Studying multi-threaded
behavior with TSViz

" HE N L] o B H BN EEEEN
!_ k

http://bestchai.bitbucket.io/tsviz/

Matheus Nunes, Harjeet Lalh, Ashaya Sharma, Augustine Wong,
Svetozar Miucin, Alexandra Fedorova, lvan Beschastnikh

U. of British Columbia

U. Federal de Minas Gerais o \
| Canada

Brazil

Concurrency is everywhere

e Performance: I Stuttering Chip introduction

® Transistors per chip, ‘000 ® Clock speed (max), MHz ® Thermal design power®, w dates, selected
o M y I . d . Transistors bought per §, m
oore’s law is dying out S~

15 10’

e iPhone 7 has 4 CPU ’

> >

-~

P . _ . 10°
cores and 6 GPU cores . .o 0
10’
10
. . e I I e I N N e 10"
() COord|nat|On' 1970 75 80 85 90 95 2000 05 10 15
- Sources: Intel; press reports; Bob Colwell; Linley Group; IB Consulting; The Economist *Maximum safe power consumption

e Today’s apps depend on
NnUMerous services

Ivan Beschastnikh University of British Columbia 2

Developers must
embrace concurrency

Concurrency complexities

e Multi-threading with shared state is the
dominant model

e Challenging to reason about order of events

e Requires explicit concurrency control (e.g., locks)
e Few tools support concurrency comprehension

e Commonly used tools: profilers/tracing tools

e Many tools target distributed computing/systems

e Most devs study logs, one per thread

[1] Debugging Distributed Systems: Challenges and options for validation and debugging, Beschastnikh et al. CACM 2016
[2] Combing the Communication Hairball: Visualizing Parallel Execution Traces using Logical Time. Isaacs et al. TVCG 2014

[3] Ordering Traces Logically to Identify Lateness in Message Passing Programs. Isaacs et al. TPDS 2016

Ivan Beschastnikh University of British Columbia

4

Concurrency analysis in the small

Our view: understanding inter-thread interactions
require understanding runtime behavior in the small

e A solution requires two pieces:
1. Instrumentation
e e.g., LLVM-based tool called DINAMITE [1]
2. Interactive visualization of captured information

e TSViz: a new tool based on ShiViz [2]

[1] End-to-end Memory Behavior Profiling with DINAMITE. Miucin et al. Tool demo at FSE 2016
[2] Debugging Distributed Systems: Challenges and options for validation and debugging, Beschastnikh et al. CACM 2016

Ivan Beschastnikh University of British Columbia 5

Concurrency analysis in the small

Our view: understanding inter-thread interactions
require understanding runtime behavior in the small

e A solution requires two pieces:
1. Instrumentation

e e.g., LLVM-based tool called DINAMITE [1]

Focus of 2- Interactive visualization of captured information

this talk | e TSViz: a new tool based on ShiViz [2]

[1] End-to-end Memory Behavior Profiling with DINAMITE. Miucin et al. Tool demo at FSE 2016
[2] Debugging Distributed Systems: Challenges and options for validation and debugging, Beschastnikh et al. CACM 2016

Ivan Beschastnikh University of British Columbia 6

DINAMITE: LLVM-based tracer

program

sources

;

DINAMITE
compiler

'

instrumented
binary

choose what
to instrument

Can instrument functions, mutexes,
memory allocations and accesses...

Instrument what you care about (or use
reasonable defaults)

Possibility of analysis on the fly

Controllable overhead between 10% and
30x

Get all the debug information in logs!
(even at -03)

People in our lab use it daily for
performance debugging

https://dinamite-toolkit.github.io/

Ivan Beschastnikh

University of British Columbia

7

Runtime instrumentation

=
%,

Ivan Beschastnikh

12, dst:
12, dst:
:0,dst:
:1,dst:
:2,dst:
12, dst:
10, dst:
:1,dst:
12, dst:
12, dst:
10, dst:
:1,dst:
:2,dst:
:2,dst:
20, dst:
:1,dst:
12, dst:
12, dst:
:0,dst:
:1,dst:
12, dst:
12, dst:
20, dst:
:1,dst:
:2,dst:
:2,dst:
10, dst:
:1,dst:
12, dst:
12, dst:

0, type :
1, type :
2, type :
2, type :

0, type
1, type

2, type :
2, type :
0, type :
1, type :
2, type :
2, type :

0, type
1, type

2, type :
2, type :
0, type :
1, type :
2, type :
2, type :
0, type :

1, type

2, type :
2, type :
0, type :
1, type :
2, type :
2, type :

