
Templated Visualization of Object State with Vebugger

Daniel Rozenberg, Ivan Beschastnikh
Department of Computer Science

University of British Columbia
Vancouver, Canada

rodaniel@cs.ubc.ca, bestchai@cs.ubc.ca

Abstract—Software developers often need to inspect the state
of objects during debugging. Existing debuggers display a
textual representation of the state of selected objects. While
these textual representations often contain enough information,
they are also difficult to comprehend. For example, an object
that represents a color is traditionally represented by listing
the numbers that comprise its RGB values. This representation,
while complete, is hardly comprehensible.

We describe Vebugger, an IDE plugin for Eclipse that
displays object state visually. Recalling the previous example,
Vebugger displays the actual color that a Color object repre-
sents in addition to its RGB values. This representation is easier
to understand. Vebugger visualizes object types using a set of
extensible templates. These templates are written in HTML
and CSS, and they are matched to Java types by inspecting
the type hierarchy. We developed a dozen such templates for a
diverse set of Java types to demonstrate the capabilities of the
system. Vebugger is preliminary work, we also detail future
research directions and our planned evaluation strategy.

I. INTRODUCTION

Non-trivial programs are challenging to debug and under-
stand, and a foremost challenge in program understanding
is the invisibility of software [5]. This problem is espe-
cially acute when attempting to understand the state of a
running program. Developers rely on tools to augment their
understanding of the runtime behavior of their programs and
many of these tools are visual by design. These tools can be
rudimentary, such as inspecting the program’s console log, or
advanced, such as formulating questions about the observed
output [12] and inspecting state changes with a breakpoint
debugger. Developers frequently use such debuggers to
inspect variable state. For example, Murphy et al. [15] found
that an overwhelming majority of participants in their study
used the variables view while debugging.

In most breakpoint debuggers the state of various objects
is reduced to a simple string, regardless of the amount of
information contained in the object or its complexity. In
other cases an object’s representation might not contain the
entire state, but rather a subset that consists only of its
most essential parts. This is done to avoid overwhelming
developers with an excessive amount of information. For
example, in Java the textual representation of a File object
is just the filename; it does not display whether the file exists,
its access permission, or if it is a regular file, a directory, or
another type of file.

Figure 1: Vebugger’s visualization of a Color class instance
inside the Variables view of Eclipse’s debug perspective.
This visualization exposes the color represented by the
object in a fashion more easily comprehensible compared
to a textual representation.

Figure 2: Vebugger’s visualization of a Desktop.Action
enum instance inside a runtime mouse-over tooltip. Unlike
the textual representation, this visualization exposes the
alternative visual states of the enum.

Furthermore, string representations can be difficult to
comprehend. For example, in Java the textual representation
of a Map object is a concatenation of the textual represen-
tations of every key and value pair in the map joined by
an equals sign, and each pair joined by a comma, leading
to long strings. Sometimes these textual representations are
simply missing.

We describe a debugging aid tool called Vebugger that
supplements objects with visual representations. Figure 1
demonstrates how Vebugger visualizes an instance of the
Color class in a Java program. This representation, on
top of displaying the numeric RGBA values of the color,
displays the color itself, which eases the burden required to
comprehend the values compared to the default .toString()
representation of the same class. Figure 2 demonstrates
how Vebugger visualizes an instance of the Desktop.Action



enum, a type that represent common actions that desktop
application can perform. This representation provides a
bird’s eye view of the state of the enum along with the
enum’s other potential values, sparing developers from the
need to explore the enum in a separate step. Vebugger
enables developers to write templates for custom and built-
in types. These templates are written in HTML and generate
a visual output from object instances.

Vebugger currently supports visualizations of Java types1

and its design focuses on Object-oriented programming
languages, though it can be extended to visualize stack state
of programs written in functional languages. Many popular
and general purpose languages, such as C++, Java, Python,
and Ruby are OOP languages, making the current design of
Vebugger already broadly applicable.

To demonstrate the capabilities of Vebugger we imple-
mented templates for a dozen types in the java.* package
that fall into three general categories. There are templates
for GUI elements like class Font, templates for the multi-
property classes like File, and for data structure classes like
LinkedList. We discuss these categories and templates in
greater detail in Section IV. Vebugger is free software and
is available for download [17].

The remainder of this paper is organized as follows. In
Section II we discuss the criteria that motivated us to design
Vebugger. In Sections III and IV we discuss implementation
details and example uses of Vebugger that we explored. In
Section V we discuss the future direction in which we intend
to take Vebugger. We review related work in Section VI and
conclude in Section VII.

