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Abstract—Federated Learning is the current state of the art in supporting secure multi-party machine learning (ML): data is maintained
on the owner’s device and the updates to the model are aggregated through a secure protocol. However, this process assumes a
trusted centralized infrastructure for coordination, and clients must trust that the central service does not use the byproducts of client
data. In addition to this, a group of malicious clients could also harm the performance of the model by carrying out a poisoning attack.
As a response, we propose Biscotti: a fully decentralized peer to peer (P2P) approach to multi-party ML, which uses blockchain and
cryptographic primitives to coordinate a privacy-preserving ML process between peering clients. Our evaluation demonstrates that
Biscotti is scalable, fault tolerant, and defends against known attacks. For example, Biscotti is able to both protect the privacy of an
individual client’s update and maintain the performance of the global model at scale when 30% adversaries are present in the system.
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1 INTRODUCTION

A common requirement in machine learning (ML) applica-
tions is the collection of massive amounts of training data.
This data is frequently distributed, such as among hospitals
or devices in an IoT deployment. However, when train-
ing ML models in a multi-party setting, users must share
their potentially sensitive information with a centralized
service [1], [2], [3], [4]. Such sharing is problematic for users
or companies who are not willing to trust a third party.
For example, pharmaceutical companies compete with each
other in drug discovery and rarely share data1. And, internet
users are increasingly aware of the value of their data and
would like to retain control over their data2. To avoid di-
rectly sharing sensitive data, federated learning [5], [6], [7] is
a prominent solution for large-scale secure multi-party ML:
clients train a shared model through a trusted aggregator
without revealing their underlying data or computation [8],
[9], [10]. But, doing so introduces a subtle threat: clients,
who previously acted as passive data contributors, are now
actively involved in the training process [11], [12], [13],
presenting new privacy and security challenges to multi-
party ML systems [14].

Prior work has demonstrated that adversaries can attack
the shared model through poisoning attacks [11], [12], [15],
[16], [17], [18], [19], in which an adversary contributes adver-
sarial updates to shared model parameters. Adversaries can
also attack the privacy of other clients in federated learning:
in an information leakage attack, an adversary poses as an
honest data provider and attempts to infer properties of the
sensitive training data of a target client through observation
of the target’s shared model updates [13], [20].

Both poisoning and information leakage attacks have in-
dividually been defended in prior work through centralized
anomaly detection [21], differential privacy [22], [23], [24],

1. https://www.melloddy.eu/
2. https://www.oasislabs.com/

[25] or secure aggregation [26], [27], but to the best of our
knowledge, a private and decentralized solution that solves
both threats concurrently does not yet exist. Furthermore,
these approaches are inapplicable in decentralized contexts
that lack a trusted central authority. In this work, we focus
on the decentralized P2P setting, which enables a stronger
data ownership model for distributed ML.

Because ML does not require strong consensus or con-
sistency to converge [28], [29], traditional strong consensus
protocols such as Byzantine Fault Tolerant (BFT) proto-
cols [30] are overly restrictive for machine learning work-
loads. Distributed ledgers (blockchains) [31] have emerged
as a more appropriate system to facilitate private, verifiable,
crowd-sourced computation. Through design elements such
as publicly verifiable proof of work, eventual consistency,
and ledger-based consensus, blockchains have been used in
decentralized multi-party settings, such as currency man-
agement [31], [32], archival data storage [33], [34], financial
auditing [35], privacy-preserving computation [36] and IoT
edge computation [37], [38], [39].

As designed, federated learning relies on a trusted aggre-
gator, and is unsuitable for peer-to-peer (P2P) ML settings.
In this work, we propose Biscotti, a decentralized public P2P
system that co-designs privacy-preserving multi-party ML
with a blockchain ledger. In contrast to on-blockchain, layer-
2 ML applications [40], we propose proof-of-federation (PoF),
a layer-1 blockchain consensus protocol that combines the
state-of-the-art in defenses for federated learning and makes
them applicable in decentralized P2P settings. Biscotti coor-
dinates ML training between peers who are weighed by the
value, or stake, that they provide to the system through PoF.
Inspired by prior work [32], Biscotti uses consistent hash-
ing based on PoF in combination with verifiable random
functions (VRFs) [41] to select key roles for peers who will
help coordinate the privacy and security of model updates.
PoF prevents groups of colluding peers from overtaking the
system without a sufficient stake ownership.
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With Biscotti, our primary contribution is to adapt several

prior techniques into one coherent system that provides secure and

private multi-party machine learning in highly distributed P2P

settings. In particular, Biscotti prevents peers from poisoning
the model through the Multi-Krum defense [42], provides
privacy through differentially private noise [22], [23], and
uses Shamir secrets for secure aggregation [43].