0, type
1, type

prepare [5,13,10,2]
prepare [6,13,10,2]
commit [7, 13,10, 2]
commit [8,13,10,2]
ctx_commit [9, 13,10,2]
:tx_commit [10, 13,10, 2]

commit [15, 13, 10, 2]
coMmit [16,13, 10,2]
:tx_commit [17,13,10,2]
: tx_commit [18, 13,10, 2]

ack [19,13,10,2]

ack [20,13, 10,2]
prepare [21,13,10,2]
prepare [22,13,10,2]
commit [23,13, 10,2]
commit [24,13, 10,2]
tx_commit [25, 13,102
: tx_commit [26, 13,10, 2]
ack [27,13,10,2]

ack [28,13,10,2]
prepare [29, 13, 10,2]
prepare [30, 13, 10,2]
commit [31, 13,10, 2]
commit [32,13, 10,2]
:tx_commit [33, 13,10,2]
:tx_commit [34, 13,10,2]

12, dst:
:2,dst:
:0,dst:
:1,dst:
:2,dst:
12,dst:
:0,dst:
t1,dst:
12,dst:
12, dst:
:0,dst:
:1,dst:
:2,dst:
:2,dst:
:0,dst:
:1,dst:
12,dst:
12,dst:
10, dst:
:1,dst:
12, dst:
12, dst:
:0,dst:
:1,dst:
:2,dst:
:2,dst:
10, dst:
t1,dst:
12,dst:
12,dst:

0, type :
1, type :
2, type :
2, type :
:tx_commit [9, 13,10,2]

: tx_commit [10, 13,10, 2]

0, type
1, type

2, type :
2, type :
0, type :
1, type :
2, type :
2, type :
: tx_commit [17, 13,10,2]
: tx_commit [18, 13,10, 2]

0, type
1, type

2, type :
2, type :
0, type :
1, type :

0, type
1, type

prepare [5,13,10,2]
prepare [6,13, 10,2]
commit [7,13,10,2]
commit [8,13,10,2]

ack [11, 13,10,2]
ack [12,13,10,2]
prepare [13,13,10,2]
prepare [14,13,10,2]
commit [15, 13, 10, 2]
commit [16, 13, 10, 2]

ack [19,13,10,2]
ack [20, 13,10,2]
prepare [21,13,10,2]

ommit [25,13,102]
commit [26, 13,10,2]

rack[27,13,10,2]

Mk [28,13,10,2]

: prepare [29,13, 10,2]

: prepare [30, 13, 10, 2]
:commit [31, 13,10,2]

: commit [32,13,10,2]

: tx_commit [33, 13,10,2]
: tx_commit [34, 13,10,2]

12, dst:
12, dst:
10, dst:
:1,dst:
12, dst:
12, dst:
10, dst:
11, dst:
12, dst:
12, dst:
10, dst:
:1,dst:
12, dst:
12, dst:
10, dst:
:1,dst:
12, dst:
12, dst:
10, dst:
:1, dst:
12, dst:
12, dst:
10, dst:
:1,dst:
12, dst:
12, dst:
10, dst:
11, dst:
12, dst:
12, dst:

0, type :
1, type :
2, type :
2, type :
0, type :
1, type :
2, type :
2, type :
0, type :
1, type

prepare [5,13,10,2]
prepare [6,13,10,2]
commit [7,13,10,2]
commit [8,13,10,2]
tx_commit [9, 13,10, 2]
tx_commit [10, 13, 10, 2]
ack [11,13,10,2]

ack [12,13,10,2]
prepare [13,13,10,2]
are [14,13,10,2]

i commit [18, 13,10, 2]
ik [19,13,10,2]

rack [20,13,10,2]

: prepare [21,13,10,2]

: prepare [22,13,10,2]

: commit [23, 13,10, 2]

: commit [24,13, 10,2]

: tx_commit [25, 13,102]
: tx_commit [26, 13, 10, 2]
rack[27,13,10,2]

:ack [28,13,10,2]

: prepare [29, 13,10,2]

: prepare [30, 13,10,2]

: commit [31,13, 10,2]

: commit [32,13,10,2]

: tx_commit [33,13, 10, 2]
1, type :

tx_commit [34, 13, 10, 2]

