
 Errors and Failures, part 2
Feb 6, 2016

 416 Distributed Systems

Options in dealing with failure

1.  Silently return the wrong answer.

2.  Detect failure.

3.  Correct / mask the failure

2

3

Block error detection/correction
•  EDC= Error Detection and Correction bits (redundancy)
•  D = Data protected by error checking, may include header fields
•  Error detection not 100% reliable!

•  Protocol may miss some errors, but rarely
•  Larger EDC field yields better detection and correction

4

Parity Checking

Single Bit Parity:
Detect single bit errors

Calculated using XOR over data bits:
•  0 bit: even number of 0s
•  1 bit: odd number of 0s

5

Error Detection - Checksum

•  Used by TCP, UDP, IP, etc..
•  Ones complement sum of all 16-bits in packet
•  Simple to implement

•  Break up packet into 16-bits strings
•  Sum all the 16-bit strings
•  Take complement of sum = checksum; add to header
•  One receiver, compute same sum, add sum and

checksum, check that the result is 0 (no error)
•  Relatively weak detection

•  Easily tricked by typical loss patterns

6

Example: Internet Checksum

Sender
•  Treat segment contents

as sequence of 16-bit
integers

•  Checksum: addition (1’s
complement sum) of
segment contents

•  Sender puts checksum
value into checksum field
in header

Receiver
•  Compute checksum of

received segment
•  Check if computed

checksum equals
checksum field value:
•  NO - error detected
•  YES - no error

detected. But maybe
errors nonethless?

•  Goal: detect “errors” (e.g., flipped bits) in transmitted
segment

7

Error Detection – Cyclic
Redundancy Check (CRC)

•  Polynomial code
•  Treat packet bits a coefficients of n-bit polynomial
•  Choose r+1 bit generator polynomial (well known –

chosen in advance)
•  Add r bits to packet such that message is divisible by

generator polynomial
•  Better loss detection properties than checksums

•  Cyclic codes have favorable properties in that they are
well suited for detecting burst errors

•  Therefore, used on networks/hard drives

8

Error Detection – CRC

•  View data bits, D, as a binary number
•  Choose r+1 bit pattern (generator), G
•  Goal: choose r CRC bits, R, such that

•  <D,R> exactly divisible by G (modulo 2)
•  Receiver knows G, divides <D,R> by G. If non-zero remainder:

error detected!
•  Can detect all burst errors less than r+1 bits

•  Widely used in practice

9

CRC Example

Want:
D.2r XOR R = nG

equivalently:
D.2r = nG XOR R

equivalently:
 if we divide D.2r by G,

want reminder R

R = remainder[]
D.2r

G

CRC notes

•  n-bit CRC = appended value is n-bits long
•  Typical CRCs:

•  CRC-8, CRC-16, CRC-32, CRC-64

•  CRC-1 = parity bit (degenerate CRC case!)
•  Error detection, but not correction
•  Usage:

•  RFID (CRC-5)
•  Ethernet, PNG, Gzip, MPEG-2.. (CRC-32)
•  2G/GSM (CRC-40)

•  Many practical considerations:
•  https://en.wikipedia.org/wiki/Computation_of_cyclic_redundancy_checks

10

Options in dealing with failure

1.  Silently return the wrong answer.

2.  Detect failure.

3.  Correct / mask the failure

11

12

Error Recovery

•  Two forms of error recovery
•  Redundancy

•  Error Correcting Codes (ECC)
•  Replication/Voting

•  Retry

•  ECC
•  Keep encoded redundant data to help repair losses
•  Forward Error Correction (FEC) – send bits in advance

•  Reduces latency of recovery at the cost of bandwidth

13

Error Recovery – Error
Correcting Codes (ECC)

Two Dimensional Bit Parity:
Detect and correct single bit errors

0 0

Replication/Voting

•  If you take this to the extreme, three software versions:
 [r1] [r2] [r3]

•  Send requests to all three versions of the software: Triple
modular redundancy
•  Compare the answers, take the majority
•  Assumes no error detection

•  In practice - used mostly in space applications; some
extreme high availability apps (stocks & banking? maybe.
But usually there are cheaper alternatives if you don’t
need real-time)
•  Stuff we cover later: surviving malicious failures through voting

(byzantine fault tolerance)

14
14

15

Retry – Network Example

Time

Packet

ACK Ti
m

eo
ut

•  Sometimes errors
are transient / need
to mask

•  Need to have error
detection
mechanism
•  E.g., timeout,

parity, checksum
•  No need for

majority vote

Sender Receiver

One key question

•  How correlated are failures?
•  Can you assume independence?

•  If the failure probability of a computer in a rack is p,
•  What is p(computer 2 failing) | computer 1 failed?

•  Maybe it’s p... or maybe they’re both plugged into
the same UPS...

•  Why is this important?

16

Back to Disks…
What are our options?
1.  Silently return the wrong answer.
2.  Detect failure.

•  Every sector has a header with a checksum. Every read
fetches both, computes the checksum on the data, and
compares it to the version in the header. Returns error if
mismatch.

3.  Correct / mask the failure
•  Re-read if the firmware signals error (may help if transient

error, may not)
•  Use an error correcting code (what kinds of errors do they

help?)
•  Bit flips? Yes. Block damaged? No

•  Have the data stored in multiple places (RAID)

17

Fail-fast disk

failfast_get (data, sn) {
 get (sector, sn);
 if (checksum(sector.data) = sector.cksum) {
 data ← sector.data;
 return OK;
 } else {
 return BAD;
 }

}

18

Careful disk (try 10 times on error)

careful_get (data, sn) {
 r ← 0;
 while (r < 10) {
 r ← failfast_get (data, sn);
 if (r = OK) return OK;
 r++;
 }
 return BAD;

}

19

“RAID”

•  Redundant Array of {Inexpensive, Independent} disks
•  Replication! Idea: Write everything to two disks (“RAID-1”)

•  If one fails, read from the other

•  write(sector, data) ->
• write(disk1, sector, data)

• write(disk2, sector, data)

•  read(sector, data)
•  data = read(disk1, sector)

•  if error
• data = read(disk2, sector)
• if error, return error

•  return data

•  Not perfect, though... doesn’t solve all uncaught errors.
20

20

Durable disk (RAID 1)

durable_get (data, sn) {

 r ← disk1.careful_get (data, sn);

 if (r = OK) return OK;

 r ← disk2.careful_get (data, sn);

 signal(repair disk1);

 return r;

}

21

Summary

•  Definition of MTTF/MTBF/MTTR: Understanding
availability in systems.

•  Failure detection and fault masking techniques
•  Engineering tradeoff: Cost of failures vs. cost of

failure masking.
•  At what level of system to mask failures?
•  Leading into replication as a general strategy for fault

tolerance (more RAID next time)
•  Thought to leave you with:

•  What if you have to survive the failure of entire
computers? Of a rack? Of a datacenter?

22
22

