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Abstract—Network testbeds are essential research tools that have been responsible for valuable network measurements and major
advances in distributed systems research. However, no single testbed can satisfy the requirements of every research project,
prompting continual efforts to develop new testbeds. The common practice is to re-implement functionality anew for each testbed.
This work introduces a set of ready-to-use software components and interfaces called Tsumiki to help researchers to rapidly prototype
custom networked testbeds without substantial effort. We derive Tsumiki’s design using a set of component and interface design
principles, and demonstrate that Tsumiki can be used to implement new, diverse, and useful testbeds. We detail a few such testbeds: a
testbed composed of Android devices, a testbed that uses Docker for sandboxing, and a testbed that shares computation and storage
resources among Facebook friends. A user study demonstrated that students with no prior experience with networked testbeds were
able to use Tsumiki to create a testbed with new functionality and run an experiment on this testbed in under an hour.
Furthermore, Tsumiki has been used in production in multiple testbeds, resulting in installations on tens of thousands of devices and
use by thousands of researchers.
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1 INTRODUCTION

Testbeds—such as RON [1], PlanetLab [2], Emulab [3], and
GENI [4] —play an important role in evaluating network
research ideas. These testbeds enable researchers to run
software on thousands of devices, and have significantly
improved the validation of networking research. For ex-
ample, RON and PlanetLab have been extensively used to
evaluate early research on Distributed Hash Table (DHT),
while BISmark [5] and SamKnows [6], [7] have impacted
Internet policy decisions at the Federal Communications
Commission (FCC).

Since each testbed has unique capabilities and each
project has different requirements, no single networked
testbed fits all needs. For example, PlanetLab is well suited
for hosting long-running Internet services across a wide
area. However, PlanetLab gives a skewed view of Inter-
net connectivity [8], [9], [10]. This deficiency prompted
researchers to create new testbeds, such as SatelliteLab [11],
BISmark [5], [7], and Dasu [12]. These testbeds support
measurements from end hosts or edge networks and capture
more network and geographic diversity than PlanetLab. We
expect that new testbeds will continue to be developed as
new technologies emerge.

Today it is common practice to build a new testbed
without reusing software from existing testbeds. This is be-
cause existing testbeds are often customized to a particular
environment and use case. For example, a researcher may
want to reuse the PlanetLab software to build a testbed
for running experiments on Android devices. However, the
PlanetLab node software requires a custom Linux kernel
with special virtualization support. These customizations
are non-trivial to port to mobile hardware. Further, many
of the PlanetLab abstractions, such as the “site” notion, do

not readily apply. Hence, the conventional wisdom is that
it is simpler to develop a new testbed software stack from
scratch, instead of building on existing software.

In this work we show that code reuse between testbeds
does not limit the construction of diverse testbeds. We
formulate a set of testbed design principles and use these,
in concert with existing designs, to propose a component-
based model that we call Tsumiki.1 Tsumiki is a meta-
platform for testbed construction that makes it easy to build
and customize new units from existing components.

Tsumiki consists of seven software components that are
configurable and replaceable. Tsumiki components are char-
acterized by open, well-defined APIs that enable different
component realizations (i.e., diverse implementations of a
component using the same interfaces), to work together
without strong dependencies. Although the interfaces are
tightly specified, there can be many realizations of each
component, and any realization can be customized to a
particular environment or testbed feature. For example, the
sandbox component can be realized as a Docker container
(Section 6), or a programming language sandbox (Section 5),
etc. The experiment manager component can be realized as
a tool for automated deployment of long-running experi-
ments, a parallel shell, or a GUI-based tool.

We used the Tsumiki principles in 2008 to design and
build Seattle [13]. Seattle allows research experimentation
on end-user devices, which include tens of thousands of
smartphones, laptops and desktops. It is used in academic
research and pedagogy in dozens of universities and in-
stitutions. Today, Seattle serves testbed software updates
to over 40K devices. Seattle, and several other subsequent
Tsumiki testbeds, were built as community efforts, with

1. The word tsumiki means “building blocks” in Japanese.
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contributions by 108 developers from 32 institutions world-
wide. This is the first paper to describe testbeds built using
Tsumiki, including the first technical description of Seattle.

The primary scientific contribution of this work are
four principles and our application of these principles to
derive a modular testbed design called Tsumiki. This design
introduces a set of components that can be used by testbed
developers to extend, replace, or omit components in exist-
ing testbeds, while allowing them to reuse functionalities.

In our evaluation we demonstrate three benefits of the
Tsumiki design:

Benefit 1: Tsumiki can be used to construct a va-
riety of testbeds. Tsumiki has been used to build and
deploy testbeds like ToMaTo [14] (a network virtualization
and emulation testbed), Sensibility [15], [16] (a testbed that
provides IRB-approved access to sensors on Android de-
vices), and Seattle [13] (a testbed for networking, security,
and distributed systems research and education). Section 6
describes Ducky, a new testbed which uses Docker to sand-
box experiment code. In Section 7 we also describe Social
Compute Cloud, a testbed that was built by an external
group. It uses social networks to locate computational and
storage resources. In Section 9 we present other production
testbeds that use Tsumiki.

Benefit 2: Developing testbeds with Tsumiki is easy.
It took one of the authors three hours to build the Ducky
testbed. We also report on a user study in which participants
with little experience in networked testbeds used Tsumiki
to create a custom testbed, and deploy an experiment, all in
under an hour (Section 8).

Benefit 3: Tsumiki enables researchers to construct
testbeds that are useful for research. In Section 5 we show
how the Sensibility Testbed can be used to reproduce a
study of WiFi rate adaptation algorithms [17]. This study
helped us uncover a mistake in Ravindranath et al.’s de-
scription of the algorithm. Over the past eight years, dozens
of projects have also used Tsumiki-based testbeds [14], [18],
[19], [20], [21], [22], [23].

The remainder of this paper is structured as follows:
Section 2 states the goals and non-goals guiding the design
of Tsumiki. Section 3 derives Tsumiki’s main design prin-
ciples. Section 4 discusses the components and interfaces
that follow from Tsumiki’s principles. Sections 5, 6, 7, and
9 present five practical testbed implementations based on
Tsumiki. In Section 8, we show a study in which students
with little prior knowledge in testbeds successfully use
Tsumiki to construct a testbed with new functionalities.
Section 10 discusses the limitations that Tsumiki is subject
to. In Section 11 we review related work in the design space,
and Section 12 concludes.

2 GOALS, NON-GOALS, AND DEFINITIONS

Goals. The goals of this work are to: (1) reduce the devel-
opment time and effort in building testbeds, (2) improve
the compatibility of testbed components so they can be
used in diverse testbeds, and (3) generalize and diversify
existing testbed and component designs to extend the range
of supported use cases.
Non-goals. There are also several important non-goals. Our
goal is not to specify a canonical set of components that

all testbeds must include. Also, we are not aiming to have
the eventual components provide optimal performance,
memory footprint, etc. Much like the tradeoffs that arise
from using a high level programming language, Tsumiki
decreases development time but may introduce a penalty
over an optimized testbed design. Furthermore, Tsumiki
does not attempt to eliminate the possibility of testbed mis-
configuration or make it impossible to implement buggy
components. However, Section 8 demonstrates that it is
easy for students who have no experience with testbeds to
quickly create new testbeds that function correctly.
Definitions. This paper refers to a component when dis-
cussing a basic unit of modularity within a testbed. A
component is a unit of composition with clearly specified in-
terfaces and explicit context dependencies [24]. Each compo-
nent has different realizations, or implementations that work
in different ways. Valid component realizations conform to
the same precisely defined interfaces for inter-component
communication. However, they may differ in other ways,
such as the user interface or the included optimizations.

Throughout the paper we use the following testbed-
related terminology. Devices are hardware resources that
host experiments and are owned by device owners. An ex-
perimenter is a person who runs experiments on some set
of devices. A testbed infrastructure includes some testbed
hardware and testbed software. The testbed hardware is
usually provided and operated by a testbed provider. The
testbed software is a set of services that manage the op-
eration of the testbed, such as software to track devices.
The testbed software is created by testbed developers. While
the testbed developers, testbed provider, experimenters, and
device owners may be the same group of people, this is not
always the case.

3 GUIDING DESIGN PRINCIPLES

The Tsumiki model was developed using a set of guiding
principles. The first two principles are related to selection
and lay-out of the testbed components.

P1 Principle of least trust. Whenever a component
would require a trust relationship between two parties that
may not trust each other, we separate the component into
two components along the trust boundary.

P2 Design for omission principle. The design should
allow components to be omitted if their functionality is not
necessary for a specific testbed.

P1 makes trust relationships between components ex-
plicit. This allows experimenters, providers, and developers
to select or construct component realizations independently.

Not all testbeds require all components. P2 guides
Tsumiki’s design to support testbeds that are designed to
offer only the features needed to perform effectively.

The next two principles relate to component interfaces.
P3 Non-extensible inter-component interfaces with

opaque parameters. Inter-component interfaces must not
change to provide a guarantee of backward compatibility. To
be flexibile in the otherwise rigid interface, we use opaque
parameters.

P4 Flexible human-visible interfaces. Interfaces that are
visible to experimenters or device owners must be flexible
and allowed to vary between different realizations.
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Fig. 1: Tsumiki components (boxes) and interfaces (arrows,
pointing in the direction of communication). Shaded compo-
nents have interfaces used by a human.

We introduce P3 to support our goal of compatibility
between testbed components and inter-operability between
testbeds. P3 requires that inter-component interfaces, and
the resulting inter-component interactions, be precisely de-
fined. This allows testbed developers to make assumptions
about component behavior even if they do not control
its final realizations. To reconcile this principle with the
goal of supporting a variety of testbeds, we frequently use
opaque parameter values for inter-component interfaces.
These parameter values must be acted on in only specific
and precisely defined ways.

