Studying multi-threaded behavior with TSViz

Matheus Nunes!, Harjeet Lalh?, Ashaya Sharma?, Augustine WongZ, Svetozar Miucin®,

2

Alexandra Fedorova?, Ivan Beschastnikh?

IComputer Science, Universidade Federal de Minas Gerais

ZElectrical and Computer Engineering, University of British Columbia

Abstract—Modern high-performing systems make extensive
use of multiple CPU cores. These multi-threaded systems are
complex to design, build, and understand. Debugging perfor-
mance of these multi-threaded systems is especially challenging.
This requires the developer to understand the relative execution
of dozens of threads and their inter-dependencies, including data-
sharing and synchronization behaviors.

We describe TSViz, a visualization tool to help developers
study and understand the activity of complex multi-threaded
systems. TSviz depicts the partial order of concurrent events in
a time-space diagram, and simultaneously scales this diagram
according to the physical clock timestamps that tag each
event. A developer can then interact with the visualization in
several ways, for example by searching for events of interest,
studying the distribution of critical sections across threads and
zooming the diagram in and out. We overview TSviz design
and describe our experience with using it to study a high-
performance multi-threaded key-value store based on MongoDB.

A video demo of TSViz is online: https://youtu.be/LpuiOZ3PJCk

I. INTRODUCTION

Moore’s law is dying and modern systems include in-
creasingly more cores to help applications improve their
performance. For example, the latest iPhone 7 has 4 CPU
cores and 6 GPU cores. Server systems are built with as
many as 80 cores. To utilize these cores the software must
embrace concurrency. Today this is achieved by instantiating
and managing multiple threads and by building systems that
require high performance with support for extensive multi-
threading. Concurrency, however, improves performance at a
cost to complexity. For example, a system can reap higher
performance only if the threads are able to do useful work
uninterrupted and in parallel. Achieving this state requires the
developer to carefully orchestrate thread synchronization.

When a system exhibits poor performance, the developer
has a substantial challenge: she must understand the runtime
thread behaviors and determine why certain threads are not
performing as expected. There are several tools for this, most
of which are profilers. Profilers, such as perf, are excellent
at capturing aggregate properties of the execution: they can
inform the developer about the approximate fraction of CPU
cycles used by each function, or tally up the contribution
of each function to the overall hardware cache misses or
operating system page faults, and even associate specific
events, such as branch mispredictions, with lines of source
code.

However, there is an important kind of information that
profilers are fundamentally unable to provide, which makes

3Computer Science, University of British Columbia

them limited to helping with a certain class of performance
anomalies. Profilers obtain performance information by sam-
pling events during the execution; they do so by periodically
interrupting the running program to record callstacks and vari-
ous hardware or operating system metrics. This information is
not sufficient for performance problems that require examining
the steps of the execution in the small and in answering
questions like: what was the sequence of executed functions
during a high latency event? Or, which memory locations were
accessed and by which threads? Or, were any threads blocked
on locks?

To answer the above questions about complex multi-
threaded behavior developers need additional tools to expose
individual thread interactions and gather detailed data, and
they need tools to effectively study this data.

In this paper we describe a tool called TSViz, designed to
help developers understand captured multi-threaded behavior
in complex systems by presenting an interactive visualization
of a captured execution trace. To use TSViz a developer
must first trace their system to capture runtime thread ac-
tivity. For this we rely on DINAMITE [8], an LLVM-based
instrumentation tool (Section II), but developers may also
use other tools, such as Pin [7], or even custom-generated
application logs. A persistent developer can manually grep
through execution logs, but 7SViz offers an easier and more
general-purpose means of understanding the captured traces.
TSViz visualizes the captured traces with no effort on the
part of the developer and allows the developer to immediately
start exploring and answering questions about what happened
during the execution.

TSViz is an open-source tool that runs in the browser,
requires no installation, and is publicly deployed'. Next, we
overview DINAMITE and then detail TSViz. In Section IV we
described our experience in using TSViz with debugging the
performance of thread locking behavior in a high-performance
multi-threaded key-value store. We then briefly discuss our
next steps, overview related work, and conclude.

II. TRACING WITH DINAMITE

We previously described DINAMITE in [8]. Here we sum-
marize its key features.

DINAMITE is an LLVM-based tool that statically instru-
ments C and C++ programs to automatically record the
following events during an execution: function entry/exit

Uhttp://bestchai.bitbucket.io/tsviz/

https://youtu.be/LpuiOZ3PJCk
http://bestchai.bitbucket.io/tsviz/

i)

fl

o m NN
N
_ @
©)
& ©
®
X
-.3_
;5\‘\\‘- °
& @
L]
o J 7
| L]
L] L]
9| °
Fig. 1.

