
Consistency in 

Distributed Storage Systems

Mihir Nanavati

March 4th, 2016



Today

• Overview of distributed storage systems

• CAP Theorem



About Me

• Virtualization/Containers, CPU microarchitectures/Caches, Network Stacks

• Last year and a half: high speed storage systems (Last 24 hours: Powerpoint)

• Don’t believe everything I say – built (at most) one distributed system more 

than you!



On Systems

• “Point in time” designs

• Balance tradeoffs

• What is old is new again?



Why Distributed Storage Systems?

• Performance

• Capacity

• Reliability



Architecture

Client

FS Frontend

FS Frontend

FS Frontend

…

Object Backend

Object Backend

Object Backend

…

Load Balancer



Architecture

Client

FS Frontend

FS Frontend

FS Frontend

…

Object Backend

Object Backend

Object Backend

…

Load Balancer
NFS

Write



Architecture

Client

FS Frontend

FS Frontend

FS Frontend

…

Object Backend

Object Backend

Object Backend

…

Load Balancer
NFS

Write

What does this file map to?

How many replicas does it have?

Where are the replicas located?

Which replica is the leader/master?

What sort of replication scheme?

…



Architecture

Client

FS Frontend

FS Frontend

FS Frontend

…

Object Backend

Object Backend

Object Backend

…

Load Balancer
NFS

Write



Architecture

Client

FS Frontend

FS Frontend

FS Frontend

…

Object Backend

Object Backend

Object Backend

…

Load Balancer
NFS

Write

Replica Write

Replica Write

Local

Write

Subtleties with in-parallel writes!



Architecture

Client

FS Frontend

FS Frontend

FS Frontend

…

Object Backend

Object Backend

Object Backend

…

Load Balancer
NFS

Write

Ack

Ack

Ack



Architecture

Client

FS Frontend

FS Frontend

FS Frontend

…

Object Backend

Object Backend

Object Backend

…

Load Balancer
Ack

Ack

Ack

Ack



Metadata

• What does this file map to?

• How many replicas does it have?

• Where are the replicas located?

• Which replica is the leader/master?

• What sort of replication scheme?



Location of Replicas

• Directory Service [Petal, GFS]

• Consistent Hashing [Chord, Redis]

• Clients vs Proxy?



Directory Services vs Hashing

• Fine grained placement

• Locality

• Lookup on reads/writes

• Update on data moves

• Statistical load balancing

• Lookups are “free”

• Membership list of nodes

• Update on node churn



Directory Services vs Hashing

• Fine grained placement

• Locality

• Lookup on reads/writes

• Update on data moves

• Statistical load balancing

• Lookups are “free”

• Membership list of nodes

• Update on churn

Both systems require 

metadata



Data and Metadata

• Can’t avoid having metadata

• Metadata is also data!

• Different consistency and availability requirements!



Consistency and Availability

Consistency: 

• Is there a single “true” value for every object in the system?

• Does a read always return the result of the most recent write, i.e., is stale 

data ever visible?

Availability: Is data accessible in the face of failures?



CAP Theorem [Brewer]

Pick any two of:

• Sequential Consistency

• Availability

• Partition Tolerance



C in CAP vs C in ACID

• ACID vs BASE

• Different definitions of consistency!

• CAP’s C(onsistency) = ACID’s A(tomicity) = Visibility to all future operations

• ACID’s C(onsistency) = Does data follow all schema constraints?



Sequential Consistency

“if client a executes operations {a1, a2, a3, ...} and 

client b executes operations {b1, b2, b3, ...},

then you could create some serialized version

{a1, b1, b2, a2, ...} (or whatever)

executed by the clients“



Sequential Consistency

For a single piece of data [Lamport]:

• Appears like a single copy to an outside observer

• Strict ordering of operations from the same client

• Some arbitrary (single) ordering of operating across clients

Sometimes referred to as “linearizable” [Herlihy and Wing]



Defeating CAP

Setup

• 3 servers, 2 clients

• 3-way in-memory replication

• Each piece of data has a single master

• Clients send request to master if available, else any other node



Defeating CAP

Server A Server B Server C

Client A Client B

master(k1)

write(k1, “A”)



Defeating CAP

Server A Server B Server C

Client A Client B

master(k1)

write(k1)

write(k1, “A”)

write(k1, “A”)



Defeating CAP

Server A Server B Server C

Client A Client B

master(k1)

read(k1)



Defeating CAP

Server A Server B Server C

Client A Client B

master(k1)

“A”



Defeating CAP

Server A Server B Server C

Client A Client B

master(k1)



Defeating CAP

Server A Server B Server C

Client A Client B

master(k1)

write(k1, “B”) read(k1)



Defeating CAP

Server A Server B Server C

Client A Client B

master(k1)

write(k1, “B”) read(k1)

What to do next?

