416 Distributed Systems

RPC Day 2
Jan 15, 2016

| ast class

® Finish networks review

® Fate sharing

® End-to-end principle

UDP versus TCP; blocking sockets

o
® |P thin waist, smart end-hosts, dumb (stateless)

network

® Start RPC (remote procedure calls)
® What is an RPC, goals/benefits of RPC
® Three transparencies of RPC
® Instant distributed system recipe via LPC -> RPC?

Remote procedure call 5

* A remote procedure call makes a call to a remote
service look like a local call

 RPC makes transparent whether server is local or
remote

« RPC allows applications to become distributed
transparently

 RPC makes architecture of remote machine transparent

Emphasis on transparency

What are some problems with this transparency?

RPC: it's not always simple

« Calling and called procedures run on different
machines, with different address spaces

« And perhaps different environments .. or operating
systems ..

* Must convert to local representation of data
* Machines and network can fall

wo styles of RPC implementation

« Shallow integration. Must use lots of library calls

to set things up:
« How to format data

» Registering which functions are available and how they

are invoked.

* Deep integration.

- Data formatting done based on type declarations
* (Almost) all public methods of object are registered.

o is the latter.

Stubs: obtaining transparency "

« Compiler generates from API stubs for a
procedure on the client and server

* Client stub

Marshals arguments into machine-independent format
Sends request to server

Waits for response

Unmarshals result and returns to caller

« Server stub
* Unmarshals arguments and builds stack frame
» Calls procedure
« Server stub marshals results and sends reply

Marshaling and Unmarshaling %

« (From example) hotnl() -- “host to network-byte-
order, long” (in C)
* network-byte-order (big-endian) standardized to deal with
cross-platform variance

* Note how we arbitrarily decided to send the string by
sending its length followed by L bytes of the string?
That’'s marshaling, too.

* Floating point...

* Nested structures? (Design question for the RPC
system - do you support them?)

« Complex data structures? (Some RPC systems let
you send lists and maps as first-order objects)

“stubs” and IDLs

 RPC stubs do the work of marshaling and
unmarshaling data

* But how do they know how to do it?

« Typically: Write a description of the function
signhature using an IDL -- interface definition

language.

* Lots of these. Some look like C, some look like XML, ...

details don’ t matter much.

Remote Procedure Calls (1) %

« A remote procedure call occurs in the following steps:

1. The client procedure calls the client stub in the normal
way.

2. The client stub builds a message and calls the local
operating system.

3. The client's OS sends the message to the remote OS.
The remote OS gives the message to the server stub.

5. The server stub unpacks the parameters and calls the
server.

s

Continued ...

Remote Procedure Calls (2) %

* A remote procedure call occurs in the following steps
(continued):

6. The server does the work and returns the result to the
stub.

/. The server stub packs it in a message and calls its
local OS.

8. ghse server's OS sends the message to the client’s

9. The client’'s OS gives the message to the client stub.
10.The stub unpacks the result and returns to the client.

Passing Value Parameters (1) “

Client machine Server machine
Client process | Server process
1. Client call to .
procedure Implementation 6. Stub makes
of add local call to "add"
Server stub
- kK=add(i)) — . ~ L k=add{ij)
| Client stub Y
. "n / . N n
proc: "add proc: "add Stub K
int: val(i) 2 Stub builds int: val(i) 5. Stub unpacks
int.__val()) message int.__val()) message
A
_ proc: "add" 4. Server OS
_ int: _val(j)) to server stub

3. Message is sent
across the network

* The steps involved in a doing a
remote computation through RPC.

11

Passing Reference Parameters

» Replace with pass by copy/restore

* Need to know size of data to copy
« Difficult in some programming languages

» Solves the problem only partially
* What about data structures containing pointers?
« Access to memory in general?

RPC land

e RPC overview

 RPC challenges

« RPC other stuff

13

RPC vs. LPC "

* 4 properties of distributed computing that make
achieving transparency difficult:
 Partial failures
« Latency
 Memory access

14

RPC failures

® Request from cli = srv lost

® Reply from srv = cli lost
® Server crashes after receiving request

® Client crashes after sending request

Partial failures “.

* In local computing:
« if machine fails, application fails

* |n distributed computing:
« if a machine fails, part of application fails
« cannot tell the difference between a machine failure and
network failure

* How to make partial failures transparent to client?

Strawman solution 4

« Make remote behavior identical to local behavior:

» Every partial failure results in complete failure
* You abort and reboot the whole system

* You wait patiently until system is repaired
* Problems with this solution:

« Many catastrophic failures

 Clients block for long periods
« System might not be able to recover

Real solution: break transparency

* Possible semantics for RPC:
« Exactly-once (what local procedure calls provide)
* Impossible in practice

- At least once:
* Only for idempotent operations

At most once
 Zero, don’t know, or once

« Zero or once
« Transactional semantics (databases!)