[e]

Entering 0x18e45b8_
_wt_fs_unlock

Source host: thread28
Time: 3.659 ps
Target host: thread5
Entering 0x18e45b8_
_wt_fs_unlock

O s |
[cmome]

Select a collapsing

strategy for the graph:
(8> (local nodes

©close in time

Select a value for the
smallest time
difference in the graph:

©

microseconds ¥

REFRESH GRAPH

TSViz screen with key areas numbered. @ The visualization may be searched for events, for specific graph structures, or for events denoting intervals.

@ The ruler denotes the scale for distances between events in the visualization. ® A box represents a thread; box colors provide a consistent coloring for
events associated with a thread. @ Event details are shown in a panel to the right, and when two events are selected their distance in physical time is detailed.
® An event on a thread timeline is represented as a circle. ® Partial ordering between events is represented as diagonal lines. @ Search results are detailed
in the panel to the right. ® A sequence of local events that are close to each other in physical time (or all local events in a sequence) are collapsed into a
larger circle, e.g., ©, whose label indicates the number of collapsed events. ©® The graph can be zoomed in/out, which effects the ruler, the spacing among

events, and the collapsing of events.

points, function arguments, memory accesses along with full
debugging information (variables names/types, source code
locations). Each type of event can be enabled independently.
For each event DINAMITE records the timestamp, enabling us
to use event traces for performance analysis. Reproducing real
performance bugs in production software typically requires
running the program with many threads for dozens of seconds;
thus execution traces reach multiple gigabytes in size that
are unwieldy for human consumption. Yet, the traces contain
valuable information that can help the developer debug the
most difficult performance problems if presented in the right
form. We found TSViz essential for that purpose.

III. VISUALIZING MULTI-THREADED TRACES WITH TSVi1z

TSViz is designed to run in the browser and does not require
the user to install any software. To use the tool the developer
must upload a log, possibly generated by DINAMITE, and
enter a set of regular expressions to parse this log. There are
three required reg-ex capture groups: event physical times-
tamp, event logical timestamp, and event text. The developer
can also define and parse out user-defined fields for each event
(e.g., the number of database records processed by the thread
up to this point).

Figure 1 illustrates the main TSViz screen that is displayed
once the developer uploads the log, the regular expressions,
and instruct TSViz to analyze the trace. The figure visualizes

the trace used in the locking algorithm case study (Sec-
tion IV-A). The screen is dominated by a time-space diagram
of the trace: individual threads are represented with vertical
timelines, one per thread and from left to right. Events are
positioned on these timelines fo scale using the physical clock
timestamps associated with each event. The partial ordering
between events is displayed as diagonal lines. A developer
can interact with the diagram in several ways: searching for
events, zooming the diagram in and out, clicking on events to
reveal time duration between event pairs or event meta-data,
and by transforming the graph by hiding thread timelines or
by filtering thread timelines. The tool also includes features to
help a developer to pair-wise compare and contrast executions.
Due to limited space we only discuss several of these features.

TSViz extends ShiViz [3], a tool for visualizing interactions
between nodes in a distributed system. TSViz extends ShiViz
in three ways (1) visualization of logical and physical time,
(2) ability to zoom the diagram based on physical time,
(3) ability to search for intervals of activity based on start
and end keywords, and an interactive display of interval
search distribution results. We briefly discuss each of these
differences.

ShiViz was designed for distributed systems in which clocks
between nodes are not synchronized. It was limited to the
logical time recorded in the log. In a multi-threaded system
threads read the same physical clock and TSViz assumes that

the logs include both physical and logical timestamps. The
physical timestamps are used to position events to scale. This
allows the user to judge distances between events, e.g., a
cluster of closely positioned events really did occur around
the same time, even between different threads. Using physical
timestamps alone, however, is not enough for understanding
concurrency. They cannot explain whether an event a occurred
after an event b because of a dependency (e.g., a caused b),
or because of scheduling effects which may be transient (e.g.,
b could occur before a if the system was re-executed). TSViz
therefore visualizes both types of timestamps.

The ShiViz tool does not support zooming: since logical
time cannot be used for measurement, it is unclear what
zooming semantics to use. TSViz uses physical timestamps,
which have a natural notion of scale and zoom: the same
number of pixels on the screen can represent a 1us interval or
a 1ms interval in the trace. Further, TSViz collapses thread-
local events that are close to each other visually at the current
zoom level into clusters. This improves readability and makes
the space-time diagram more sparse and abstract as the user
zooms out.

