
416 Distributed Systems

Feb 26, 2016 – CDNs

Outline

•  DNS Design

•  Content Distribution Networks

2

3

Typical Workload (Web Pages)

•  Multiple (typically small) objects per page
•  File sizes are heavy-tailed
•  Embedded references
•  This plays havoc with performance. Why?
•  Solutions? • Lots of small objects & TCP

• 3-way handshake
• Lots of slow starts
• Extra connection state

3

4

origin server
in North America

CDN distribution node

CDN server
in S. America CDN server

in Europe

CDN server
in Asia

Content Distribution Networks (CDNs)

•  The content providers are the
CDN customers.

•  Content replication
•  CDN company installs hundreds

of CDN servers throughout
Internet
•  Close to users

•  CDN replicates its customers’
content in CDN servers. When
provider updates content, CDN
updates servers

4

5 5

6

Content Distribution Networks &
Server Selection

•  Replicate content on many servers
•  Challenges

•  How to replicate content
•  Where to replicate content
•  How to find replicated content
•  How to choose among known replicas
•  How to direct clients towards replica

6

7

Server Selection

•  Which server?
•  Lowest load à to balance load on servers
•  Best performance à to improve client performance

•  Based on Geography? RTT? Throughput? Load?

•  Any alive node à to provide fault tolerance

•  How to direct clients to a particular server?
•  As part of routing à anycast, cluster load balancing

•  Not covered L

•  As part of application à HTTP redirect
•  As part of naming à DNS

7

8

Application Based

•  HTTP supports simple way to indicate that Web page has moved
(30X responses)

•  Server receives Get request from client
•  Decides which server is best suited for particular client and object
•  Returns HTTP redirect to that server

•  Can make informed application specific decision
•  May introduce additional overhead à

 multiple connection setup, name lookups, etc.

8

9

Naming Based

•  Client does name lookup for service
•  Name server chooses appropriate server address

•  A-record returned is “best” one for the client

•  What information can name server base decision
on?
•  Server load/location à must be collected
•  Information in the name lookup request

•  Name service client à typically the local name server for client

9

10

How Akamai Works

•  Clients fetch html document from primary server
•  E.g. fetch index.html from cnn.com

•  URLs for replicated content are replaced in html
•  E.g. replaced with

•  Client is forced to DNS resolve

aXYZ.g.akamaitech.net hostname

10

11

How Akamai Works

•  Akamai only replicates static content (*)
•  Modified name contains original file name
•  Akamai server is asked for content

•  First checks local cache
•  If not in cache, requests file from primary server and

caches file

* (At least, the version we’re talking about today. Akamai actually lets sites write
code that can run on Akamai’s servers, but that’s a pretty different beast)

11

12

How Akamai Works

•  Root server gives NS record for akamai.net
•  Akamai.net name server returns NS record for

g.akamaitech.net
•  Name server chosen to be in region of client’s name

server
•  TTL is large

•  G.akamaitech.net nameserver chooses server in
region
•  Should try to chose server that has file in cache - How

to choose?
•  Uses aXYZ name and hash
•  TTL is small à why?

12

13

How Akamai Works

End-user

cnn.com (content provider) DNS root server Akamai server

1 2 3

4

Akamai high-level
DNS server

Akamai low-level DNS
server

Nearby matching
Akamai server

11

6
7

8

9

10

Get
index.
html

Get /cnn.com/foo.jpg

12

Get foo.jpg

5

13

14

Akamai – Subsequent Requests

End-user

cnn.com (content provider) DNS root server Akamai server

1 2 Akamai high-level
DNS server

Akamai low-level DNS
server

7

8

9

10

Get
index.
html

Get /cnn.com/foo.jpg

Nearby matching
Akamai server

Assuming no timeout
 on NS record

14

15

Simple Hashing

•  Given document XYZ, we need to choose a server
to use

•  Suppose we use modulo
•  Number servers from 1…n

•  Place document XYZ on server (XYZ mod n)
•  What happens when a servers fails? n à n-1

•  Same if different people have different measures of n

•  Why might this be bad?

15

16

Consistent Hash

•  “view” = subset of all hash buckets that are
visible

•  Desired features
•  Smoothness – little impact on hash bucket contents

when buckets are added/removed
•  Spread – small set of hash buckets that may hold an

object regardless of views
•  Load – across all views # of objects assigned to hash

bucket is small

16

17

Consistent Hash – Example

•  Monotone à addition of bucket does not cause
movement between existing buckets

•  Spread & Load à small set of buckets that lie
near object

•  Balance à no bucket is responsible for large
number of objects

•  Construction
•  Assign each of C hash buckets to

random points on mod 2n circle,
where, hash key size = n.

•  Map object to random position on
unit interval

•  Hash of object = closest bucket

0

4

8

12
Bucket

14

17

Consistent Hashing

•  Main idea:
•  map both keys and nodes to the same (metric) identifier space
•  find a “rule” how to assign keys to nodes

Ring is one option.

18

Consistent Hashing

•  The consistent hash function assigns each node
and key an m-bit identifier using SHA-1 as a base
hash function

•  Node identifier: SHA-1 hash of IP address

•  Key identifier: SHA-1 hash of key

19

•  m bit identifier space for both keys and nodes

•  Key identifier: SHA-1(key)

Key=“LetItBe” ID=60 SHA-1

IP=“198.10.10.1” ID=123 SHA-1
•  Node identifier: SHA-1(IP address)

• How to map key IDs to node IDs?

Identifiers

20

Rule: A key is stored at its successor: node with next higher or equal ID

N32

N90

N123 K20

K5

Circular 7-bit
ID space

0 IP=“198.10.10.1”

K101

K60
Key=“LetItBe”

Consistent Hashing Example

21

Consistent Hashing Properties

•  Load balance: all nodes receive roughly the
same number of keys

•  For N nodes and K keys, with high probability

•  each node holds at most (1+ε)K/N keys
•  (provided that K is large enough compared to N)

22

Load Balance

•  Redirector knows all CDN server Ids
•  Can track approximate load (or delay)
•  To balance load:

•  Loadi = Hash(URL, ip of serveri) for all i
•  Sort Loadi from high to low
•  find first server with low enough load

•  Benefits?

•  How should “load” be measured?

23 23

Consistent Hashing not just for CDN

•  Finding a nearby server for an object in a CDN
uses centralized knowledge.

•  Consistent hashing can also be used in a
distributed setting

•  P2P systems like BitTorrent, need a way of finding
files.

•  Consistent Hashing to the rescue
•  Need a way to route in a decentralized way between

nodes; but easy to come up with a distance metric!

24 24

25

Issues with HTTP caching

•  Caching is nice but…
•  Over 50% of all HTTP objects are uncacheable – why?
•  Not easily solvable

•  Dynamic data à stock prices, scores, web cams
•  CGI scripts à results based on passed parameters

•  Obvious fixes
•  SSL à encrypted data is not cacheable

•  Most web clients don’t handle mixed pages well àmany generic
objects transferred with SSL

•  Cookies à results may be based on passed data
•  Hit metering à owner wants to measure # of hits for revenue, etc.

25

Summary

•  DNS (last time)
•  Globally distributed, weak consistency
•  Manual delegation
•  Recursive/iterative lookups
•  Designated set of root servers (sensitive)

•  Content Delivery Networks move data closer to
user, maintain consistency, balance load
•  Consistent Caching maps keys AND buckets into the

same space
•  Consistent caching can be fully distributed, useful in

P2P systems using structured overlays

26 26