P4 relates to interfaces that a human would use to
interact with a component, such as a UI or a programming
language in a sandbox. P4 allows a component to define
this interface in the way that best fits its anticipated use. In
contrast to the inter-component interfaces, we do not define
these interfaces. As a result, such human-visible interfaces
can change to meet the requirements of a new testbed.

4 TSUMIKI’S DESIGN

In this section, we explain how Tsumiki’s design applies the
principles in the previous section. Figure 1 overviews the
resulting testbed components and interfaces, represented by
boxes and arrows respectively. In Section 4.1, we apply prin-
ciples P1 and P2 to a set of desirable testbed capabilities. In
Section 4.2, we discuss the impact of principles P3 and P4 on
component interfaces. Specifically, Section 4.2.1 explains the
inter-component interfaces (solid arrows in Figure 1), and
Section 4.2.2 describes the human-facing interfaces between
the components and human actors (dashed arrows in Fig-
ure 1). Finally, Section 4.3 explains how policies can change
a component’s behavior without changing its realization.

4.1 Components and their purposes
We iteratively apply principles P1 and P2 to delineate
seven Tsumiki components with specific networked testbed
capabilities (Table 1). Starting with a monolithic testbed,
each step builds on prior steps. To further explain these
components, we provide examples from existing testbeds.

1. Supporting remote experimentation. In a distributed
testbed an experimenter needs to manage experiments run-
ning on remote devices from a local machine. For example,
in GENI [4] an experimenter can control her experiment

remotely using Omni [25] or jFed [26]. Both tools execute
on an experimenter’s local computer, and provide access to
hardware resources using her testbed credentials. Following
P1, we introduce an experiment manager component in the
Tsumiki model.

It is common for testbed software to be divided into
device software and infrastructure services. For example, Plan-
etLab Central develops software that runs on devices main-
tained by institutions around the world. In this case, the
device owners are distinct from the testbed provider. We fur-
ther subdivide device software and infrastructure services in
the steps below.

2. Device owner retains control over device use. When
the testbed hardware resources are supplied by device own-
ers, it is important to allow these owners to manage any
software running on their devices. Managing, in this case,
would include installing and removing the device software,
starting and stopping the software, etc. In PlanetLab’s case,
an institution’s IT staff controls the local PlanetLab nodes.
These staff members add or remove nodes, and control the
bandwidth that a node can consume. In Dasu [12], end-
users can disable experiments using the Dasu BitTorrent
extension. By principle P1, we identify the need for a device
manager component as part of the device software. The
device manager allows an owner to enable and disable
the device software, controls the software installed on each
device, and keeps it updated as new versions are released.

3. Sharing a device between multiple experiments.
While testbeds like Emulab enable a researcher to ob-
tain dedicated resources, many testbeds multiplex devices
among multiple experimenters. This happens in situations
where hardware resources are limited. For instance, on
PlanetLab, multiple experimenters can run virtual machines
on the same hardware. Other platforms that support such
resource sharing include SPLAY, Dasu, and Fathom. Exper-
imenters sharing a device may not trust one another and
also may not be trusted by the testbed developers. Applying
principle P1, we delineate a sandbox component that is part
of the device software. The sandbox enforces a set of security
restrictions to isolate experimenters’ code from one another
and to prevent the code from harming the device.

4. Securing remote access. An experimenter accessing
a sandbox on a device must have a trust relationship with
that sandbox. In PlanetLab, a node manager mediates an
experimenter’s access to sandboxes on a node through ssh-
based authentication [27]. In SPLAY, access to a device is
managed by an administrator who configures a set of access
keys [28]. Applying principle P1, we delineate our final
device software component called the resource manager.
Principle P2 would also lead to this separation, because in
many cases, an experimenter may want to run a sandbox
locally, without network connectivity. The resource manager
controls who can access the sandboxes on the device, and
communicates with experiment manager (see step 1).

The software on a device is now composed of three
components: a device manager, a resource manager, and
one or more sandboxes (Figure 1). Next, we introduce the
components that make up the testbed infrastructure.

5. Supporting testbed providers who are not testbed
developers. In a common testbed instantiation, the testbed
provider is also the testbed developer: in Dasu and Fathom
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TABLE 1: Tsumiki components, their functions, and locations.
Step Component Capability Location

1 Experiment
manager

Used by experimenters to deploy
and run experiments.

Experimenter
local host

2 Device manager Installation and software updates.
Device host
system

3 Sandbox Isolates experimenter code.

4 Resource man-
ager Mediates access to sandboxes.

5 Installer builder Builds custom installers.
Testbed
infrastructure

6 Lookup service Provides device discovery.

7 Clearinghouse Tracks experimenters, mediates
experimenter access to devices.

a device runs a fixed software stack created by the testbed
provider. Sometimes, one group wishes to build a testbed
using the software provided by another group, while retain-
ing control over how the hardware resources are allocated.
PlanetLab supports this model through a federation rela-
tionship between PlanetLab Europe and PlanetLab Japan.
Different groups utilize the same PlanetLab software to
manage resources in their region of PlanetLab. This also hap-
pens in Emulab where independent site providers predomi-
nantly run unmodified code maintained by the core Emulab
team. Thus sites around the world need only provide and
manage hardware, while benefiting from the Emulab team’s
software development efforts. To support this scenario,
principle P1 requires us to delineate an installer builder
component. This component enables a testbed developer
to provide software updates or customization to devices
whose hardware is managed by a separate testbed provider.

6. Tracking devices. Both the testbed infrastructure and
experimenters must have a way of locating remote devices,
especially if they are mobile and may frequently change
their IP addresses. Devices in Dasu use a configuration
service and experiment administration service to announce
their availability and characteristics like their geographic
location. However, not every testbed needs such a tracking
service. By principle P2 we introduce an optional lookup
service to track device locations.

7. Allocating device resources. Experimenters typically
gain access to devices through a trusted intermediary. In
PlanetLab, PlanetLab Central mediates experimenter access
to the available nodes, and creates slices on experimenters’
behalf. Similarly, SPLAY’s splayctl is a trusted entity that
controls the deployment and execution of applications. Such
trusted intermediaries are necessary to coordinate access
among many experimenters in a large testbed. However,
a testbed with a handful of experimenters may not need
such a service. Following principle P2, we introduce the
clearinghouse, an optional component in the testbed infras-
tructure. This component serves as the experimenter-facing
mechanism for acquiring and managing device resources.

Monitoring. Additionally, each component includes ad-
ditional monitoring and reporting logic. For example, the
sandbox monitors resource consumption of experimenter’s
code, the device manager monitors the overall resources on
the device, the lookup service monitors device connectiv-
ity/availability, and the clearinghouse aggregates monitor-
ing information from devices and monitors overall usage by
experimenters.

Above, we used principles P1 and P2 to justify the set of
Tsumiki components. An application of P1 and P2 on a dif-
ferent set of capabilities may derive different components.
We will show in Sections 5, 6, 7, and 9 that Tsumiki’s set

of components is effective in practice, with several groups
besides the authors of this paper using Tsumiki to build
a variety of testbeds. We also consider other testbeds and
how they compare/contrast with Tsumiki in Section 11.
Specifically, Table 11 maps 20 testbeds from prior work into
the Tsumiki model.

4.2 Tsumiki interfaces
In addition to Tsumiki components, its interfaces also play
a crucial role. We now overview Tsumiki’s interfaces with a
focus on how principles P3 and P4 influenced their design.

At first glance, principle P3 may seem incompatible with
Tsumiki’s goal of supporting a variety of testbeds: how does
one allow a diversity of realizations, when the interfaces
are non-extensible? Our design reconciles this discrepancy
through extensive use of opaque parameters (Section 4.2.1).
This same philosophy was used for the opaque rspec field
in the GENI AM API. However, we apply it more exten-
sively to the full range of interfaces, such as uploading and
downloading files, running experiments, etc. Supporting a
diversity of component realizations is also directly aided
by P4, which mandates that human-visible interface must
be flexible (Section 4.2.2). Figure 1 illustrates how Tsumiki
components communicate using these interfaces.

Several other efforts, notably GENI [4], have proposed
common APIs for networked testbeds. However, this prior
work targets federation and not making it easier to develop
new testbeds. For example, projects like Emulab, ORBIT,
and PlanetLab, that are part of GENI, consist almost entirely
of disjointed code bases. We further detail prior work in this
space in our related work (Section 11).

4.2.1 Non-extensible inter-component interfaces (P3)
The use of opaque parameter values is key in designing
interfaces that are non-extensible, yet able to support a
variety of testbeds. This means many Tsumiki components
receive or pass information through an interface that is
opaque to them. That is, the component often does not
interpret the data, or interprets just enough of it to perform
a limited set of operations.

Another important concept in Tsumiki is the use of
different keys. Every sandbox in Tsumiki has two kinds
of keys, which are provided to the installer builder and
controlled by the resource manager. One is a set of user
keys and one is an admin key. A user key grants the key
holder, typically an experimenter, access to run code in a
sandbox. The admin key grants the key holder, usually
the clearinghouse, the privilege to perform actions, such
as changing the set of user keys, and allocating resources
between the sandboxes on a device.

Below we outline the inter-component interfaces, and
illustrate the usage of opaque parameter values, with re-
source allocation serving as a running example.