Finally, TSViz introduces a new kind of search (while re-
taining keyword search and structured search in ShiViz). With
TSViz a developer can search for intervals that are defined
by start events and end events. For example, a developer can
find all intervals that start with an open() event and end with
a close() event. Each interval in the result set is associated
with a duration and TSViz also generates a histogram of
these durations, which are ordered globally, and by thread.
A developer can use this histogram to, for example, jump to
the longest interval instance.

IV. CASE STUDY EVALUATION
A. Debugging performance of a new locking algorithm

A performance engineer was working on a new locking
algorithm for a widely used key-value store WiredTiger [2]. At
the heart of the algorithm was a well-known ticket lock: each
thread wishing to acquire the lock gets a ticket — an integer
value signifying the thread’s order in the queue of lock waiters.
The thread releasing the lock increments the lock’s epoch
number; a lock waiter whose ticket matches the epoch number
becomes the lock holder. Typically lock waiters busy-wait for
a lock, repeatedly checking if their turn has come; the new
algorithm was designed to limit the number of busy-waiting
threads by making some of them block. The thread releasing
the lock, in addition to incrementing the epoch number, would
also unblock one or more threads whose turn to acquire the
lock is approaching.

Once the implementation was complete, the engineer dis-
covered that the lock performed more poorly than expected
in some situations. She used TSViz to examine detailed
interactions between threads vying for the lock (see Figure 1).
First of all, TSViz allowed her to confirm that the logic of the
algorithm appeared to be working correctly: threads correctly
handed over the lock to one another according to their ticket
number, waking up blocked threads as necessary. TSViz also

Write 4045 to __wt_stats.v of type i64" (ptr=7fef5080bef8)

Fig. 2. TSViz showing multiple threads sharing variables. An edge between
two events is shown when one thread writes a variable and then another thread
reads the same variable. In a read-only lock-free workload we would expect
to see few or no edges between threads. The presence of many edges in the
TSViz view signals a potential contention on a shared variable.

revealed that sometimes acquiring the lock took much longer
than usual. The first suspicion was that the lock holder spent
more than the usual amount of time in the critical section.
However, TSViz showed that this was not the case. In fact, the
lock holder released the lock promptly, as expected. Further
examination of the trace with TSViz revealed that the threads
who took an unusually long time to acquire the lock were the
ones that were blocking, and even though they were woken
up by the threads releasing the lock, the wakeup did not occur
early enough for them to return from the sleep queue in the
OS kernel in time to take the lock as soon as it was released.

Overall, TSViz informed the engineer that the deadline by
which a lock waiter must be awakened in order to be ready for
its turn to take the lock is a crucial tuning parameter in this
algorithm. According to the engineer, there was no way that
she would have been able to obtain the same insight from the
output of a profiler tool. The profiler might have shown that
the program spent a lot of time busy-waiting for a lock, but
it would not have provided the insight into the fine-grained
intricacies of thread interactions.

As an additional bonus, TSViz led the engineer to discover
another unexpected phenomenon. With TSViz the engineer
observed long pauses in the execution — functions that did not
block on locks or performed I/O took an unusually long time to
complete. Further investigation revealed that these pauses were
due to a Linux kernel scheduler bug, such as those described
in [6].

B. Detecting contentious shared variables

Just like locks, shared variables can become a point of con-
tention in a multi-threaded program and can limit scalability
on multicore CPUs. When a thread writes a variable that is
cached at other cores, the cache coherency protocol sends
messages across the CPU memory hierarchy to invalidate
the other cached copies. The more cached copies there are,
the longer it takes to read and write the variable, because
of these invalidation messages. The cost of accessing shared
variables can be high even if they are not protected by
locks or accessed via atomic instructions. Unlike locks, shared
variables are much more difficult to detect with conventional
profilers, because memory accesses are not wrapped in indi-
vidual functions. We demonstrate how TSViz can be used to
efficiently identify shared variables that were a culprit behind
a scalability limitation in the WiredTiger key-value store on
some benchmarks. Accesses to these shared variables slowed
down the execution by 4x on 16 cores and by 20x on 32
cores for a read-only benchmark sequentially traversing the
data table (relative to when the problem was fixed).