Exactly-Once? %

® Sorry - no can do in general.

® Imagine that message triggers an external
physical thing (say, a robot fires a nerf dart at
the professor)

® The robot could crash immediately before or
after firing and lose its state. Don’ t know
which one happened. Can, however, make
this window very small.

Real solution: break transparency 5

® At-least-once: Just keep retrying on client side until you get a
response.

® Server just processes requests as normal, doesn’ t remember
anything. Simple!

® At-most-once: Server might get same request twice...

® Must re-send previous reply and not process request (implies:
keep cache of handled requests/responses)

® Must be able to identify requests

® Strawman: remember all RPC IDs handled. -> Ugh! Requires
infinite memory.

® Real: Keep sliding window of valid RPC IDs, have client number
them sequentially.

Implementation Concerns %

* As a general library, performance is often a big
concern for RPC systems

« Major source of overhead: copies and
marshaling/unmarshaling overhead

» Zero-copy tricks:

* Representation: Send on the wire in native format and
indicate that format with a bit/byte beforehand. What
does this do? Think about sending uint32 between two

little-endian machines
« Scatter-gather reads/writes (readv/writev() and friends)

|
Dealing with Environmental Differencesl %

* |If my function does: read(foo, ...)

Can | make it look like it was really a local
procedure call??

Maybe!
* Distributed filesystem...
But what about address space?

* This is called distributed shared memory

« People have kind of given up on it - it turns out often
better to admit that you're doing things remotely

Summary:
expose remoteness to client

« Expose RPC properties to client, since you cannot
hide them

* Application writers have to decide how to deal with

partial failures
« Consider: E-commerce application vs. game

23

Important Lessons

* Procedure calls
» Simple way to pass control and data
» Elegant/transparent way to distribute application
* Not only way...

« Hard to provide true transparency
* Failures
» Performance

 Memory access
- Etc.

 How to deal with hard problem = give up and let
programmer deal with them
* “Worse is better”

24

RPC land

e RPC overview

 RPC challenges

« RPC other stuff

25

Asynchronous RPC (1)

Client Wait for result

/

N

Call remote Return
procedure from call
Request Reply
Server Call local procedure 1'me —»

and return results

 The interaction between client and
server in a traditional RPC.

26

Asynchronous RPC (2)

Client Wait for acceptance

/ \
Call remote Return
procedure from call
Request Accept request
Server Call local procedure Time —»

* The interaction using asynchronous RPC.

27

Asynchronous RPC (3) “

Wait for Interrupt client
acceptance \

ClieNt —————
/ \

Call remote Feturn -
rocedure rom call eturn
g results Acknowledge
Accept
Request request
Server --------------- et
Call local procedure \ Time —»
Call client with
one-way RPC

* A client and server interacting through
two asynchronous RPCs.

28

Go Example “

// Asynchronous call

quotient := new (Quotient)
divCall := client.Go("Arith.Divide", args, quotient, nil)
replyCall := <-divCall.Done // will be equal to divCall

// check errors, print, etc.

29

Using RPC %

. Eg%uestQServeréResponse: Classic synchronous

« Worker-->Server.
« Synch RPC, but no return value.

« "I'm a worker and I'm listening for you on host XXX, port
YYY."

 Server-->\Worker.

« Synch RPC? No that would be a bad idea. Better be
Asynch.

* Otherwise, it would have to block while worker does its work,
which misses the whole point of having many workers.

30

Binding a Client to a Server

«

* Registration of a server makes it possible for a client
to locate the server and bind to it

« Server location is done in two steps:
« Locate the server’'s machine.

 Locate the server on that machine.

3. Lo

Client machine

Directory machine

Client

v

Directory
server
A
5. Do RPC

Server machine

@ter service

—

4. Ask for end point

Server

> pee .

k

daemon

/

1. Register end point

D

™\ End point

table
31

Other RPC systems "

« ONC RPC (a.k.a. Sun RPC). Fairly basic. Includes
fencoding standard XDR + language for describing data
ormats.

- Java RMI (remote method invocation). Very elaborate.
Tries to make it look like can perform arbitrary methods on
remote objects.

« Thrift. Developed at Facebook. Now part of Apache Open
Source. Supports multiple data encodings & transport
mechanisms. Works across multiple languages.

* Avro. Also Apache standard. Created as part of Hadoop
project. Uses JSON. Not as elaborate as Thrift.

32

