
Time Synchronization
(Part 2: Lamport and vector clocks)

Jan 27, 2017

1

 416 Distributed Systems

Important Lessons (last lecture)

•  Clocks on different systems will always behave differently
•  Skew and drift between clocks

•  Time disagreement between machines can result in undesirable
behavior

•  Clock synchronization
•  Rely on a time-stamped network messages
•  Estimate delay for message transmission
•  Can synchronize to UTC or to local source
•  Clocks never exactly synchronized

•  Often inadequate for distributed systems
•  might need totally-ordered events
•  might need millionth-of-a-second precision

2

Today's Lecture

•  Need for time synchronization

•  Time synchronization techniques

•  Lamport Clocks

•  Vector Clocks

3

Logical time

•  Capture just the “happens before” relationship
between events
•  Discard the infinitesimal granularity of time
•  Corresponds roughly to causality

Logical time and logical clocks
(Lamport 1978)

•  Events at three processes

5

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

Logical time and logical clocks
(Lamport 1978)

•  Instead of synchronizing clocks, event ordering can be used

1.  If two events occurred at the same process pi (i = 1, 2, … N) then
they occurred in the order observed by pi, that is the definition of:
→ i

2.  When a message, m is sent between two processes, send(m)
‘happens before’ receive(m)

3.  The ‘happened before’ relation is transitive

•  The happened before relation (→) is necessary for causal
ordering

 6

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

Logical time and logical clocks
(Lamport 1978)

•  a → b (at p1) c →d (at p2)
•  b → c because of m1

•  also d → f because of m2

7

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

Logical time and logical clocks
(Lamport 1978)

•  Not all events are related by →
•  Consider a and e (different processes and no chain of

messages to relate them)
•  they are not related by → ; they are said to be concurrent
•  written as a || e

8

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

Lamport Clock (1)

•  A logical clock is a monotonically increasing software counter
•  It need not relate to a physical clock.

•  Each process pi has a logical clock, Li which can be used to apply
logical timestamps to events

•  Rule 0: initially all clocks are set to 0
•  Rule 1: Li is incremented by 1 before each event at process pi
•  Rule 2:

•  (a) when process pi sends message m, it piggybacks t = Li
•  (b) when pj receives (m,t) it sets Lj := max(Lj, t) and applies rule 1 before timestamping the

event receive (m)

9

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

Lamport Clock (1)

•  each of p1, p2, p3 has its logical clock initialised to zero,
•  the clock values are those immediately after the event.
•  e.g. 1 for a, 2 for b.

•  for m1, 2 is piggybacked and c gets max(0,2)+1 = 3

10

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

Lamport Clock (1)

•  e →e’ (e happened before e’) implies L(e)<L(e’)

•  The converse is not true, that is L(e)<L(e') does not
imply e →e’. What’s an example of this above?

11

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

Lamport Clock (1)

•  e →e’ (e happened before e’) implies L(e)<L(e’)

•  The converse is not true, that is L(e)<L(e') does not
imply e →e’
•  e.g. L(b) > L(e) but b || e

12

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

Lamport logical clocks

•  Lamport clock L orders events consistent with
logical “happens before” ordering
•  If e → e’, then L(e) < L(e’)

•  But not the converse
•  L(e) < L(e’) does not imply e → e’

•  Similar rules for concurrency
•  L(e) = L(e’) implies e║e’ (for distinct e,e’)
•  e║e’ does not imply L(e) = L(e’)
•  i.e., Lamport clocks arbitrarily order some concurrent

events

Total-order Lamport clocks

•  Many systems require a total-ordering of events,
not a partial-ordering

•  Use Lamport’s algorithm, but break ties using the
process ID; one example scheme:
•  L(e) = M * Li(e) + i

•  M = maximum number of processes
•  i = process ID

Today's Lecture

•  Need for time synchronization

•  Time synchronization techniques

•  Lamport Clocks

•  Vector Clocks

15

Vector Clocks

•  Vector clocks overcome the shortcoming of
Lamport logical clocks
•  L(e) < L(e’) does not imply e happened before e’

•  Goal
•  Want ordering that matches happened before
•  V(e) < V(e’) if and only if e → e’

•  Method
•  Label each event by vector V(e) [c1, c2 …, cn]

•  ci = # events in process i that precede e

16

Vector Clock Algorithm

•  Initially, all vectors [0,0,…,0]
•  For event on process i, increment own ci
•  Label message sent with local vector
•  When process j receives message with vector

[d1, d2, …, dn]:
•  Set each local vector entry k to max(ck, dk)
•  Increment value of cj

Vector Clocks

•  At p1
•  a occurs at (1,0,0); b occurs at (2,0,0)
•  piggyback (2,0,0) on m1

•  At p2 on receipt of m1 use max ((0,0,0), (2,0,0)) = (2, 0, 0)
and add 1 to own element = (2,1,0)

•  Meaning of =, <=, max etc for vector timestamps
•  compare elements pairwise

18

a b

c d

e f

m1

m2

(2,0,0)(1,0,0)

(2,1,0) (2,2,0)

(2,2,2)(0,0,1)

p1

p2

p3

Physical
time

Vector Clocks

•  Note that e →e’ implies V(e)<V(e’). The converse
is also true

•  Can you see a pair of concurrent events; Can you
infer they are concurrent from their vectors
clocks?

19

a b

c d

e f

m1

m2

(2,0,0)(1,0,0)

(2,1,0) (2,2,0)

(2,2,2)(0,0,1)

p1

p2

p3

Physical
time

Vector Clocks

•  Note that e →e’ implies V(e)<V(e’). The converse
is also true

•  Can you see a pair of concurrent events?
•  c || e (concurrent) because neither V(c) <= V(e) nor V(e) <= V(c)

20

a b

c d

e f

m1

m2

(2,0,0)(1,0,0)

(2,1,0) (2,2,0)

(2,2,2)(0,0,1)

p1

p2

p3

Physical
time

Implementing logical clocks

•  Positioning of logical timestamping in distributed
systems.

21

Distributed time
•  Premise

•  The notion of time is well-defined (and measurable) at
each single location

•  But the relationship between time at different
locations is unclear
•  Can minimize discrepancies, but never eliminate

them
•  Reality

•  Stationary GPS receivers can get global time with <
1µs error

•  Few systems designed to use this; logical clocks key
mechanism for ordering
•  Recent exception: (Spanner system from Google)

Important Points

•  Physical Clocks
•  Can keep closely synchronized, but never perfect

•  Logical Clocks
•  Encode happens before relationship (necessary for

causality)
•  Lamport clocks provide only one-way encoding
•  Vector clocks precedence necessary for causality (but

not sufficient: could have been caused by some event
along the path, not all events)