Installer builder interface. The device manager, re-
source manager, and sandbox are packaged together into an
installer by the installer builder. This installer is customized
to include the appropriate user and admin keys.2 New
custom installer builder components can be set up if a group

2. As an example, here is an installer created by the installer builder in the
Seattle testbed: https://seattleclearinghouse.poly.edu/download/flibble/

https://seattleclearinghouse.poly.edu/download/flibble/
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TABLE 2: Installer builder calls.
Installer builder call Function Interface to other component(s)
build installers
(sandboxes,user data)

Builds an installer for all platforms the installer builder
supports, using the given sandboxes and user information.

Often used by clearinghouse’s request installer() call (de-
scribed later) to build a new installer for a specific request.

get urls(build id)
Returns a set of URLs from which installers for the given
build id may be downloaded.

Often used by clearinghouse’s request installer() call to gen-
erate a URL for the newly built installer.

wishes to utilize different versions of the components, such
as a unique sandbox.

The installer builder calls provide interfaces to allow,
mostly the clearinghouse, to (1) package device software
into an installer (with configuration information that will
be discussed in a moment), and (2) provide this installer
to a device owner who wishes to download and install
it. The installer builder prepares an installer based on a
device profile (e.g., an Android tablet) and configures the
installer file (e.g., a .tar.gz) with public keys, and with
a designated percentage of resources from the device that
each key holder should be granted. The meaning of the keys
and percentages is opaque to the installer builder: a party
(often the clearinghouse) provides this as a text file that the
installer builder merely adds at a pre-specified location on
the device, which will later be used by the device manager.
The installer builder calls are shown in Table 2.

Remote resource manager interface. A device may be
shared between experimenters, and also between several
testbeds. However, the testbed providers may not share
explicit trust between each other. To facilitate shared control
of devices across experimenters and testbeds, Tsumiki uses
the resource manager to mediate various types of access to
the sandboxes on a device. The resource manager exposes
three categories of calls to the clearinghouse and experiment
manager: (1) calls available only to admins (typically the
clearinghouse), (2) calls available to admins and users (clear-
inghouse and experimenters), and (3) public calls. These
calls are grouped by the admin or user permission [29].
Table 3 overviews all of the calls, grouped by category.

(1) Calls available only to admins. The first category
includes calls to change admin/user information, and calls
to split/join sandboxes. The calls for changing admin/user
information, which we call access control operations (the
first three calls in Table 3), let the admin set the keys
that are allowed to perform admin and user calls to the
resource manager. The calls for splitting/joining sandboxes
(the fourth and fifth calls in the table) are achieved through
controlling the allocation of resources on the device. Both
kinds of calls provide interfaces to the clearinghouse, as
shown in the table, so that the clearinghouse can make
calls to the resource manager that ultimately controls the
allocation of resources on the device among the sandboxes.

(2) Calls available to admins and users. This class
of resource manager calls manipulates the experimenter
program and state in a sandbox. It provides interfaces to
both the clearinghouse (a typical admin) and experiment
manager (a typical user). For each sandbox on the device
the resource manager maintains a state machine, as shown

Fresh

Started

Terminated

Stopped

Stale

[Program exits]

StopSandbox()StartSandbox()

StartSandbox()

[Timeout]
ResetSandbox()

StartSandbox()

ResetSandbox()

ResetSandbox()

Fig. 2: The sandbox state machine maintained by the resource
manager. StartSandbox, StopSandbox, and ResetSandbox are
resource manager calls. [Program exits] and [Timeout] are
sandbox events. Dashed arrows indicate an implicit event in
which the sandbox recovers after a timeout.

in Figure 2.3 It regularly checks the status of a sandbox and
updates the corresponding state machine.

In addition to controlling the experimenter’s program,
the resource manager can use calls to manipulate the file
system in the sandbox and to retrieve the sandbox console
log. These calls can be used by an experiment manager,
e.g., when it calls upload filename, download filename,
show files, show log, etc. The complete list of calls with
arguments are listed in the middle section of Table 3.

(3) Public calls. These calls allow anyone to inspect
the status of a sandbox and to determine the resources
associated with it. These calls are listed at the bottom of
Table 3. They are usually used by the clearinghouse or an
experiment manager.

Device manager to resource manager interface. The
device manager lets the device owner control the resource
manager and the sandboxes. The device manager can stop
or start these components, control the ports and resources
(e.g., to limit the percent of the CPU that testbed code is
allowed to use) used by these components, and retrieve
updates from the installer builder. The device manager
creates the initial resource allocation to partition the re-
sources between the keys (i.e., the admin or users who hold
these keys) using the percentages listed in the installer. The
percentage values are converted into resource quotas, based
on the capabilities of the hosting machine [30]. However, to
the device manager, the keys themselves are opaque values.
The device manager calls are shown in Table 4.

Sandbox to resource manager interface. This interface
allows the resource manager to control sandboxes, directed
by commands received from a remote experiment man-
ager. The sandbox contains and executes experimenter code
under the direction of the resource manager. The default

3. After an installation, the sandbox is initialized into the Fresh state. The
StartSandbox() resource manager call changes its state to Started; when an
experimenter’s program exits, the sandbox moves into Terminated state, and so
on. If the sandbox has not recently updated its state (e.g., due to load from other
processes on the system), then the resource manager considers the sandbox state
to be Stale. Finally, the sandbox can be reset from any state back to Fresh through
the ResetSandbox() resource manager call.
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TABLE 3: Resource manager calls.
(1) Calls available to admins only

Resource manager call Function Exemplary use by other component(s)
ChangeAdmin(sandbox,
newpublickey)

The current admin of this sandbox sets a new public key for another
admin, and resets admin information string (see below).

Clearinghouse (in check new install daemon()) sets a new
unique key.

ChangeUsers(sandbox,
listofpublickeys)

Admin of this sandbox adds or removes experimenters that can run
experiments in the sandbox.

Clearinghouse (in acquire resources(auth,rspec) and
release resources(auth,list of handles)) sets experi-
menter’s public key on acquired sandboxes.

ChangeAdminInfo(
sandbox,info string)

Sets the admin’s information string (which contains opaque data about
the sandbox defined by the admin) to a specific value.

Clearinghouse (in check new install daemon()) puts spe-
cial label in info string to track a sandbox.

SplitSandbox(sandbox,
resourcedata)

Splits the resources in a sandbox into two, resourcedata determines the
amount of resources to split off. The admin key is copied from the existing
sandbox, sandbox’s filesystems and logs are newly created.

Clearinghouse (in check new install daemon()) divides
resources between experimenters on new installations.

JoinSandboxes(
sandbox1,sandbox2)

Merges the resources of two sandboxes (on the same device, from the
same admin) into one. Sandbox resources are combined. The file system
and log are reset.

Clearinghouse (in check new install daemon()) collects
and re-combines expired or freed resources.

(2) Calls available to admins and users
StartSandbox(sandbox,
platform,args)

Begins running a sandbox on a given programming platform (e.g. Repy
(Table 6), Docker (§ 6)) with a set of arguments.

Experiment manager starts a Repy experiment by calling run
program [args].

StopSandbox(sandbox) Stops the execution of a sandbox. Experiment manager performs stop on sandbox.

ResetSandbox(sandbox) Stops running sandbox, removes sandbox file system, and resets log.
Experiment manager resets an experiment. Clearinghouse (in
release resources(auth,list of handles)) resets sand-
box when expired or released by experimenter

AddFileToSandbox(
sandbox,filename,
filedata)

Creates (or overwrites if it exists) a file called filename in the sandbox
with contents filedata. Fails if file system is too small. Experiment manager performs upload filename.

RetrieveFileFromSandbox
(sandbox,filename)

Downloads a file named filename from the sandbox to the experimenter’s
local machine. Experiment manager performs download filename.

DeleteFileInSandbox
(sandbox,filename)

Deletes a file called filename from the sandbox. Experiment manager performs delete filename.

ListFilesInSandbox(
sandbox)

Displays all the files in the sandbox. Experiment manager performs show files.

ReadSandboxLog(
sandbox)

Returns the sandbox’s console log (stdout and stderr). Experiment manager performs show log.

(3) Public calls

GetSandboxStatus()
Returns the sandbox name, admin key, status, user key(s), and admin
information for all sandboxes on a device.

Experiment manager performs browse and list. Clearing-
house (in check online sandboxes daemon()) queries the
status of a sandbox.

GetSandboxResources
(sandboxname)

Determines the resources associated with a sandbox. Clearinghouse (in check new install daemon()) registers
new installs. Experiment manager performs show resources.

TABLE 4: Device manager calls.
Device manager call Function

StopResourceManager()
Stops the resource manager, particularly when an
update is available.

StartResourceManager()

Used during installation to benchmark the system
resources. This step is performed once, and generates
a resource file to be used by resource manager’s
GetSandboxResources() call.

AutoUpdate()

Runs in the background, sleeps between 30 and 60
minutes, and checks with the installer builder for
updates. If available, downloads the update for the
installer, and replaces the older version.

sandbox and resource manager interface has just four calls:
the resource manager can start and stop the sandbox,
retrieve the status of the sandbox by calling status (the
resulting status can be Fresh, Started, Terminated, Stopped,
or Stale as in Figure 2), and retrieve the log from the
sandbox (getlog). The sandbox enforces the resource quotas
it receives from the resource manager [30].

Note that the meaning of resource quotas is opaque to
the resource manager. It simply performs addition and sub-
traction to divide the resource quotas between sandboxes,
as instructed by the admin controlling those resources. The
sandbox enforces the resource quota in experimenter code.

Lookup service interface. Like traditional DHT services,
the lookup service has a simple get/put interface to retrieve
values associated with keys, and to associate keys with
values, respectively. This interface is used by the resource
manager to advertise device availability, while the clear-
inghouse and the experiment manager use this interface to
locate devices in the testbed. This is especially important for
mobile devices, which frequently change their IP address.