II. DESIGN CRITERIA

Vebugger’s design was directed by four criteria:

Typed visualizations. Type systems are an important feature
in many modern programming languages; each variable or
watch expression that a developer explores is associated with
a type in the language. Vebugger must support visualizations
based on type.

Extensibility through customizable templates. Developers
create and use custom types in their programs and Vebugger
must support these. We chose to use a template-based ap-
proach to make the visualization creation process accessible.
We discuss future ideas to make the process even more
accessible in Section V-B. Templates also enable Vebugger
to provide context-sensitive object visualizations. We discuss
this idea in greater detail in Section V-C.

IDE integration. Developers tend to debug on the platform
where they develop the code. Existing debuggers are tightly
integrated with IDEs and Vebugger must be as well.

1Java type refers to classes, interfaces, and enums

Do no harm. Vebugger must not degrade a developer’s
experience: Vebugger must be able to fall back to existing
behavior of using string representations for objects.

III. IMPLEMENTATION

We implemented Vebugger as an Eclipse plugin. The
plugin creates a new value details pane for the debugger
(e.g., Figure 1). Our implementation requires users to add
a helper library to their Java project. Templates are classes
that extend the VebuggerTemplate class. Templates must
implement two methods, getType and render, to signal
which type the template matches and to generate HTML
from an object instance, respectively.

Vebugger uses Java’s built in runtime type matching to
pair the object’s type to a template that returns the first
matching class via getType. The first matching template
is the template class that handles the object’s class directly,
through its super classes, or through one of its interfaces,
in that order. Once a matching template is found Vebugger
invokes the template class’s render method. Vebugger dis-
plays the .toString() value of the instance if it does not find
a matching template. In this way Vebugger does not harm
developers’ comprehension in case of a missing template.

We use HTML and CSS for implementing templates due
to their ubiquity and the support for these languages in
Eclipse. Custom types require new templates. We chose to
match each template with a single Java type for simplicity.
One limitations of this choice is the difficulty in sharing
templates between similar classes. We plan to mitigate
this by replacing the templating backend with an industry
standard engine, such as JSP or Razor. Such an engine would
also support nested templates.

IV. EXAMPLE CATEGORIES

We now present four categories of types in the Java
standard library that are representative of the kinds of types
that we would like to support in Vebugger. We included a
dozen templates in the initial release of Vebugger which are
described below in their respective categories.

GUI elements and media. Types such as buttons, text-
input widgets, graphics-related types, audio, and videos are
a natural fit for visualization. These classes can be visualized
to approximate their runtime appearance. As these types
represent visual elements, the visual representation is bound
to be more useful than a textual representation. We included
three templates in this category:

Class Font: Represents a single font and some format-
ting properties. The .toString() representation of this class
displays the font’s name and properties such as size and
whether the font is bold or italicized. Vebugger displays
a famous English pangram using the font that the object
represents.



Figure 3: Vebugger’s visualization of a Locale instance.

Class Point2D: Represents a single point in 2D Cartesian
space. The .toString() representation of instances of this
class display the coordinates. Vebugger shows the position
of the dot on a Cartesian plane.

Class Color: Represents a single color with an optional
alpha component. The Vebugger display of this class is
demonstrated in Figure 1, explained in Section I.

Aggregate types. As the importance of each object property
depends on the context in which the object is used, we
believe all properties should, by default, deserve equal
representation. Doing so with text results in representations
that are difficult to comprehend, which is why many of
these types have their .toString() method return a unique
identifier. Vebugger can expose these properties in a way
that balances the developer’s cognitive burden. We included
three templates in this category:

Class File: represents a file. The .toString() outputs the
file’s name. Vebugger displays all the file properties in a
table, such as access permissions and the file type.

Class Currency: represents a single currency. This ob-
ject includes information like the currency’s code, symbol,
region, and name. The .toString() representation is the
currency’s code. Similar to the File template, Vebugger
displays all fields in a table structure.

Class Locale: represents a specific geographical, political,
or cultural region. The .toString() representation displays
the locale code. Vebugger adds the region’s flag as well as
the full language and region names (see Figure 3).

Small finite state. Types such as enums can be displayed by
exposing all potential states grayed out, and the active state
emphasized. We included one template in this category:

Enum Desktop.Action: represents common actions in
desktop applications. The .toString() representation dis-
plays the active state of the enum. Vebugger displays all
available states, as well. It also displays a familiar icon to
represent the value (see Figure 2).