University of British Columbia

8

Runtime log visualization

Ivan Beschastnikh

10, type :
11, type :
12, type :
12, type :
: 0, type
11, type
12, type :
12, type :
10, type :
11, type :
12, type :
12, type :
: 0, type
11, type
12, type :
12, type :
: 0, type :
11, type :
12, type :
12, type :
: 0, type
11, type
12, type :
12, type:
: 0, type :
11, type :
12, type :
12, type :
: 0, type
11, type

prepare [5,13,10,2]
prepare [6,13,10,2]
commit [7, 13,10, 2]
commit [8,13,10,2]
ctx_commit [9, 13,10,2]
: tx_commit [10, 13, 10,2]

commit [15, 13, 10, 2]
coMmit [16,13, 10,2]
:tx_commit [17,13,10,2]
: tx_commit [18, 13,10, 2]
ack [19,13,10,2]

ack [20,13,10,2]
prepare [21,13,10,2]
prepare [22,13,10,2]
commit [23,13, 10,2]
commit [24, 13, 10, 2]

: tx_commit [25, 13,102]
: tx_commit [26, 13,10, 2]
ack [27,13,10,2]

ack [28,13,10,2]
prepare [29, 13, 10,2
prepare [30, 13,10,2]
commit [31,13, 10,2]
commit [32,13, 10, 2]
:tx_commit [33, 13,10,2]
:tx_commit [34, 13,10,2]

11, type

: prepare [5,13,10,2]

: prepare [6,13, 10, 2]
:commit[7,13,10,2]
:commit [8,13, 10,2]
:tx_commit [9, 13,10,2]

: tx_commit [10, 13,10, 2]
rack[11,13,10,2]
rack[12,13,10,2]

: prepare [13,13,10, 2]

: prepare [14,13,10, 2]

: commit [15,13,10,2]

: commit [16, 13, 10,2]

: tx_commit [17, 13,10,2]
: tx_commit [18, 13,10, 2]
rack [19,13,10,2]

tack [20,13,10,2]

: prepare [21,13,10,2]

commit [26, 13,10,2]

rack[27,13,10,2]

Mk [28,13,10,2]

: prepare [29, 13, 10, 2]

: prepare [30, 13, 10, 2]
:commit [31, 13,10,2]

: commit [32,13, 10,2]

: tx_commit [33, 13,10,2]
: tx_commit [34, 13,10,2]

0, type :
1, type :
2, type :
2, type :
: 0, type :
11, type :
12, type:
12, type :
: 0, type :
11, type
12, typd

prepare [5,13,10,2]
prepare [6,13,10,2]
commit [7,13,10,2]
commit [8,13,10,2]
tx_commit [9, 13,10, 2]
tx_commit [10, 13, 10,2]
ack [11,13,10,2]
ack [12,13,10,2]
prepare [13,13,10,2]
are [14, 13,10,2]
it [15,13, 10,2]
it [16,13,10,2]
commit [17, 13, 10, 2]
i commit [18, 13,10, 2]
ik [19,13,10,2]

:ack [20,13,10,2]

: prepare [21,13,10,2]

: prepare [22,13,10,2]

: commit [23, 13,10, 2]

: commit [24,13, 10, 2]

: tx_commit [25,13,102]

: tx_commit [26, 13, 10, 2]

rack[27,13,10,2]

rack[28,13,10,2]

: prepare [29, 13,10,2]

: prepare [30, 13,10, 2]

:commit [31,13,10,2]

:commit [32,13,10,2]

: tx_commit [33,13, 10, 2]
1, type :

tx_commit [34, 13, 10, 2]

University of British Columbia

9

TSViz overview

e Takes a log with physical timestamps and logical
timestamps as input, outputs a thread interaction graph

* |nteractive tool to explore the
physical and logical orderings H N B

e Show both orderings
e To-scale visualization; zooming
e Search queries X

e Target population: I g o
concurrent system developers

e Client-side browser impl.

Ivan Beschastnikh University of British Columbia 10

TSViz visual abstractions
e Squares represent threads
e Circles represent thread events

e [ines between events represent orderings

S I H P » N
Time <
& . 4———partial ordering

Ivan Beschastnikh

Entering Ox18e45b8__wt_fs_unlock

(logical timestamps)

A*

<4«—— total ordering
(physical timestamps)

University of British Columbia 11

Demo on Wiredliger k-v store [i

Public deployment:

http://bestchai.bitbucket.io/tsviz/
b E

T1SViz Rl - n

The TSViz visualization engine generates interactive
communication graphs from execution logs of complex
multi-threaded systems. A

]
Entering Ox18e45b8__wt_fs_unlock

[1] http://www.wiredtiger.com

Ivan Beschastnikh University of British Columbia 12

http://www.wiredtiger.com

Why does my concurrent system
behave In a certain manner?

Dynamlc analysis

Approach: instrument and analyze
PN

Events State Vlsuallzation

" EEEE B
* TSViz : visualize concurrent executions

e Understand ordering of events
e Query for patterns; compare executions

http://bestchai.bitbucket.io/tsviz/

Ivan Beschastnikh University of British Columbia 13