TABLE 5: Lookup service calls.
Lookup service call Interface to other component(s)

put(key,value)
Used by a resource manager as put(admin pubkey,ip:
port), and put(user pubkey,ip:port) for admins and
users.

value=get(key)

Used by clearinghouse’s check new install daemon()
and check online sandboxes daemon(), which call ip:
port=get(user pubkey) to look for newly-installed and
online sandboxes. This call is also used by the experiment
manager’s browse command to locate available devices
associated with the experimenter’s key.

The lookup service interface to the other components (e.g.,
resource manager, clearinghouse, and experiment manager)
operates as in Table 5.

For increased fault tolerance and availability, Tsumiki
supports seven distinct realizations of the lookup ser-
vice. These range from distributed hash tables, such as
OpenDHT [31], to centralized variants that support TCP
and UDP protocols, NAT traversal, and other features. The
installer builder bundles software that indicates the lookup
services to be used by devices participating in the testbed.

Over our eight years of experience, we have made just
one change to our inter-component interfaces. We changed
the resource manager call that instantiates a sandbox to in-
clude an argument specifying the sandbox type. This change
was necessary because we did not foresee that it may be
desirable for a resource manager to allow an experimenter
to start different types of sandboxes on the same device.

4.2.2 Flexible human-visible interfaces (P4)
Principles P3 and P4 allow Tsumiki to strike a balance
between interoperability and the over-prescription of com-
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TABLE 6: External Repy sandbox interface.

File system Threading
openfile file.close createlock
file.readat file.writeat lock.acquire lock.release
listfiles createthread getthreadname
removefile sleep

Network Miscellaneous
gethostbyname getmyip log
openconnection getruntime
listenforconnection randombytes
tcpserversocket.getconnection exitall
sendmessage listenformessage createvirtualnamespace
udpserversocket.getmessage virtualnamespace.evaluate
socket.send socket.recv getresources
socket.close

TABLE 7: Commands for the default experiment manager
in Tsumiki (seash) and the corresponding resource manager
calls. The experiment manager commands are issued by an
experimenter from his local host.

Experiment
manager
command

Function Invoked resource manager
call(s)

browse
Finds sandboxes available to
the experimenter using the
lookup service

GetSandboxResources,
GetSandboxStatus

list
Prints sandbox status
(Fresh, Started, Terminated,
Stopped, Stale).

GetSandboxStatus

upload
filename

Uploads file. AddFileToSandbox

download
filename

Downloads file. RetrieveFileFromSandbox

show files Lists all files. ListFilesInSandbox
show log Prints console log. ReadSandboxLog
start
program-name
[args]

Starts running the program
(with optional arguments). StartSandbox

stop Stops the running program. StopSandbox
reset Resets sandboxes. ResetSandbox

ponent behavior. In this section we present a broad view
of some of the implications of P4. We illustrate our point
through examples of alternatives of all the human-visible
interfaces in Tsumiki.

Sandbox interface (human-visible). The purpose of the
sandbox is to contain and securely execute experiment
code. The sandbox exposes an API to experiment programs.
Through this interface, an experimenter can access resources
on a remote device. There are a variety of sandbox real-
izations, including a Google Native Client-based sandbox,
and a Restricted Python (Repy) sandbox that executes a
subset of the Python language [32]. These realizations vary
in such details as whether they execute binaries or code in a
specific programming language. The Repy sandbox, widely
used in Tsumiki realizations, provides a set of system calls
available to experiment code, as listed in Table 6. A detailed
description of these calls can be found online [33]. Another
type of sandbox based on Docker is described in Section 6.

Experiment manager interface. An individual experi-
menter can use an experiment manager locally to control an
experiment deployed on remote devices. However, testbed
users often have different use cases, requiring different ex-
periment manager realizations. Existing realizations include
interfaces to accommodate automated deployment of long-
running experiments, fast deployments through a parallel
shell interface, and a GUI-based interface.

The most widely used tool is an interactive shell called
seash. Using seash, an experimenter can communicate with

TABLE 8: Clearinghouse calls.

Clearinghouse call Function
acquire
resources(auth,
resource
specification)†

Given a resource specification, this call acquires
resources for the experimenter, identified by an au-
thentication structure auth. This call can also be used
by an experiment manager to acquire sandboxes.

acquire specific
sandboxes(auth,
sandboxhandle list)

Tries to acquire sandboxes of specific names on spe-
cific nodes (subject to their availability) as listed in
the sandboxhandle list.

release
resources(auth,list
of handles)

Releases resources previously acquired by the exper-
imenter. The list of handles indicates the sand-
boxes to be released. This call can also be used by an
experiment manager to release sandboxes.

renew
resources(auth,list
of handles)

Renews resources previously acquired by the exper-
imenter. The list of handles indicates the sand-
boxes to be renewed. By default, sandboxes are re-
newed for seven days.

get resource
info(auth)

Returns a list of resources currently acquired by the
experimenter.

request installer()

The API equivalent of a device owner clicking a
link to request an installer for his/her device. When
receiving this request, the clearinghouse requests the
installer builder to include the clearinghouse’s keys
within the installer, and returns the generated URL
for download.

check new install
daemon()

Looks for new installs via the lookup service’s
get() call, then uses the resource manager’s
ResetSandbox(), SplitSandbox(), JoinSandboxes()
calls on these new installs, to set up the resources
to be ready to allocate to experimenters.

check online
sandboxes daemon()

Periodically looks for sandboxes that are online,
via the get() call in the lookup service and the
GetSandboxStatus() call in the resource manager on
the remote device, to check if the device is con-
tactable, as non-transitive connectivity or other net-
work errors can cause a device to go down or offline.

†There are four types of resource specification: LAN (sandbox on nodes with the same starting three octets

of the IP address), WAN (sandbox on nodes with different starting three octets of the IP address), NAT

(sandbox on nodes that communicate through a NAT forwarder), and random (a combination of the above).

remote devices, upload and run experiments, collect ex-
periment results, and do all of these in parallel. Note that
one can group a number of sandboxes together and issue
commands to the group. A set of common experiment man-
ager commands (implemented by seash) and the associated
(remote) resource manager calls are listed in Table 7. As
shown in the table, seash supports the commands that
handle both local state and experiment setup, and the actual
interactions with sandboxes.

Device manager interface. The device manager enables
an owner to control the Tsumiki software running on their
devices. Its external interface can vary significantly. For ex-
ample, the Seattle testbed’s device manager allows a device
owner to control the available network interfaces, whereas
a device manager in Sensibility Testbed controls whether
sensors, like GPS and accelerometer, are available to exper-
imenters. Furthermore, these interfaces are implemented as
a command line console and a mobile app, respectively.

Clearinghouse interface. Experimenters may want to
share a pool of devices. A natural way to coordinate this
sharing is through a clearinghouse that allocates resources
according to a designated policy. While a clearinghouse is
not mandatory, it helps a testbed to scale as the number of
devices increases.

Typically experimenters interact with the clearinghouse
through a website, which allows experimenters to reg-
ister for an account to gain access to a pool of device
sandboxes. For example, the Social Compute Cloud [34],
[35] customized the clearinghouse interface to show device
resources in the experimenter’s social network. Sensibil-
ity Testbed uses a custom clearinghouse interface through
which an experimenter submits her IRB policies for sensor
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Alice’s deviceLookup service

Alice’s IP:port

Clearinghouse
download installer

create 
installer installer

[node-join-pubkey] benchmark 
device system

advertise node
[node-join-pubkey]lookup nodes

[node-join-pubkey]

Fig. 3: Graphic depiction of how Alice contributes a device to
the testbed.

data access. Using this interface, experimenters indicate
sensor types, and required sensor access policies [16].

Clearinghouse human-visible interfaces can vary signif-
icantly across testbeds. For example, in the Seattle clearing-
house, every call is accessible through the backend of an
authenticated web page (listed in Table 8). The interfaces in
the top half of the table are called on behalf of an experi-
menter or a device owner, upon their request. Additionally,
the clearinghouse runs two daemons periodically in the
background, as shown in the bottom half of Table 8, to check
for sandboxes that are online.

4.2.3 Overview through testbed scenarios
We introduced the inter-component interface (Section 4.2.1)
and human-visible interface (Section 4.2.2). We now walk
through two testbed scenarios to show how different com-
ponents in Tsumiki interact, and how trust boundaries (from
principle P1) are realized in practice.

We first describe the scenario in which Alice, a device
owner, contributes her device to the testbed. Then, we
describe a scenario in which Bob, an experimenter, runs his
experiment on a Tsumiki-based testbed.

Scenario 1: Alice contributes a device to the testbed
(Figure 3). Device installation. When Alice decides to con-
tribute her device to a testbed, she downloads a testbed-
specific installer through the clearinghouse website. The
clearinghouse creates this installer through the installer
builder with the build installers(node join pubkey)
call. The node join pubkey is unique to the testbed and
is used by new devices to advertise themselves through the
lookup service. The installer builder packages this key with
the device manager, resource manager, and sandbox into
a set of platform-specific installers. During installation, the
device manager on Alice’s device benchmarks the device
system, and saves the result to use for later configuration.

Device discovery. Since the installer included node join
pubkey, the resource manager on Alice’s device has this
key in a user sandbox after installation. When the resource
manager starts, it advertises the IP:port of the sandboxes
on Alice’s device, to the lookup service by calling put(node
join pubkey,IP:port). The clearinghouse periodically calls
get(node join pubkey) on the lookup service to discover
new devices installed with the testbed-specific installer.
After discovering Alice’s device, the clearinghouse contacts
the resource manager on her device, and instructs the re-
source manager to configure the sandboxes according to the
benchmark results.