Data structures. Types that represent data structures are
also a natural fit for visualization. They are often represented
visually in textbooks (e.g. [6]) and drawn by developers on
whiteboards. We included five templates in this category:

Class Object[]2: represents a collection of elements with
a predefined size. The .toString() representation displays
this format: [a, b, . . . , n] where a, b, n are the .toString()

2Object[] is an array of objects, the base class for all non-primitive
arrays in Java.

Figure 4: Vebugger’s visualization of a LinkedList instance.

values of the elements. Vebugger embeds the visualizations
of the elements of the list in a table with the associated index
number paired with each element.

Interface List: represents a collection of elements with
basic list actions (add element, remove element, empty the
list, etc.). This interface is represented the same way as
Object[], both with and without Vebugger.

Class LinkedList: an implementation of List that stores
elements in a linked list. The .toString() representation
is identical to the other List implementations. Vebugger
displays a table similar to that of List but also displays the
connections between values as arrows (see Figure 4). This
follows textbook conventions regarding linked lists.

Interface Map: represents a dictionary of key-value pairs.
The .toString() output looks like this: {Ka=Va, Kb=Vb,
. . . , Kn=Vn} where Ka, Kb, Kn and Va, Vb, Vn are the
.toString() of the keys and values respectively. Vebugger
displays a table similar to List, but in place of the indices
it embeds the visualization of the keys.

Interface Set: represents a set of unique elements. Its
.toString() output is identical to that of List. Since the
elements in a Set have no order, Vebugger displays each
element in the set in a random scattering of circled nodes.

This list of categories is not comprehensive. Each type
has unique constraints and developers should consider these
when creating a new template. We believe that these cate-
gories begin to capture a taxonomy of possible templates.
Vebugger can use these categories to provide a baseline
template for developers who are creating custom templates.

V. FUTURE WORK

A. User studies of Vebugger

We intend to design and conduct a survey to determine
the set of type templates to support natively in Vebugger.
The survey will ask developers to either sketch a visual
representation of types in varying states or declare that a type
is better represented textually. The results will be aggregated
to find recurring themes. We will categorize types based on
whether many participants preferred to visualize a type in a
similar manner, in many different styles, or if the type was
repeatedly marked as unvisualizable.



By creating visualization templates for types based on
the results of the survey, we can next conduct a user study
involving developers and students. We will ask the partic-
ipants to debug programs with and without Vebugger and
test the participants on how well they understand the state of
various objects based on their visual/textual representations.
The results of this study will help us understand whether
developers perform better with Vebugger.

B. Better support for custom templates

Developers who wish to use Vebugger must create a
template for each custom type or super class of the type
that they wish to visualize. This is a barrier to developers
who need to visualize many custom types. Vebugger can
be modified to automatically create templates for a custom
type. One option is to create tabular representations based
on getter properties, like the methods named .getX(). Getter
methods do not have side effects and return values that are
deemed interesting. Vebugger can generate a table with the
name and value of each of these getter methods for types
that do not have a template.

Another way to assist developers is to equip Vebugger
with a drag-and-drop based editor with a WYSIWYG inter-
face. The draggable components can be a type’s public fields
and getters. For arrays or Iterable values the interface can
generate a list or a table. For values that are complex objects
the interface can inline the entire sub-object’s visualization
or allow developers to choose from one of the sub-object’s
own values, from values of the sub-object’s own sub-
object’s, and so on. We intent to conduct a user study to
learn how to improve the template creation process.

C. Support for context-specific templates

In general, visual representations of types like String
or subclasses of Number would not provide any benefit
over their textual representation. However, the context in
which variables of these types are used can benefit from
visualizations. For example, an int is a numeric value but
it could also represent a stock price. In this context this
variable can benefit from coloring the number green or red
and adding a plus or minus sign, depending on whether the
value has recently increased or decreased.

Vebugger can be equipped with an ability to switch
templates for specific instances of a type depending on
the context. For this to be usable the template creation
process must be streamlined so developers can create on-
the-fly visualizations to support their context. Additionally,
Vebugger could automatically infer the context based on
static and dynamic analysis of the code. For example, the
values of a numeric variable that changes often can be
visualized with a line chart to display the sequence of
values; this is similar to [4]. Alternatively, values of a
variable that changes often but uses a limited set of values
can be visualized with a histogram. By analyzing the data

flow, Vebugger can recommend similar templates based on
connections in the data flow graph. Related variables are
likely to be used in similar contexts.

