) if conflicts are common overhead much higher

:HEaUcNelc\,/ERSII: |||||||||||||||||| Computer Science 416 - 2014W?2 © 2015 Donald Acton et al

Optimistic concurrency control: TX
memory (note: no durability!)

A Canonical Intel® TSX Execution

Thread 1 Thread 2 Lock remains
free throughout
N\
Acquire S I— ACqUITE Lock: Free
Hardware
T'X memory Critical Critical
ol section section
(Intel’s £
Haswell) mm— Release
Release |
v Hash Table
No Serialization and No Communication if No Data Conflicts
UBC pl f mind

) e onveRsi or samsw cowmana Computer Science 416 - 2014W2 © 2015 Donald Acton et al

Recoverability (Atomicity)

® Problem
* ensure atomic update in face of failure

® If no failure, it’s easy
* just do the updates

@® If failure occurs while updates are performed
* Roll back to remove updates or

* Roll forward to complete updates

* What we need to do and when will depend on just when we
crash

T emeiny o BRITISH CoLUMBIA Computer Science 416 - 2014W?2 © 2015 Donald Acton et al

10

Logging

@® Persistent (on disk) log
* records information to support recovery and abort

® Types of logging
* redo logging --- roll forward
* undo logging--- roll back (and abort)
* Write-ahead logging --- roll forward and back

® Types of log records

* begin, update, abort, commit, and truncate

@® Atomic update
* atomic operation is write of commit record to disk
* transaction committed iff commit record in log

% S ivensine OF sRITISH CoLUMBIA Computer Science 416 - 2014W?2 © 2015 Donald Acton et al 11

Approaches to logging an update

® Value logging
* write old or new value of modified data to log
* simple, but not always space efficient or easy
- E.g., hard for some things such as malloc and system calls
@® Operation logging
* write name of operation and its arguments

* usually used for redo logging
- undo is possible, but requires a reversing operation

T emeiny o BRITISH CoLUMBIA Computer Science 416 - 2014W?2 © 2015 Donald Acton et al

12

Transaction and persistent data

IIIIIIIIIIIIIIIIIIIIIIIIIIIIII

memory

part of data

Computer Science 416 - 2014W2

transacti

log

—
=

© 2015 Donald Acton et al

13

Redo logging - roll forward

Normal operation

® For each transactional update
* change in-memory copy (or work on a disk copy)
* write new value to log
* do not change on-disk copy until commit

® Commit
* write commit record to log
* write changed data to disk
* write truncate record to log

® Abort Log what vyou

* write abort record to log
* invalidate in-memory data
* reread from disk

a aceo n .
.............................. Computer Science 416 - 2014W2

need to redo

© 2015 Donald Acton et al

*

14

Redo logging - roll forward
Recovery

® When the system restarts after a failure
* use log to roll forward committed transactions
* normal access stopped until recovery is completed
® Complete committed, but untruncated transaction
* for every trans with a commit but no truncate
* read new values from log and update disk values
* write truncate record to log
@® Abort all uncommitted transactions

* for every transaction with no commit or abort
- write abort record to log

T emeiny o BRITISH CoLUMBIA Computer Science 416 - 2014W?2 © 2015 Donald Acton et al

15

Redo logging - roll forward

Disadvantage

® No disk writes until commit so you have lots of I/O at
the end to commit the transaction

@® Must integrate cache of data in memory and
transaction logging

* complicates design of both systems

® This lock-in of memory degrades performance

* particularly if transactions are long running or modify lots
of data

5 T o atmsiny o BRITISH CoLUMBIA Computer Science 416 - 2014W?2 © 2015 Donald Acton et al 16

Undo logging - roll backward

Normal operation
® For each transactional update

* write value to log

* modify data and then write new value to disk any time

® Commit

* ensure that all updates have been written to disk
- i.e., “force” or ‘flush’ updates to disk

* write commit record to log

@® Abort
* use log to recover disk to old values

T emeiny o BRITISH CoLUMBIA Computer Science 416 - 2014W?2 © 2015 Donald Acton et al

17

Undo logging - roll backward

Recovery

® When the system restarts after a failure
* use log to rollback uncommitted transactions
* normal access stopped until recovery completed
® Undo effect with many uncommitted transactions

* For every trans with no commit or abort
- use log to recover disk to old values
- write abort record to log

5 T o atmsiny o BRITISH CoLUMBIA Computer Science 416 - 2014W?2 © 2015 Donald Acton et al

18

Undo logging - roll backward

Log records

@® Begin

* log += [b, tid]
® Update

* log += [u, tid, addr, size, oldValue], update disk anytime
® Commit

* complete disk update, log += [c, tid]

® Abort and Recovery

* reapply old values for trans with b but no c or a,
log += [a, tid]

| eney oF eRITISH COLUMBIA Computer Science 416 - 2014W?2 © 2015 Donald Acton et al 19

Undo logging - roll backward

Disadvantage

® Must modify disk data before commit can be written
to log
® Performance impact

* slows commit (can’t commit until all data is modified)
- transactions hold locks longer
- higher chance of conflicts

T emeiny o BRITISH CoLUMBIA Computer Science 416 - 2014W?2 © 2015 Donald Acton et al

20

Write-ahead logging
® Idea

* combine undo and redo logging

® How
* write old values to log
* modify data
* write new values to log anytime before commit
* write commit record to log

* write data back to disk at anytime, when done write
truncate record to log

T emeiny o BRITISH CoLUMBIA Computer Science 416 - 2014W?2 © 2015 Donald Acton et al

21

Failure Recovery

® Commit but no truncate
* Use roll forward based on new values

® No commit
* Use old value to roll back

a aceo n .
.............................. Computer Science 416 - 2014W2

© 2015 Donald Acton et al

22

Shrinking the Log File (Truncation)

@® Truncation is the process of
* removing unneeded records from transaction log

® For redo logging

* remove transactions with t or a

® For undo logging

* remove transactions with c or a

T emeiny o BRITISH CoLUMBIA Computer Science 416 - 2014W?2 © 2015 Donald Acton et al

23

Transactions summary

® Key properties

* ACID

® Serializability and Independence
* two phase locking
- serializability
* strict two phase locking
- Serializability and Independence

® Recovery

* redo and/or undo logging

IIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Computer Science 416 - 2014W2 © 2015 Donald Acton et al

24