Scenario 2: Bob runs an experiment (Figure 4). This
scenario includes several steps. First, Bob needs to request

Bob’s experiment 
manager Clearinghouse Lookup service Alice’s device

register for account
 

[Bob’s key pair]
advertise node

[node-ready-pubkey]

request a sandbox

lookup nodes
[node-ready-pubkey]

Alice’s IP:port

add Bob as user to sandbox
[bob-pubkey]

append IP:port 

[bob-pubkey]

(a) Bob requests resources on a testbed device.

Bob’s experiment 
manager Alice’s device

load keys 

[Bob’s key pair]

run helloworld

list, show log, …

Lookup service

lookup nodes
[bob-pubkey]

Alice’s IP:port

(b) Bob runs code in a device sandbox.

Fig. 4: Diagram shows how Bob runs an experiment.

resources from the device(s) in a testbed, before he can run
code in a device sandbox. When the experiment is finished,
Bob can then release the acquired resources.

Experimenter requests resources. When Bob registers for an
account with the clearinghouse, he provides a public key,
bob pubkey, such that Bob has the corresponding private
key bob privkey. After finding a suitable sandbox upon
Bob’s request, e.g., a sandbox on Alice’s device (through
the device discovery step in Scenario 1), the clearinghouse
contacts the resource manager on her device and instructs
the resource manager to change the user of this sandbox
to Bob, by calling ChangeUsers(sandbox,bob pubkey). The
resource manager then issues a put(bob pubkey,IP:port)
call in the lookup service, which allows Bob to look up the
sandbox he requested. This scenario is shown in Figure 4(a).

Experimenter runs code. Bob then uses the experiment
manager to control the sandbox on Alice’s device from his
local machine. Bob loads his public and private keys into
the experiment manager, which then uses Bob’s public key
to look up the previously acquired sandbox in the lookup
service with get(bob pubkey). This returns the IP:port of
the resource manager on Alice’s device. Bob can now make
calls to the resource manager (through experiment manager
commands, as shown in Table 7) to control the sandbox on
Alice’s device. This scenario is shown in Figure 4(b).

Experimenter releases the acquired resources. When Bob is
finished with his experiment, he may release his sandbox
explicitly through the clearinghouse. To prevent experi-
menters from holding onto unused resources, the clear-
inghouse may also implement a policy to expire acquired
sandboxes after a timeout (i.e., resources must be period-
ically renewed to prevent expiration). In both cases the
clearinghouse issues a ChangeUsers() call on the resource
manager on Alice’s device to remove bob pubkey from the
sandbox, and resets the sandbox with ResetSandbox().
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4.3 Customizing testbeds with policies

Tsumiki supports further customization of testbeds, such
that even two testbeds that use the same component real-
izations do not need to behave identically. This is achieved
through Tsumiki policies that change the behavior of a
component without requiring a new component realization.
Tsumiki enforces policies in three components: the clearing-
house, resource manager, and sandbox.

4.3.1 Clearinghouse Policies
A sandbox admin, typically the clearinghouse, can affect
the resource allocation among experimenters. The sandbox
admin can also use the appropriate API and restrict avail-
able resources for the sandbox. We briefly describe four
clearinghouse policies that we have implemented:

Incentivizing participation. Testbed providers can im-
plement clearinghouse policies to incentivize device owners
to participate in the testbed. For example, Seattle (Sec-
tion 9.1) uses a policy where device owners donate resources
on their devices in exchange for resources on other devices.
For each device that runs Seattle, the owner gets access to
sandboxes on 10 other devices on the Seattle testbed.

Restricting the experimenters who obtain access to
the clearinghouse. Sensibility Testbed (Section 5) restricts
logins to experimenters by requiring IRB approval for their
experiment. Social Compute Cloud (Section 7), which in-
tegrates with social network platforms such as Facebook,
only allows logins from users with Facebook accounts, and
includes policies to match experimenters with resources
provided by people in their social network. By contrast, the
Seattle testbed clearinghouse allows anyone to register for
an account and login.

Resource expiration. Experimenters may want to hold
onto resources that they no longer use. A simple policy to
discourage this is to have resources expire after a certain
time period (i.e., the experimenter must re-acquire or renew
the resources every so often).

Resource allocation between sandboxes. The default
policy in the clearinghouse of Tsumiki is to partition de-
vice resources equally between all sandboxes on a device.
However, this policy could be changed. For example, a user
can choose to allocate fewer resources to sandboxes that
host long-running experiments, or grant more resources to
sandboxes controlled by a specific set of experimenters.

4.3.2 Resource Manager Policies
When using the default Tsumiki sandbox, at install time
device owners can set policies with the device manager and
choose the amount of resources (CPU, memory, network
bandwidth, etc.) they would allow testbed experimenters
to access. The device manager then instructs the resource
manager to apply these policies to control the sandboxes. We
have implemented three kinds of resource manager policies,
and also support others:

Fraction of device resources dedicated to the testbed.
The default device manager in Tsumiki benchmarks the
device resources during installation and uses the results to
configure the fraction of resources available to all sandboxes
running on the device. The default policy is to use 10%
of device resources. Another policy is to query the device

owner for the fraction of their device resources that they
want to dedicate to the testbed. This information is provided
to the resource manager, which applies these policies to
control the sandboxes. Sandboxes that try to exceed the set
amount would be restricted [30].

Supporting multiple providers/testbeds. By default, a
device is associated with one testbed provider. However,
Tsumiki’s mechanism can support the case where multiple
providers mediate access to the same set of devices. Using
the testbed scenario in Section 4.2.3, Alice’s device would
advertise itself using different testbed-specific keys, namely,
node join keyA and node join keyB, to indicate that Al-
ice wants her device to join both TestbedA and TestbedB.

Alternative resource scheduling models and sandbox
types. The Tsumiki resource manager has but mild restric-
tions on the minimal length of resource allocation time slices
it supports. A properly modified Clearinghouse component
can thus implement batch-style time-sliced resource allo-
cation: it contacts the resource manager every time a new
batch should be activated. This enables per-round exclusive
resource access for every batch. Hybrid parallel/exclusive
schedules are supported as well. Furthermore, sandbox
types different from Tsumiki’s default one may be used in a
Tsumiki-based testbed, e.g. Docker in Section 6. It is then up
to the implementor to interpret and make use of Tsumiki’s
resource manager policies.

4.3.3 Sandbox Policies
A sandbox applies the policies set by the device owner,
clearinghouse, or resource manager. As an example, a device
owner may wish to have experiment traffic routed over the
WiFi (wlan0) interface. The resource manager may specify
the amount of RAM that an experimenter’s sandbox may
use, and a clearinghouse may wish to restrict UDP and TCP
communications to prevent access to low numbered ports
on remote devices. The device owner policies always over-
ride those of the clearinghouse and the resource manager.
We have implemented two kinds of sandbox policies:

Containing sandbox traffic. Policies of this kind limit
the address and port ranges on which sandboxes can send
and receive network traffic. For example, this can be used
to whitelist some Tsumiki hosts that actively want to partic-
ipate in an experiment, and to blacklist (and thus exempt)
other Tsumiki hosts. In a practical deployment, this could
mean that a device owner blacklists their LAN, while an ex-
perimenter can partition their set of sandboxes into subsets
with limited inter-connectivity.

Preserving end-user privacy through blurring. Sandbox
implementations may expose potentially privacy-intrusive
functions, such as reading out smartphone sensors that
disclose the current physical location of the device (and thus
its owner). A privacy policy changes the behavior of a call
such that it can both reduce the precision of the return value,
and the frequency at which new values are returned (thus
blurring the data). For instance, the geolocation sensor could
be blurred to return one value per hour, at an accuracy level
corresponding only to the city the device is in, as opposed to
a particular location within that city [36], [37]. To implement
this, sandbox calls are transparently wrapped so that their
capabilities are restricted [32], while the call signatures and
semantics are unchanged.
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5 SENSIBILITY: A MOBILE DEVICES TESTBED

From this section on, we consider how Tsumiki’s design
meets the goals in Section 2. To evaluate the utility and di-
versity of testbeds one can build, we first introduce Sensibil-
ity Testbed, a testbed constructed from Tsumiki components
that runs on Android-based end-user devices.

5.1 Building Sensibility with Tsumiki
The Sensibility Testbed runs on Android devices and uses
custom Tsumiki device manager and clearinghouse compo-
nents. Sensibility extends the programming interface of the
default Tsumiki sandbox, which includes access to only the
basic file system, network, threading, etc. (Table 6). The new
sandbox allows experimenter’s code to access sensor infor-
mation without risking the security of end-user devices.

Reused and customized components. The Sensibility
Testbed device software is customized and packaged as an
Android application package (APK) on the Google Play
store. This APK contains a native Android portion, a cus-
tomized device manager, and an extended Tsumiki sandbox.
When the app is started by a device owner, the native code
initializes the sandbox, and starts the communication with
the Sensibility Testbed clearinghouse. The native code also
implements methods to access sensors and pass the sensor
information to a sandboxed experiment program.

Reused and customized interfaces. The Tsumiki inter-
component interfaces (Section 4.2.1) are not changed (from
principle P3 in Section 3). The human-visible interfaces
are customized as follows. First, Tsumiki’s Python-based
sandbox programming interface is augmented with a sensor
API. Experimenters can use calls like get location, and
get accelerometer and dozens of others [38] in their code.
Second, as some experiments involve human subjects, the
device manager interface is modified to request informed
consent from device owners before the app can be installed,
and to allow owners to opt out of any experiment. Finally,
the clearinghouse is customized to enforce privacy policies
when an experiment needs to access sensitive data. There-
fore, an experimenter can conduct experiments without
compromising ethical standards set by her institution.

