
416 Distributed Systems

Mar 1, Peer-to-Peer

Outline

•  P2P Lookup Overview

•  Centralized/Flooded Lookups

•  Routed Lookups – Chord

2

Scaling Problem

•  Millions of clients ⇒ server and network meltdown

3

P2P System

•  Leverage the resources of client machines (peers)
•  Traditional: Computation, storage, bandwidth
•  Non-traditional: Geographical diversity, mobility, sensors!

4

Peer-to-Peer (storage) Networks

•  Typically each member stores/provides access to
content

•  Basically a replication system for files
•  Always a tradeoff between possible location of files and

searching difficulty
•  Peer-to-peer allow files to be anywhere à searching is

the challenge
•  Dynamic member list makes it more difficult

•  What other systems have similar goals?
•  Routing, DNS

5

The Lookup Problem

Internet

N1
N2 N3

N6 N5
N4

Publisher

Key=“title”
Value=MP3 data… Client

Lookup(“title”)

?

6

Searching

•  Needles vs. Haystacks
•  Searching for top 40, or an obscure punk track from

1981 that nobody’s heard of?
•  Search expressiveness

•  Whole word? Regular expressions? File names?
Attributes? Whole-text search?

7

Framework

•  Common Primitives:
•  Join: how do I begin participating?
•  Publish: how do I advertise my file?
•  Search: how to I find a file?
•  Fetch: how to I retrieve a file?

8

Outline

•  P2P Lookup Overview

•  Centralized/Flooded Lookups

•  Routed Lookups – Chord

9

Napster: Overiew

•  Centralized Database:
•  Join: on startup, client contacts central server
•  Publish: reports list of files to central server
•  Search: query the server => return someone that

stores the requested file
•  Fetch: get the file directly from peer

10

Napster: Publish

I have X, Y, and Z!

Publish

insert(X,
 123.2.21.23)
...

123.2.21.23

11

Napster: Search

Where is file A?

Query Reply

search(A)
-->
123.2.0.18 Fetch

123.2.0.18

12

Napster: Discussion

•  Pros:
•  Simple
•  Search scope is O(1)
•  Controllable (pro or con?)

•  Cons:
•  Server maintains O(N) State
•  Server does all processing
•  Single point of failure

13

“Old” Gnutella: Overview

•  Query Flooding:
•  Join: on startup, client contacts a few other nodes;

these become its “neighbors”
•  “unstructured overlay”

•  Publish: no need
•  Search: ask neighbors, who ask their neighbors, and

so on... when/if found, reply to sender.
•  TTL limits propagation

•  Fetch: get the file directly from peer

14

I have file A.

I have file A.

Gnutella: Search

Where is file A?

Query

Reply

15

Gnutella: Discussion

•  Pros:
•  Fully de-centralized
•  Search cost distributed
•  Processing @ each node permits powerful search semantics

•  Cons:
•  Search scope is O(N)
•  Search time is O(???)
•  Nodes leave often, network unstable

•  TTL-limited search works well for haystacks.
•  For scalability, does NOT search every node. May have to

re-issue query later; no guarantee that it will find the file!

16

•  Modifies the Gnutella protocol into two-level hierarchy
•  Hybrid of Gnutella and Napster

•  Supernodes
•  Nodes that have better connection to Internet
•  Act as temporary indexing servers for other nodes
•  Help improve the stability of the network

•  Standard nodes
•  Connect to supernodes and report list of files
•  Allows slower nodes to participate

•  Search
•  Broadcast (Gnutella-style) search across supernodes

•  Disadvantages
•  Kept a centralized registration à allowed for law suits L

17

Flooding: Gnutella, Kazaa