We evaluated Biscotti on Azure and considered its per-
formance, scalability, churn tolerance, and ability to with-
stand different attacks. We found that Biscotti can train an
MNIST softmax model with 200 peers on a 60,000 image
dataset in 266.7 minutes, while withstanding up to 30% of
adversarial peers. In addition, we show that Biscotti’s design
is resilient to information leakage attacks [13] that require
knowledge of a client’s SGD update, and that Biscotti is
resilient to poisoning attacks [44] from prior work. Biscotti
is also fault tolerant, coping with nodes that churn every
1.875s and provides model training that converges even
with node churn.

2 CHALLENGES AND CONTRIBUTIONS

We now describe the key challenges in designing a P2P
solution for multi-party ML and the key pieces in Biscotti’s
design that resolve each of these challenges.
Sybil attacks: consistent hashing using VRF’s and PoF. In
a P2P setting adversaries can collude or generate aliases to
increase their influence in a sybil attack [45]. Biscotti uses a
consistent hashing protocol based on the latest block hash
and verifiable random functions (VRF’s) (see Appendix D)
to select a subset of peers that are responsible for the
different stages of the PoF protocol: adding noise to updates,
validating an update, and securely aggregating the update.
To mitigate the effect of sybils, PoF selects peers propor-
tional to their stake. A peer’s stake is the reputation that
the peer acquires by positively contributing to the shared
model. This ensures that an adversary cannot increase their
influence in the system by creating multiple peers without
improving the model. We evaluate the security of our VRF
mechanism and PoF in Appendix K.
Poisoning attacks: update validation using Multi-Krum.
In multi-party ML, peers possess a disjoint and private
subset of the training data. As mentioned above, adversaries
can exploit the private P2P setting to stealthily execute
poisoning attacks [12], [18], [46], [47], [48].

In multi-party settings, we assume that baseline valida-
tion models are not available to peers, so Biscotti validates
an SGD update by evaluating it with respect to the updates
submitted by other peers. Biscotti validates an SGD update
using a Byzantine-tolerant aggregation scheme called Multi-

Krum [42]. Multi-Krum is only one of several algorithm that
Biscotti could use; others include median/trimmed mean
and Bulyan [49], [50]. Although Multi-Krum and related
aggregation schemes do not protect against all poisoning
attacks [47], they are effective against some classes of attacks
and Biscotti can generally support any aggregation scheme
that operates only on model updates.

Multi-Krum rejects model updates that differ heavily
from the direction of the majority of the updates. In our
implementation of Multi-Krum, described in Section 4.5, in
each round a committee of validation peers is selected by

a majority vote and each member of the committee uses
Multi-Krum to remove these anomalous updates. Multi-
Krum guarantees convergence against f Byzantine adver-
saries in a system with n total clients (when 2f + 2 < n).
We demonstrate in Section 6.1 that by using Multi-Krum,
Biscotti can handle poisonous updates from up to 30%
malicious clients.
Information leakage attacks: VRF verifier peers and
differentially-private updates using pre-committed noise.
By observing a peer’s model updates from each verification
round, an adversary can perform an information leakage
attack [13], [20], [51], [52], [53], [54] and recover details about
a victim’s training data. (See Appendix E for background.)

Biscotti prevents such attacks during update verification
in two ways. First, the latest block hash is used to select the
verifiers, ensuring that malicious peers cannot deterministi-
cally select themselves to verify a victim’s gradient. Second,
noising peers send differentially-private updates [22], [23]
to verifier peers: before sending a gradient to a verifier,
pre-committed "-differentially private noise is added to the
update, masking the peer’s gradient such that no individual
peer can influence or observe the model update process. (See
Appendix I for details). By verifying noised model updates,
verifier peers in Biscotti can verify the updates of others
without directly observing their un-noised counterparts.
Utility loss with differential privacy: secure update aggre-
gation and cryptographic commitments. The blockchain-
based ledger of model updates allows for auditing of state,
but this transparency is counter to the goal of privacy-
preserving multi-party ML. For example, the ledger trivially
leaks information if we store SGD updates directly.

Using differentially private updates during verification
is one technique for preserving data privacy in Biscotti.
Another technique used is secure aggregation: a block in
Biscotti does not store updates from individual peers, but
rather an aggregate that obfuscates any single peer’s con-
tribution in a single round. Biscotti uses a verifiable secret
sharing scheme [55] to aggregate the updates so that any
individual update remains hidden through cryptographic
commitments (See Appendix C for background).