Privacy policies. The customized clearinghouse plays an
intermediate role between experimenters and device own-
ers. When an experimenter registers at the clearinghouse,
she needs to provide the IRB policies set by her institution.
The clearinghouse translates and codifies each policy, often
using pre-programmed policy code. It then instructs the
sandboxes on remote devices to enforce these policies on
experiment code. For example, to protect device owner’s
location privacy, a policy can blur the location coordinates so
that the experimenter’s code can observe only the device’s
city. Details of the implementation can be found in [16], [39].

Effort in constructing Sensibility. Constructing Sensi-
bility Testbed involved three major tasks: building a custom
device manager, adapting the default Tsumiki sandbox to
provide sensor access, and constructing a clearinghouse. We
estimate that it took us a week of effort to build the device
manager software. Most of this time was spent on refining
the user interface. It took us several weeks to add the sensor
calls to the sandbox and we spent approximately a month
implementing a clearinghouse that obtains privacy policies

0 10 20 30 40−10

−5

0

5

10

15

20

25

Time (sec)

Ac
ce

le
ra

tio
n 

(m
/s

2 )

 

 

X
Y
Z

(a) Raw data.

0 10 20 30 40

0

5

10

15

20

25

Time (sec)
 

 

Magnitude
Movement hint (binary)

(b) Processed data.
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from experimenters. The most time consuming process was
waiting for IRB approval (#15-10751) from NYU.

5.2 Using Sensibility to replicate a study
To investigate whether testbeds constructed with Tsumiki
can be used for non-trivial experiments, we used Sensi-
bility Testbed and evaluate a previously published sensor-
augmented WiFi protocol [17]. It is known that a WiFi device
is much more likely to experience packet loss when the
device is in motion. Therefore, the authors of [17] propose
to use device sensors to detect if a device is moving and
send explicit mobility notifications to the WiFi sender, so the
sender can reduce data loss while the device is in motion.

The first algorithm, RapidSample, is designed for mo-
bile wireless environments; the second, SampleRate [40], is
designed for static wireless environments. Finally, the hint-
aware adaptation algorithm switches between RapidSample
and SampleRate when given a mobility hint from a smart-
phone accelerometer.4

We used an Android Nexus 4 device as the receiver and
a laptop running OS X 10.9.4 as the sender. The laptop sent
a stream of 1,000-byte back-to-back UDP packets. The An-
droid device acknowledged each packet and piggy-backed
movement detection results on acknowledgment UDP pack-
ets. Both the laptop and the phone were connected to the
same campus WiFi access point. In [17], the smartphone
receiver was put in tethering mode to communicate with
the laptop. In our experiment, the laptop and smartphone
communicate via an intermediate WiFi router. The authors
of [17] used the Click module for Linux, whereas we imple-
mented the algorithms in the Sensibility Testbed’s sandbox.
Due to these factors, the overall throughput achieved in [17]
was different from our results.

Movement detection. The idea in [17] depends on ac-
curate movement detection. Figure 5 shows the movement

4. RapidSample algorithm (mobile). If a packet fails to get an acknowledgment,
RapidSample switches to a lower sending rate and records the time of the failure.
After achieving success at the target rate for a short period of time (30 ms in our
implementation), the sender samples a higher rate. If the higher rate has not failed
in the recent past (50 ms in our case), the sender switches to that rate.

SampleRate algorithm (stationary). SampleRate changes its sending rate when it
experiences four successive failures. The rate it switches to is selected from a set of
rates that are periodically sampled. Over the course of 10 seconds, if the sampled
rate exhibits better performance (lower packet loss and lower transmission time)
than the current rate, SampleRate switches to this sampled rate.

Hint-aware adaptation algorithm (hybrid). This algorithm uses RapidSample for
data transmission when the receiver is mobile, but SampleRate when the receiver
is stationary. It relies on movement hints generated by the movement detection
algorithm that are piggy-backed on acknowledgement packets to the sender,
that are interpreted at the sender as a signal to switch between mobile and
stationary algorithms. At the receiver, we use a smartphone accelerometer to
detect movement.
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detection results for our implementation; it corresponds to
Figures 4 and 5 in [17]. Figure 5(a) shows the raw data
from the three accelerometer axes. The data in Figure 5(b) is
generated by calculating the acceleration magnitude along
the three axes (including gravity). Figure 5(b) also shows
the detection thresholds as dotted lines when the device is
considered stationary (i.e., acceleration is between an upper
and lower threshold). An acceleration or deceleration value
outside these thresholds is considered a movement. Using
the Sensibility Testbed’s sandbox, an undergraduate biology
student implemented this algorithm in five hours.

Protocol performance. We ran three experiments to ob-
serve the performance of the three algorithms. In the static
environment, the laptop and smartphone were stationary on
an office desk. In the mobile environment, an experimenter
walked in a hallway at a constant speed in direct line of
sight to the WiFi access point. In the mixed static-mobile
environment, the experimenter walked along the same hall-
way and also stopped at predefined locations for predefined
time intervals. Our experiment results are shown in Figure 6,
which corresponds to Figure 13 in [17].

Figure 6(a) shows that when devices are static, Sam-
pleRate performs better than RapidSample. In a mobile
environment, as shown in Figure 6(b), both SampleRate
and RapidSample experience throughput degradation be-
cause of packet loss. However, RapidSample out-performs
SampleRate due to its fast response to high packet losses.
In Figure 6(c), the hint-aware protocol out-performs both
RapidSample and SampleRate. These results are consistent
with results in [17].

A mistake found through replication. The replication
experience with the Sensibility Testbed also led us to iden-
tify a mistake in the pseudo-code in Figure 7 in [17]. In
“ if (sample) then . . . else”, the “sample ← 0”
statement should appear in the if branch rather than in the
else branch. This problem was confirmed by the authors
(their Click implementation does not contain this bug). We
found this problem experimentally when we noticed that
RapidSample was unresponsive to packet loss.

6 DUCKY: DOCKER-BASED TESTBED

Tsumiki’s component-based design is intended to reduce
systems researchers’ efforts in developing new testbeds, and
to improve the compatibility of testbed components. In this
section we describe Ducky, an early-stage prototype testbed
that uses the Docker container [41] as the sandbox, and other
default Tsumiki components. Docker is a tool that packages
an application and its dependencies into a container that
can run on any Linux host. Docker is supported by major
commercial cloud providers. We expect that a testbed based
on Docker containers would be of interest to systems re-
searchers, and to our knowledge no such testbed exists.

Ducky uses Docker as the sandbox component and
makes minimal changes to the other default Tsumiki com-
ponents. As a proof-of-concept, Ducky provides evidence
that Tsumiki’s design enables researchers to build useful
testbeds that operate correctly with little effort. It took the
first author of this paper, who had never used Docker, three
hours of work to create Ducky. Furthermore, Ducky demon-
strates that externally developed components can be com-
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(b) Mobile case.
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(c) Mixed static-mobile case.

Fig. 6: Protocol throughput in three different scenarios.

TABLE 9: Lines of code changed in Tsumiki to build Ducky.

Component LOC
changed Reason for change

Sandbox 48 Integrate Docker containers with re-
source manager.

Resource
manager

2 Add Docker as a sandbox type; add
command line arguments.

Device manager 5 Install Docker package.
Experiment
manager

1 Make Docker a default sandbox type.
10 Support commands in containers.

Total 66

patible with default Tsumiki components using Tsumiki’s
inter-component interfaces.

6.1 Building Ducky with Tsumiki

Prior to the integration, we prepared a document detailing
Docker 1.0.1 commands and the most likely corresponding
Tsumiki calls. The first author then spent an uninterrupted
time period on the integration task. Table 9 overviews the
lines of code changed in each Tsumiki component during
this integration and the rationale for the change.

Reused and customized Tsumiki components. Most
changes affected the sandbox and resource manager im-
plementations for (1) setting up a new sandbox type, (2)
making the sandbox call Docker commands with appro-
priate arguments, and (3) changing the default logging
mechanism. The first author took three hours to build
Ducky, spending about an hour on each of the three tasks
above. No modifications to Tsumiki’s sandbox to resource
manager interface (Section 4.2.1) were required. Additional
minor changes were made in the device manager to install
packages needed to run Docker. The experiment manager
was extended to run code in the new Docker sandbox.

Reused and customized Tsumiki interfaces. Only one
part of the Tsumiki interface was changed: the resource
manager to Docker sandbox interface. This was changed to
allow the opaque command-line value to contain characters
commonly seen in shell commands, such as ’/’.
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TABLE 10: Ducky performance over 30 runs.

Time to execute a process Upload/download a file
One-time
latency

Base la-
tency

Sandbox
start time

Upload
speed

Download
speed

Med 5.4 sec 1.5 sec 3.4 ms 31.1 Mbps 70.8 Mbps
STD 0.48 sec 0.07 sec 0.78 ms 1.12 Mbps 10.7 Mbps

Alice

Bob

Charlie

Social 
Graph

Social cloud

Clearinghouse

Social Network 
Profiles

sandbox

sandbox

Resource 
Matching / 
Allocation

Distributed
Charlie’s

folder
sandbox

Fig. 7: A peer-to-peer storage use case of the Social Compute
Cloud. Charlie is friends with Alice and Bob on Facebook.
The testbed provides Charlie with a distributed folder that is
replicated to devices controlled by Alice and Bob.

Ducky is a basic proof of concept, which demonstrates
that a Docker-based testbed can be built using Tsumiki
components in a few hours. This fulfills our goals to reduce
the development time and effort in building testbeds, and
to support diverse testbeds. We estimate that it would take
the first author an additional two days of effort to make the
Ducky prototype complete, including advanced functional-
ity like updating the Docker software automatically.