• Disallow write: CP system

• Allow write: AP system



Defeating CAP

Setup

• 3 servers, 2 clients

• 3-way in-memory replication

• Each piece of data has a single master

• Clients only send request to masters



Defeating CAP

Server A Server B Server C

Client A Client B

master(k1)

write(k1, “B”)

read(k1)



Defeating CAP

Server A Server B Server C

Client A Client B

master(k1)

write(k1, “B”)

read(k1)

Client B gets no service!



Defeating CAP

• Defeating CAP is rather hard!

• Formal proof of impossibility [Gilbert and Lynch]



Strong vs Eventual Consistency

• Extreme ends of the spectrum

• Active research: Causal, Causal+, ….

• NoSQL give up consistency: schema-less, no multi-key transactions, etc. 



CAP: Pick any Two?

• Can’t drop P: CP vs AP systems

• Like a prix fixe menu!

• Not all systems are strictly CP or AP!



Dissenters [Michael Stonebreaker, VoltDB]

“In my experience, network partitions do not happen often. Specifically, they 

occur less frequently than the sum of bohrbugs [deterministic DB crashes], 

application errors, human errors and reprovisioning events. So it doesn’t much 

matter what you do when confronted with network partitions. Surviving them 

will not “move the needle” on availability because higher frequency events will 

cause global outages. Hence, you are giving up something (consistency) and 

getting nothing in return.”



Network Reliability [Gill, et al.]

• Intra-datacenter links: Median downtime of 10 minutes/year

• Inter-datacenter (WAN) links: 24-72 minutes per year

• Is a node failure a network partition?



CAP: What to Pick?

• No universally true guidelines

• Depends on application constraints

• Is the client within our control?



Consistency in Memory vs Non-volatile Storage

• Post crash semantics



Consistency in Durable Storage

Client

FS Frontend

FS Frontend

FS Frontend

…

Object Backend

Object Backend

Object Backend

…

Load Balancer
NFS

Write

Replica Write

Replica Write

Local

Write

Subtleties with in-parallel writes!



Consistency in Durable Storage

• In-place writes: Risk corruption

• Overwrite-allocate: Metadata updates

• Concurrency?



Chain Replication [Renesse and Schneider]

• Sequential writes  No data corruption

• Writes to go head of a chain; reads to the tail



Chain Replication

Server A Server B Server C

Client A

head(k1) tail(k1)

write(k1, “A”)



Chain Replication

Server A Server B Server C

Client A

head(k1) tail(k1)

write(k1, “A”)

write(k1, “A”)



Chain Replication

Server A Server B Server C

Client A

head(k1) tail(k1)

write(k1, “A”)

write(k1, “A”) write(k1, “A”)



Chain Replication

Server A Server B Server C

Client A

head(k1) tail(k1)

write(k1, “A”)

write(k1, “A”) write(k1, “A”)

ACK



Chain Replication

Server A Server B Server C

Client A

head(k1) tail(k1)

read(k1)



Chain Replication

Server A Server B Server C

Client A

head(k1) tail(k1)

“A”



Chain Replication

Server A Server B Server C

Client A

head(k1) tail(k1)

write(k1, “B”) read(k1)



Chain Replication

Server A Server B Server C

Client A

head(k1) tail(k1)

write(k1, “B”)

write(k1, “A”)

“A”

Does this violate consistency?



Chain Replication

Server A Server B Server C

Client A

head(k1) tail(k1)

write(k1, “B”)

write(k1, “A”)

“A”

Does this violate consistency?

Has the write been 

completed/acknowledged?



Chain Replication

• In-place writes without data corruption, i.e. durability

• CP or AP?



Chain Replication

• In-place writes without data corruption, i.e. durability

• CP or AP? The approach is intended for supporting large-scale storage 

services that exhibit high throughput and availability without 

sacrificing strong consistency guarantees



What about …

Server A Server B Server C

Client A

head(k1) tail(k1)

write(k1, “B”) read(k1)

Client B



Chain Replication

• In-place writes without data corruption, i.e. durability

• CP or AP? Our chain replication does not offer graceful handling of 

partitioned operation, trading that instead for supporting all 

three of: high performance, scalability, and strong consistency.



Workarounds

• Consistency hard to reason about!

• Send all requests via the master?



Pros and Cons

• In-place writes  Reduce metadata updates

• Sequential writes  Latency amplification



Consistency and Availability? [Escriva and Gun Sirer]

What CAP is simplified to:

• You must give up consistency or availability at all times

What the CAP theorem really says:

• If you cannot limit the number of faults

• and requests can be directed to any server

• and you insist on serving every request

• then you cannot possibly be consistent

Limit failures or kind of partition?



Conclusions

• Distributed Storage needs to reason about consistency and availability

• CAP is an analysis tool, not a design principle!

• Within bounds of failures, all three are possible

• Implementation details matter too!