However, secure aggregation can be either done on the
differentially-private updates or the original updates with
no noise. This design choice represents a privacy-utility
tradeoff in the final model. By aggregating differentially-
private updates the noise is pushed into the ledger and
the final model has lower utility. We illustrate this trade-
off experimentally in Appendix H and choose to aggregate
the un-noised model updates, providing stronger utility
guarantees that match the performance of federated learn-
ing. Furthermore, we evaluate the potentital for information
leakage attacks in Appendix I and show the the probability
of a successful attack on Biscotti is negligible.

3 ASSUMPTIONS AND THREAT MODEL

Like federated learning, Biscotti assumes a public ML sys-
tem in which peers can join/leave anytime. Biscotti assumes
that users are willing to collaborate on training ML models,
but are unwilling to share their data [5].
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3.1 Design assumptions

Proof of federation. Peers in Biscotti use proof-of-federation
(PoF) to arrive at a consensus on the state of the model
for each round of training. PoF is a consensus protocol for
secure and private federated learning based on a recently
proposed blockchain consensus mechanism called proof-of-
stake (PoS) [32], [56]. Consensus using PoS is fast because it
delegates the consensus responsibility to a subset of peers
in each round, assigned proportionally based on their stake
(see Appendix F for background). In cryptocurrencies, the
stake of a peer refers to the amount of value (money) that
a peer holds. PoS relies on the assumption that a subset
of peers holding a significant fraction of the stake will not
subvert the system.

In Biscotti’s PoF, we define stake as a measure of a peer’s
contribution to the system. Peers acquire stake by providing
beneficial model updates or by facilitating the consensus
process. Thus, the stake that a peer accrues during training
is proportional to their contribution to the model being
trained. We assume that the stake ownership of any peer is
publicly available from the current state of the blockchain.

In addition, we also assume that at any point in time, at
least 70% of the stake in the system is honest and is prop-
erly bootstrapped. The initial stake distribution at the start
may be derived from an online data sharing marketplace,
a shared reputation score among competing agencies, or
auxiliary information from a social network.
Blockchain topology. Each peer is connected to some subset
of other peers in a topology that allows flooding-based
dissemination of blocks to eventually reach all peers. For
example, this could be a random mesh topology with
flooding, similar to the one used for block dissemination in
Bitcoin [31]. Peers that rejoin the system after going offline
during training can recreate the latest state of the blockchain
from other peers in the system.
Machine learning. We assume that all information required
for P2P training is disseminated to all peers in the first block,
including the model, hyperparameters, optimization algo-
rithm, and learning objective. In a non-adversarial setting,
peers have local datasets that they wish to keep private.
When peers draw a sample from this data to compute a
model update, we assume that this is done uniformly and
independently. This ensures that the Multi-Krum [42] is
accurate. In our design of Biscotti we assume stochastic
gradient descent (SGD) [57] as the optimization algorithm.
SGD is a general learning algorithm that can be used to train
a variety of models, including deep neural networks [57].

3.2 Attacker assumptions

Adversarial peers may perform a poisoning attack by send-
ing malicious updates or an information leakage attack by
observing a target peer’s updates. In doing so, we assume
that the adversary may control multiple peers in a sybil
attack [45] but does not control more than 30% of the total
stake. Although adversaries may be able to increase the
number of peers they control in the system, we assume
that adversaries cannot artificially increase their stake in the
system except by providing valid updates that pass Multi-
Krum [42].

When adversaries perform a poisoning attack, we assume
that their goal is to harm the performance of the final global
model. Our defense relies on filtering out malicious updates
that are sufficiently different from the honest clients and
push the global model towards an sub-optimal objective.
For the purposes of this work, we limit adversaries to poi-
soning attacks [44] in which data is mislabelled to a different
class, causing the trained model to misclassify it. This does
not include poisoning attacks that leverage unused parts
of the model topology, like backdoor attacks [12], attacks
based on gradient-ascent [58], or adaptive attacks based on
knowledge of the poisoning defense [47]. However, Biscotti
is compatible with any other aggregation approach on SGD
updates, including future approaches that may handle back-
door and gradient-ascent attacks.

When adversaries perform an information leakage attack,
we assume that they aim to learn properties of a victim’s
local dataset. Specifically, we provide record-level privacy,
which protects against the de-anonymization of a single
example from the user’s dataset. Due to the vulnerabili-
ties of secure aggregation, we do not consider information
leakage attacks with side information [51], [59] or attacks
against class-level privacy [20], which attempt to learn the
properties of an entire target class.