6.2 Performance evaluation

A basic measure of testbed performance is the time that it
takes an experimenter to run a program, and to transfer a file
to/from the device. We evaluate these two tasks in Ducky.
We report results for a Ubuntu 14.04 machine on an Intel
2.4 GHz CPU, with 1GB of RAM. Both the experimenter
host and remote device are located on a machine at NYU.
Table 10 summarizes the results.

Executing a process. We benchmarked the time to ex-
ecute a single process in the Ducky sandbox. The one-time
latency (including NTP setup and loading libraries) is about
5.4 s. The base latency is the time to execute the process (the
ls command), including the handshake between the Ducky
sandbox and the resource manager, and takes around 1.5 s.
The time to start the sandbox is just 3.4 ms.

File transfer. We measured the time to upload and
download a 10 MB file to/from the Ducky sandbox, re-
sulting in bandwidths of 31.1 and 70.8 Mbps, respectively.
Overall, the measured performance is equivalent to that
of Seattle, a Tsumiki-based testbed that has been deployed
for eight years (Section 9.1). Ducky thus not only operates
correctly, but also has reasonable performance.

7 SOCIAL COMPUTE CLOUD

Thus far we have described testbeds based on Tsumiki that
we have developed. In this section we illustrate that Tsumiki
can be used by other researchers to develop real and useful
testbeds. We describe how researchers from the University
of Chicago and Karlsruhe Institute of Technology used

Tsumiki to develop the Social Compute Cloud testbed [34],
[35], [42].

Testbed context. Trust between people in a social net-
work inspired several researchers to develop the Social
Compute Cloud [34], [35], [42], which uses social networks
to locate computational and storage resources in one’s social
circle. Figure 7 illustrates a use case where Social Compute
Cloud provides a friend-to-friend storage service. In this
system, the burden of hosting data is transferred to peer
devices within one’s social network. We detail how Tsumiki
components were used to build Social Compute Cloud, and
then use this testbed to measure the availability of resources
within an individual’s social network.

Reused or customized Tsumiki components. The cus-
tom clearinghouse integrates with social networks and
provides socially-aware resource allocations. This includes
Facebook-based authentication, association between social
and Tsumiki identities, and the use of Facebook access
tokens to access a user’s social network and their sharing
preferences. The researchers also developed new human-
visible interfaces for users to define relationship-based
sharing preferences. The custom clearinghouse uses these
preferences and an external matching service to determine
resource consumer–provider mappings. Following resource
allocation, standard Tsumiki mechanisms are used.

Experiences with integration. The modifications took
about one month. The development effort focused on imple-
menting the social clearinghouse: accessing a user’s social
graph and sharing preferences using the Facebook Graph
API, a custom preference API, and caching of social graphs
and preferences to optimize performance. The researchers
also altered Tsumiki’s discovery process to retrieve socially
connected pairs’ resources, rather than using location-based
or random discovery methods. Finally, they extended the
clearinghouse allocation process to make remote service
calls to their existing preference matching service.

Resources in a social network. We evaluate Social Com-
pute Cloud via the deployment of a friend-to-friend backup
service. This service provides storage and computation re-
sources from one’s social network. We describe the results
from a five-day experiment deployed on Social Compute
Cloud.

17 participants installed the device software of Social
Compute Cloud on their personal devices: laptops, desk-
tops, and smartphones. We then deployed an experiment in
which each device sent a ping every 5 minutes to a server
located at the researcher’s university. From this, we deter-
mined continuous periods of availability for all devices: 3
missed pings, or 15 minutes of inactivity, denoted the end
of an availability period. The goal of the experiment was to
evaluate the availability of devices owned by people in one
of the authors’ university-based social circles on Facebook.

Figure 8(a) shows availability of data across all devices
as a CDF, excluding five desktops with uninterrupted avail-
ability. The median continuous availability period across the
devices was 2.5 hours. A friend-to-friend backup service can
use this information for selective file placement. Figure 8(b)
considers the device availability by hour, averaged over all
five days (using medians). For each hour between 10 AM
and 7 PM a median number of 10 devices was available.
This can be used for scheduling data replication between
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Fig. 8: Aggregated friend device availability

devices.
Both graphs in Figure 8 capture device activity due to

user mobility. Therefore, Social Compute Cloud is partic-
ularly useful for deployments that rely on social network
users’ activity, such as their mobility and connectivity pat-
terns.

8 EVALUATING TSUMIKI’S EASE-OF-USE

A key motivation behind Tsumiki is to make it easier for
researchers to build custom, context-sensitive testbeds. We
carried out an IRB-approved user study (#H14-01871) to
evaluate this. Users followed instructions to construct two
distinct network testbeds with Tsumiki and run experiments
on them.

User study methodology. The study was designed as
a one-on-one evaluation with each user. We followed an
observational study format. All details regarding how to
build the testbeds and run the experiments were detailed
in a document that the users had to follow. We did not
offer technical help and allowed the users to fail if our
instructions were unclear.

Each user took a pre-survey about their background
and experience in networked testbeds, and then completed
two tasks within the allotted time. Users first constructed a
testbed using 2-3 devices, and then used their testbed to run
an experiment. At the end of the study, we collected feed-
back with a follow-up survey and semi-structured interview
to understand users’ experience. The study took about two
hours per user. The study materials are available online [43].

We designed the study to test the hypothesis that, by
following simple instructions, a graduate student with little
experience would be able to build a network testbed and
subsequently use it for an experiment. We recruited four
MSc and three PhD graduate computer science students for
the study. We did not require prior knowledge of networked
testbeds. All users had at least six years of programming
experience, six were familiar with Linux or Unix, and five
had taken a networking or a distributed systems course.
Only two users were somewhat familiar with a networked
testbed, such as PlanetLab or Emulab.

User tasks. A user had to complete two tasks. We set a
hard time limit of 45 and 60 minutes for the two tasks.

Task 1. A user created new credentials and downloaded
Tsumiki components using an existing project’s installer
builder. The user then installed these components to con-
struct a testbed across three systems: a Linux desktop, a
Mac laptop, and an Android tablet. Following this, (s)he
deployed a provided experiment on this testbed. The ex-
periment showed the measured UDP inter-node latency, the

user-answered questions about the highest/lowest latency,
and any connectivity issues between the devices.

Task 2. The user extended the Repy sandbox’s network
API, which only supports TCP and UDP, to expose the
native ping command to sandboxed programs. We use
this task as a proxy for the kind of customization that a
researcher would perform to create a testbed to fit their re-
search purposes. After modifying the sandbox, users created
a custom installer containing this sandbox. This step makes
it possible to distribute and install the modified sandbox
on other systems. For this the user had to configure a web-
server to host the new installer. The user then downloaded
and installed the new testbed software on a Linux desktop
and a Mac laptop, and used it to test the native ping
command against various machines on the Internet.

User study results. All seven users completed task 1 and
six of them were able to complete task 2. The average com-
pletion time for task 1 was 30 minutes, and the maximum
time spent was 39 minutes. The average time to complete
task 2 was 36 minutes, with a maximum time of 53 minutes.
This suggests that it is easy to use Tsumiki to construct
a testbed, even by users who have no prior exposure to
networked testbeds. The user who failed to complete task 2
missed a step in our instructions.

Despite our small sample, we were able to derive useful
observations from the survey responses and interviews.
Feedback during the semi-structured interview revealed
that users would find the testbed useful in their own studies.
Below we provide several representative quotes from the
study participants.

Many of the users in the study commented on the
flexibility provided by Tsumiki’s extensibility:

It [Tsumiki] is component based and by including your component
you add it to the general framework . . . it’s lego-based. [U5]
I liked being able to specify which tools [like ping] can be invoked
in a sandbox very easily. [U4]

Users also noted features that they would find useful
in their research that Tsumiki currently lacks. We believe
that the existing components in Tsumiki can be extended to
handle such feature requests.

Being able to simulate routing infrastructure and routing delay
would be something that I would look for . . . especially pro-
grammably configuring delays between nodes. [U3]

When asked if they would use Tsumiki in their research,
the majority of users agreed that it would be a good choice,
particularly since they were now more familiar with it.

I feel comfortable with using Tsumiki right now, if I need [a testbed]
then I will try Tsumiki first. [U5]
The ability to spin up a private network in a distributed fashion
seems very handy. [U3]
I would probably consider Tsumiki [in my research] at least as an
initial choice [of a testbed]. [U3]

The results of this user study show that Tsumiki fulfills
our goal to reduce testbed development effort.

9 OTHER TESTBEDS BUILT WITH TSUMIKI

Tsumiki has been used to build testbeds besides the ones ex-
amined in this paper. We now overview two such testbeds:
Seattle, and Seattle On Access Router (SOAR).
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Fig. 9: Seattle node location derived by applying GeoIP to the
addresses that contact the software updater.

9.1 Seattle

Seattle [44] was released in 2009. Most of the first real-
izations of Tsumiki components were built and used in
this environment. The Seattle clearinghouse implements a
policy that allows an experimenter to use 10 sandboxes at a
time. To fuel adoption, experimenters can use 10 additional
sandboxes for every active installation that is linked to their
account. Researchers and educators have also used Seattle
without contributing resources by using the Tsumiki model
to run private testbeds.

Seattle serves updates to over 40K geographically dis-
tributed devices. Figure 9 shows that these devices are dis-
tributed world-wide, with China, India, Austria, Germany,
and the US each hosting more than 1K nodes. We ran reverse
DNS lookups to characterize these devices. Most did not
respond to reverse DNS lookups, or had names that indicate
a home node (77%). Many devices (5,847) are located on
university networks (14%), and 831 devices are associated
with other testbeds (2%). Of the total, 6,829 devices (17%)
report platform names indicative of mobile devices.

