
1 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Trans in Distributed Systems
●  A distributed transaction involves

*  updates at multiple nodes

*  and the messages between those nodes

●  For example, buying widgets

Inv Order Cust

Buyer

2 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Distributed Atomic Commit
Requirements

1.  All workers that reach a decision reach the
same one

2.  Workers cannot change their decisions on
commit or abort once a decision is made

3.  To commit all workers must vote commit
4.  If all workers vote commit and there are no

failures the transaction will commit
5.  If all failures are repaired and there are no

more failures each worker will eventually
reach a decision (In fact it will be the same
decision)

3 © 2015 Donald Acton et al Computer Science 416 – 2014W2

2PC and communication topologies

●  We have previously focused on centralized 2PC
*  Why funnel messages through the coordinator?

*  + None of the worker nodes can influence one another

*  + Failure of a worker node independent

*  - Put trust in coordinator

*  - Hope coordinator does not fail
●  Nothing stopping us from considering alternative communication

topologies for 2PC!

●  Why? Because other topologies may reduce time or message
complexity for the basic 2PC protocol

4 © 2015 Donald Acton et al Computer Science 416 – 2014W2

2PC in other topologies

●  Two extremes: linear and decentralized

●  Linear 2PC: coordinator, and all workers in a single line/chain
*  Build a protocol that has fewer messages (but more rounds!) than 2PC

●  Decentralized 2PC: all workers can communicate with one another
*  Build a protocol that has fewer rounds (but more messages!) than 2PC

5 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Linear 2PC
●  Alternative communication topologies in 2PC context

*  Why channel messages through the coordinator?

●  Decentralized 2PC: all workers can communicate with one another
*  Build a protocol that has fewer rounds (but more messages!) than 2PC

●  Linear 2PC: coordinator, and all workers in a single line/chain
*  C, W1, W2, W3, … Wn

*  Build a protocol that has fewer messages (but more rounds!) than 2PC

*  C sends request + its vote to W1, W1 decided commit/abort, forward decision to
W2. W2, determines outcome with its own decision, forward to W3, and so on.

*  Wn receives commit and decided commit à tx commit! Forward this decision back
to front of chain

*  Wn receives abort/decides abort -> tx abort! Forward this decision back

●  Note: linear 2PC bundles node/site failure with communication failure.

6 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Linear 2PC
●  Important note: linear 2PC bundles node/site failure with

communication failure.

●  Why is this important?

●  Analysis for linear 2PC:
*  2n rounds

*  2n messages

7 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Decentralized 2PC

●  Alternative communication topologies in 2PC context
*  Why channel messages through the coordinator?

●  Decentralized 2PC: all workers can communicate with one another
*  Build a protocol that has fewer rounds (but more messages!) than 2PC

*  Complete graph communication topology

*  Coordinate votes and sends it’s decision (commit/abort) along with
prepareToCommit to workers

*  Workers broadcast their choice to all other workers (n^2 messages!)

*  Workers collect votes, and figure out the final transaction outcome

●  2 rounds -- Can we do better than 2 rounds?

●  Approx: n+(n+1)^2 messages (n=number of nodes)

8 © 2015 Donald Acton et al Computer Science 416 – 2014W2

Comparison in one slide

 Messages Rounds

Centralized 2PC 3n 3

Linear 2PC 2n 2n

Decentralized 2PC n^2 + n 2