Originally, it took substantial time and a custom-designed
OS kernel module to get to the root cause of this problem:
to identify that shared variables were limiting the scaling and
to pinpoint the variables that caused the problem. With TSViz
(see Figure 2), we can immediately observe significant com-
munication between threads in a workload where this pattern
is not expected. In this view, each event is either a function
entry/exit or a memory access. An edge is drawn between two
events executed by different threads when one thread writes
a variable and another thread later reads the same variable.
By hovering the mouse over the events connected by the
communication edges we can see the shared variable that was
accessed. TSVIz reveals that it is the _ wt_stats statistics
structure. As a result of this experience this statistics structure
in the WiredTiger product was subsequently redesigned to be
per-thread [1], and the scaling bottleneck was eliminated.

V. DISCUSSION AND NEXT STEPS

TSViz is especially suitable for studying micro-interactions
among threads. These behaviors are difficult to reconcile with
aggregate information provided by profiling tools. We are
working on building intermediate tools that are (1) more
scalable and visualize behavior at a more macro level, and
(2) do not perform aggregation, which makes it impossible to
reconstruct the sequence of what actually happened. One way
in which we can achieve this kind of abstraction is by detecting
patterns among threads and clustering those that behave in a
similar manner. Threads in a multi-threaded systems are often
clones and have similar performance profiles. By clustering
threads together TSViz can visualize larger systems and also
cut down on the amount of information that a user needs to
initially consider. This strategy has been used to great effect
in Ravel [4], [5].

TSViz runs in the browser, which makes it easy to use, but
also limits its performance. Runtime traces that are gigabytes
in size require substantial processing power; we have observed

that TSViz usability degrades substantially after approximately
a hundred thousand objects in the browser’s DOM (e.g.,
events in the trace). Smarter and more custom rendering can
extend this limit, but the browser ultimately limits the scale
at which TSViz is applicable. We are considering alternative
approaches, such as visualizing parts of the trace, and browser-
based performance improvements, such as web workers and
other browser concurrency mechanisms.

The ShiViz tool has the ability to structurally compare
pairs of traces and to highlight the differences. We plan to
add this capability to TSViz and to take into account the
extra physical timestamp information. This information can be
used to, for example, highlight events in the trace where the
other trace’s corresponding event occurred much earlier (i.e.,
highlight events that were delayed relative to the other trace).
This has been previously considered in work by Sambasivan
et al. [9].

VI. CONCLUSION

Although threads are frequently used to improve system
performance, threading often introduces correctness and per-
formance issues, which requires the developer to understand
a system’s runtime behavior. Reasoning about concurrent
behavior is difficult, particularly when the behavior is part
of a complex multi-threaded system.

We described TSViz, an interactive visualization tool for
studying multi-threaded system behavior. TSViz visualizes
logical and physical timestamps and includes a variety of ad-
vanced capabilities, such as zooming and search. Importantly,
the tool runs in a browser, supports a variety of trace formats,
and is deployed online: http://bestchai.bitbucket.io/tsviz/.

REFERENCES

[1] The pull request redesigning the single shared statistics structure to be
per-thread. https://github.com/wiredtiger/wiredtiger/pull/2102.

[2] The WiredTiger transactional key-value store. http://www.wiredtiger.com.

[3] L Beschastnikh, P. Wang, Y. Brun, and M. D. Emst. Debugging
Distributed Systems. CACM, 2016.

[4] K. E. Isaacs, P.-T. Bremer, I. Jusufi, T. Gamblin, A. Bhatele, M. Schulz,
and B. Hamann. Combing the Communication Hairball: Visualizing
Parallel Execution Traces using Logical Time. IEEE TVCG, 20(12):2349—
2358, 2014.

[5] K. E. Isaacs, T. Gamblin, A. Bhatele, M. Schulz, B. Hamann, and P. T.
Bremer. Ordering Traces Logically to Identify Lateness in Message
Passing Programs. IEEE Transactions on Parallel and Distributed
Systems, 27(3):829-840, March 2016.

[6] J.-P. Lozi, B. Lepers, J. Funston, F. Gaud, V. Quéma, and A. Fedorova.
The Linux Scheduler: A Decade of Wasted Cores. In Eurosys, 2016.

[7] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood. Pin: Building Customized Program
Analysis Tools with Dynamic Instrumentation. In PLDI, 2005.

[8] S. Miucin, C. Brady, and A. Fedorova. End-to-end Memory Behavior
Profiling with DINAMITE. In FSE, 2016.

[9] R. R. Sambasivan, A. X. Zheng, M. D. Rosa, E. Krevat, S. Whitman,
M. Stroucken, W. Wang, L. Xu, and G. R. Ganger. Diagnosing Perfor-
mance Changes by Comparing Request Flows. In NSDI, 2011.

http://bestchai.bitbucket.io/tsviz/
https://github.com/wiredtiger/wiredtiger/pull/2102
http://www.wiredtiger.com