This device diversity and open access has allowed Seattle
to provide a diverse platform for research on end-user
devices [14], [18], [19], [20], [21], [22], [23]. Seattle has also
been used in over 60 classes, including classes on cloud com-
puting, security, operating systems, and networking [13],
[23], [45], [46], [47], [48]. Over its eight years of operation,
more than 4K researchers have created and used an account
on the Seattle clearinghouse.

9.2 SOAR

Home networks are difficult to measure and understand, as
devices are typically hidden behind a NAT, there is wire-
less interference between devices, and devices frequently
join and leave the network. The Seattle On Access Router
(SOAR) testbed seeks to provide an environment to measure
and understand home networks by providing users with
wireless routers. Researchers use these routers to take read-
ings on users’ home networks, similar to BISmark [5], [7].
Since a poorly controlled experiment can cripple a user’s
home Internet connection, this deployment, like BISmark,
faces many challenges, including convincing users to deploy
SOAR routers in their homes and keeping the routers online.

We integrated several Tsumiki components with SOAR.
The resulting testbed uses the unchanged versions of the
experiment manager and lookup services. SOAR also adopts
the existing resource manager, device manager, and sandbox
components with minor changes. The most notable change

was to reduce the disk space needed by removing extrane-
ous files (such as support for platforms other than OpenWrt,
the router operating system that SOAR runs on) to fit within
the 16 MB flash storage on the platform. The component
APIs did not change in any way. We also extended the
sandbox with additional measurement functionality that is
customized to the OpenWrt devices, such as the ability to
monitor raw traffic passing through the router or to gather
packet characteristics on the wireless interface, including
delay, throughput, and jitter.

Experiences with integration. The needed changes were
mostly performed over a two day period. Most changes
involved two main areas. First, it was necessary to patch
several portability issues with Tsumiki components. These
were due to quirks in the OpenWrt environment. Second, it
was necessary to shrink disk usage, which required build-
ing an installer to reduce the on-device footprint. It also
required setting up a separate software updater to update
the space-optimized version of software components run
on the device. All other components operate and inter-
operate smoothly as the inter-component interfaces were
unchanged.

By using Tsumiki, we can use any of the experiment
managers to quickly and easily deploy our code. If one
of the SOAR routers is moved to a different network, the
lookup service will automatically be notified. Most notably,
by running experiments in a Tsumiki sandbox, SOAR ex-
periments are security and performance isolated. The use of
Tsumiki components has made it easier to support SOAR’s
goals of non-interference with a user’s network.

10 LIMITATIONS

As with any system, Tsumiki has certain limitations. We
discuss the most important ones in this section.

Our component set may not be canonical. The seven
Tsumiki components and their interfaces discussed here are
based on our analysis of prior testbeds (Table 11), our use of
the four principles outlined in Section 3, and our experiences
with building testbeds. When considering a different set of
testbed capabilities, applying these principles may lead to
a different set of components. However, we believe that a
future testbed with radically different assumptions could
reapply our four principles to obtain a relevant set of com-
ponents and interfaces.

The Tsumiki set of actors/trust domains may be lim-
ited. Similarly, our design assumed four actors: device
owners, experimenters, testbed providers, and testbed de-
velopers. It is possible that future testbeds may require
new actors. By principle P1, this may lead to different trust
domains and thus different component derivation.

Some features of Tsumiki make it a poor choice for
certain environments. Tsumiki’s division into components
provides a convenient way to construct diverse testbeds,
but at a cost. This design has a performance penalty and
may not be suitable for testbeds that must maximize per-
formance. Therefore, having separable components implies
that Tsumiki will perform worse than a monolithic testbed
design. In an environment where high performance is criti-
cal, Tsumiki’s design may have unacceptable overheads.
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Artifact of component separation. Some Tsumiki com-
ponents belong to different trust domains, which may lead
to misconfigurations. For example, the clearinghouse is un-
aware of the device types, e.g., whether a device is mobile or
not. It can assign this device, by accident, to an experimenter
who should not access private information about the device
owner. Meanwhile, this component-based design can also
negatively impact Tsumiki’s efficiency and effectiveness on
different platforms. For example, the device manager and
resource manager are in different trust domains, and so it
is convenient to implement these components as different
OS processes. Similarly, each sandbox typically runs in its
own process to provide performance isolation. This poses
challenges for deploying Tsumiki on systems like iOS, in
which an app runs in a single process.

Focus on userspace operation. Tsumiki strives to sup-
port the broadest range of devices possible, and does so by
operating in userspace. Experiments that require low-level
access, such as those that need a modified kernel, were not
considered when designing Tsumiki’s interfaces. Thus we
do not believe our current set of components and interfaces
would be effective in this situation.

Tradeoff between performance isolation and perfor-
mance. The experiment manager assumes a certain level
of performance isolation provided by the sandbox and
uses this to optimize experiment scheduling. For example,
the experiment manager would schedule two CPU-heavy
experiments on the same machine, expecting the sandbox
to properly isolate them. This assumption does not always
hold, e.g., when the sandbox is replaced by a version that
does not support performance isolation. This leads to sub-
optimal performance when an experimenter expects the
sandbox to isolate experiments properly. However, this as-
sumption does not result in an incorrect operation.

11 RELATED WORK

Our design of Tsumiki components is drawn from experi-
ences with existing testbeds and their approaches to reusing
and extending functionality. Therefore, many of the con-
cepts in Tsumiki’s design are due to prior testbed construc-
tion efforts by other groups. We conducted an analysis of
existing testbeds and mapped them into the Tsumiki model
(see Table 11). Note that this table is our interpretation of
existing testbed construction, based on an analysis of the
cited papers. Therefore, there may be inaccuracies as we
are not intimately familiar with all design aspects of each
system. Table 11 illustrates that most of the existing testbeds
can be (at least partially) mapped into the Tsumiki model.
This indicates that the Tsumiki component-based model is
flexible enough to capture existing testbed designs.

In the rest of this section we consider prior approaches
to extensibility and reuse, a key concern in Tsumiki.

Testbed functionality reuse. Many research groups have
extended the functionality of existing testbeds. For example,
VINI [67] extended PlanetLab with network programmabil-
ity, and its design and implementation provided important
lessons for GENI [4]. Flexlab [59] combines the charac-
teristics of both Emulab and PlanetLab. SatelliteLab [11]
includes nodes from PlanetLab as the core, and nodes on the
Internet edge connected to the core. Similarly, Emulab [3]

supports acquisition of resources on PlanetLab through fast
slice instantiation. DETER [71] reuses much of Emulab’s
code base, but provides specialized functionality for security
experiments. Tsumiki’s design generalizes the concept of
testbed reuse and builds on this rich prior work (Table 11).

Software similar to individual Tsumiki components.
Many other testbed builders have built components that are
similar to those of Tsumiki. For example, Xen [72] and the
Lua-based sandbox in SPLAY [28] are examples of similar
sandboxing techniques. Similarly, several tools exist for de-
ploying and controlling remote software [73], [74]. Tsumiki
decomposes all functionality in a testbed and provides well-
defined interfaces so that individual components can be
easily swapped out.

Federated testbeds. Today’s most prevalent model for
testbed reuse is federation: testbeds interoperate to allow
an experimenter to use a common authorization framework
across several testbeds. These testbeds may also support
a common resource allocation mechanism and common
experimenter tools. For example, PlanetLab (PL) Europe
and PL Japan pool resources within PL Central. Although
the code base is shared between these testbeds, individual
testbeds maintain their own nodes.

GENI [4] consists of testbeds that federate by supporting
a common API, resource specification, and identification
mechanisms. This allows a researcher to use a shared set
of credentials and a common tool to access diverse testbeds
with different implementations. However, federation does
not make it easier to build new testbeds. Testbeds like Em-
ulab, ORBIT, and PlanetLab, that are part of GENI, consist
almost entirely of disjointed code bases. GENI focuses on
interoperability of testbeds with different code bases, while
Tsumiki’s focus is on enabling testbed builders to easily
build new testbeds through code reuse. Our goal is not to
allow existing testbeds to interoperate, but to provide a set
of building blocks for constructing new testbeds.

Other component-based systems. Component-based
systems have also been developed in other domains. The
modular components in Flux OSKit [75] can be used to
construct core OS functionality. OpenCom [76] provides
a uniform programming model and a set of component
libraries for defining software architectures. NETKIT [77] is
a software component model for programmable networking
systems. By contrast, Tsumiki provides network testbed
components for building custom testbeds.

12 CONCLUSION

Building and deploying a new testbed is labor-intensive and
time-consuming. New testbed prototypes will continue to
be developed as new technologies appear and limitations
of existing testbeds become apparent. This paper describes
a set of principles that we have found effective in decom-
posing a testbed into a set of components and interfaces.
The resulting design, Tsumiki, forms a set of ready-to-
use components and interfaces that can be reused across
platforms and environments to rapidly prototype diverse
networked testbeds.

As our user studies have demonstrated, Tsumiki is easy
to learn and use. Researchers have used Tsumiki to create
a diverse set of testbeds and our user study with graduate
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students shows that students were able to create and deploy
a custom private testbed and use it to run an experiment in
under one hour. Our evaluation of five testbeds constructed
with Tsumiki highlights some of the use cases: we reproduce
previously published results [17] on Sensibility Testbed,
construct Ducky using Docker to sandbox experiment code,
evaluate availability in one’s social network using the Social
Compute Cloud, demonstrate the flexibility of testbed de-
ployment on wireless routers through SOAR, and overview
the research and educational impact of the Seattle testbed.
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