D. Scalable and recursive visualization and navigation

Types with dynamically-sized content may become un-
manageably large to visualize with default Vebugger tem-
plates. For example, a list with 10,000 elements will be rep-
resented as a sequence that displays all elements. Templates
can be extended to support dynamic resizing, based on the
size of the container and user interactions. One trivial option
is to collapse most elements and let the user expose them by
clicking an “expand” button. Another option is to generate
a histogram over the elements to expose statistics instead of
individual elements, to provide zoom controls to facilitate
quick exploration, or to display the elements with a fish-eye
scrolling interaction.

In the case of complex classes that contain references
or pointers to other fields, visualizations can potentially
become too large to fit inside the Vebugger pane. The
referenced types can instead be visualized using a hyperlink.
Clicking that hyperlink will change the selection to the
related object and display the template. Facilitating naviga-
tion from the template can potentially ease the exploration
of the relationship between various object instances. The
same concept can be applied to large data structures. The
hyperlinks themselves could be generated in a way that
uniquely represents each object, so a smaller template would
be required for objects that are expected to be displayed as
hyperlinks as part of the visualization of other objects.

E. Supporting animations

Animation of changes to data structures have been shown
to increase comprehension of algorithms by students [11].
Vebugger can be modified to support animation in templates
to visualize transitions between states. The benefit of ani-
mating state transitions is not limited to data structures. For
example, a template for a BufferedOutputStream instance
can be in the form of a pipe with a transition animations
that changes the pipe’s width depending on whether the
volume of content waiting inside the buffer has increased or
decreased since the previous observation. Adding animation
to Vebugger poses several challenges and questions, such as
what types and transitions can be animated, when to display
these animations, and how this will impact the template
creation process.

VI. RELATED WORK

Many projects generate object visualizations and algo-
rithm animations. Earlier tools [16], [14], [19] were limited
to visualizing data structures in box forms, showing the
values of basic data types like numbers as boxes, and
pointers as arrows between the boxes.



Hendrix et al. introduced extensible visualizations for data
structures in a lightweight Java IDE called jGRASP [10].
Their work focuses on the educational value of the visual-
izations, while Vebugger is a general-purpose tool targeting
developers. For example, Cross et al. [7] conducted a study
on university students using jGRASP, showing that students
learn data structures and algorithms more efficiently using a
visual debugger. We believe that the same result applies to
developers. Demetrescu et al. introduced MONNALISA [8],
a toolkit to create charts and other related visualizations
for program runtime, either event-driven or data-driven.
MONNALISA is more focused on visualizing statistical in-
formation about the state of the world. Alsallakh et al. [3]
introduced an Eclipse plugin to visualize the content of
arrays and collections in Java by exposing the objects’ fields
in a table, displaying line charts and histograms of selected
fields. We used Vebugger to reproduce the same visualiza-
tions. However, as discussed in Section V-D, Vebugger lacks
the interactivity that exists in Alsallakh’s tool.

Mellis [13] introduced Tangible Code, an environment
that, among other features, includes “live functions”, a
feature that inlines the values of variables in the source code
view. Similar to Vebugger, Tangible Code assists in exposing
the developer to information faster, albeit in a completely
different manner. Ko et al. [12] introduced a more complex
program analysis tool called Whyline; a debugging tool that
allows developers to debug code by asking questions about
the output rather than tracing the flow of data manually. Like
Vebugger Whyline eases the cognitive burden on developers
by exposing information that a developer would otherwise
need to infer by slowly exploring the state of the world and
its relation with the code.

The field of object visualizations is related to the field of
algorithm animations, with many papers discussing the two
fields interchangeably. Beck et al. [4] introduced a method
to visually monitor changes to numeric variables embedded
inside the source code view. Stasko described Tango [18], a
framework for iterative creation of animations on arbitrary
programs. Tango provides developers with an expressive
way to define visualizations for transformations in their
program’s state to help them increase their comprehension
of their algorithms. Codea [2] is an iPad application that
uses many software visualization and mobile interaction
techniques to make game programming more accessible and
fun. Visual Studio [1] includes Visualizers, a method to
provide debug-time object visualizations similar to Vebug-
ger. A distinguishing feature is that Visualizer templates are
defined using high level languages such as C#. We think
Vebugger’s choice of using HTML, a presentation language,
is more suitable for exploring auto-generation of templates
and lowers the bar for custom user-developed templates.

Eisenberg et al. [9] proposed presentation extension,
which is distinct from semantic extension and provides a
general mechanism to extend the IDE through a metaobject

protocol. Vebugger is a kind of a presentation extension.

VII. CONCLUSION

Software is difficult to develop and maintain. One impor-
tant reason for this is the invisibility of software, yet most
IDEs continue to represent software state textually. Develop-
ers often think of program state more abstractly. To support
developer software comprehension we designed Vebugger,
an IDE plugin that displays object state visually. Vebugger
uses HTML and CSS templates to visually represent Java
types. Besides describing Vebugger we also touched on
the various promising research directions for future work.
Vebugger is available for download [17].

ACKNOWLEDGMENTS

We thank Eric Wohlstadter who supported Vebugger as a
class project. We also thank the reviewers for their feedback
along with Yuriy Brun, Gail C. Murphy, and Marc Palyart
who have offered advice on earlier drafts. This work was par-
tially supported by NSERC and the Institute for Computing,
Information and Cognitive Systems (ICICS) at UBC.

REFERENCES

[1] Visual Studio. http://www.visualstudio.com/, Accessed July 30, 2014.
[2] Codea – iPad. http://twolivesleft.com/Codea/, Accessed July 8, 2014.
[3] B. Alsallakh, P. Bodesinsky, S. Miksch, and D. Nasseri. Visualizing

Arrays in the Eclipse Java IDE. In CSMR, 2012.
[4] F. Beck, F. Hollerich, S. Diehl, and D. Weiskopf. Visual monitoring

of numeric variables embedded in source code. In VISSOFT, 2013.
[5] F. P. Brooks Jr. No Silver Bullet - Essence and Accidents of Software

Engineering. IEEE Computer, 20(4):10–19, 1987.
[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, et al.

Introduction to algorithms, volume 2. MIT press Cambridge, 2001.
[7] J. H. Cross II, T. D. Hendrix, D. A. Umphress, L. A. Barowski, J. Jain,

and L. N. Montgomery. Robust generation of dynamic data structure
visualizations with multiple interaction approaches. TOCE, 9(2):13,
2009.

[8] C. Demetrescu and I. Finocchi. A data-driven graphical toolkit for
software visualization. In VISSOFT, 2006.

[9] A. D. Eisenberg and G. Kiczales. Expressive Programs Through
Presentation Extension. AOSD, 2007.

[10] T. D. Hendrix, J. H. Cross II, and L. A. Barowski. An extensible
framework for providing dynamic data structure visualizations in a
lightweight ide. ACM SIGCSE Bulletin, 36(1):387–391, 2004.

[11] C. Kehoe, J. Stasko, and A. Taylor. Rethinking the evaluation of
algorithm animations as learning aids: an observational study. IJHCS,
54(2):265–284, 2001.

[12] A. J. Ko and B. A. Myers. Debugging reinvented. In ICSE, 2008.
[13] D. A. Mellis. Tangible code. Master’s thesis, Interaction Design

Institute Ivrea, 2006.
[14] S. Mukherjea and J. T. Stasko. Toward visual debugging: integrat-

ing algorithm animation capabilities within a source-level debugger.
TOCHI, 1(3):215–244, 1994.

[15] G. C. Murphy, M. Kersten, and L. Findlater. How are Java software
developers using the Eclipse IDE? Software, IEEE, 23(4):76–83,
2006.

[16] B. A. Myers. INCENSE: A system for displaying data structures. In
SIGGRAPH, 1983.

[17] D. Rozenberg and I. Beschastnikh. Github – Vebugger. https://github.
com/daniboy/vebugger, Accessed July 8, 2014.

[18] J. T. Stasko. Tango: A framework and system for algorithm animation.
Computer, 23(9):27–39, 1990.

[19] A. Zeller and D. Lütkehaus. DDD—a free graphical front-end for
UNIX debuggers. ACM Sigplan Notices, 31(1):22–27, 1996.

http://www.visualstudio.com/
http://twolivesleft.com/Codea/
https://github.com/daniboy/vebugger
https://github.com/daniboy/vebugger

	Introduction
	Design criteria
	Implementation
	Example categories
	Future work
	User studies of Vebugger
	Better support for custom templates
	Support for context-specific templates
	Scalable and recursive visualization and navigation
	Supporting animations

	Related work
	Conclusion
	References