4 BISCOTTI DESIGN

Biscotti’s design has the following goals: (1) converge to the
optimal global model (the same model trained without ad-
versaries in a federated learning setting), (2) prevent poison-
ing by verifying peer model updates, (3) keep peer training
data private by preventing information leakage attacks, and
(4) prevent colluding peers from gaining influence without
acquiring sufficient stake. Biscotti meets these goals with a
custom blockchain design that we now describe.
Design overview. Peers join Biscotti and collaboratively
train a global model. Each block in the distributed ledger
represents a single iteration of SGD and the ledger contains
the state of the global model at each iteration. Figure 1
overviews the Biscotti design with a step-by-step illustration
of what happens during a single SGD iteration in which a
single block is generated.

In each iteration, peers locally compute SGD updates
(step 1 in Figure 1). Since SGD updates must be kept pri-
vate, each peer first masks their update using differentially
private noise. This noise is collected from a set of noising
peers unique to each client and is selected by a VRF [41]
(step 2 and 3 ).

The masked updates are validated by a verification
committee to defend against poisoning. Each member in the
verification committee signs the commitment to the peer’s
unmasked update if it passes Multi-Krum (step 4 ). If the
majority of the committee signs an update (step 5 ), the
signed update is divided into Shamir secret shares (step
6 ) and given to a aggregation committee. The aggregation

committee uses a secure protocol to aggregate the unmasked
updates (step 7 ). All peers who contribute a share to the
final update along with the peers chosen for the verification
and aggregation committees receive additional stake in the
system. The aggregate of the updates is added to the global
model in a newly created block which is disseminated to all
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Fig. 1. The ordered steps in a single iteration of the Biscotti algorithm, from step 1 (local SGD) to step 8 (block generation).

the peers and appended to the ledger (step 8 ). Using the
updated global model and stake, the peers repeat (step 1 ).
Next, we describe how we bootstrap the training process.

4.1 Initializing the training

Biscotti peers initialize the training process using informa-
tion in the first (genesis) block. We assume that a trusted
authority facilitates and bootstraps the training process
by publicly distributing the genesis block out of band to
all peers in the system. The authority is only trusted for
this step: they are not entrusted with the individual SGD
updates of the peers, which could potentially leak private
information of a peer’s data. Each peer obtains the following
information from the genesis block: (1) the initial model
state w0 and expected number of iterations T , (2) the public
key PK for creating commitments to SGD updates, (see
Appendix C), (3) the public keys PKi of all other peers in
the system, which are used to create and verify signatures
during verification, (4) pre-commitments to differentially
private noise for T SGD iterations ⇣1..T by each peer, (see
Figure 3 and Appendix B), (5) the initial distribution of stake
among peers, and (6) a stake update function that executes
when new blocks are appended.

4.2 Blockchain design

Distributed ledgers are constructed by appending read-
only blocks to a chain structure and disseminating blocks
through a gossip protocol. Each block holds a pointer to its
previous block as a cryptographic hash of its contents.

Each block in Biscotti (Figure 2) contains, in addition
to the previous block hash pointer, an aggregate (�w) of
SGD updates from multiple peers and a snapshot of the
global model wt at iteration t. Newly appended blocks to
the ledger store the aggregated updates

P
�wi of multiple

peers. To verify that the aggregate was honestly computed,
individual updates need to be included in the block. How-
ever, storing them individually leaks information about
individual private training data [13], [20]. We solve this

COMM(�w1)sign1

Verifier commitment sigs for           :

                             wt

COMM(�wu)sign1

COMM(�wu)signj

stake
�
1

. . .
COMM(�w1)signj

stake
�
u

. . .

.

.

.

Verifier commitment sigs for           :�w1 �wu

COMM(�w1)
Commitment to update by peer 1: Commitment to update by peer u:

COMM(�wu)

Global model: 

Updated stake for peer 1: Updated stake for peer u:

Aggregate of updates: Prev. block hash: 0xab0
123ef�u�w

Fig. 2. Block contents at iteration t. Note that wt is computed using
wt�1 + ⌃wu where wt�1 is the global model stored in the block at
iteration t� 1 and j is the set of verifiers for iteration t.

problem by using polynomial commitments [55]. Polyno-
mial commitments take an SGD update and map it to a
point on an elliptic curve (see Appendix C for details). By
including a list of commitments for each peer i’s update
COMM (�wi) in the block, we can provide both privacy
and verifiability of the aggregate. The commitments provide
privacy by hiding the individual updates yet can be homo-
morphically combined to verify that the update to the global
model by the aggregator

P
�wi was computed honestly.

The following equality holds if the list of committed updates
equals the aggregate sum:

COMM(
X

�wi) =
Y

i

COMM(�wi)

The training process continues for a specified number of
iterations T , at which point the learning process stops and
each peer extracts the global model from the final block.

4.3 Using stake for role selection
In each iteration in Biscotti, a consistent hash weighted by
peer stake designates roles (noiser, verifier, aggregator) to
some peers in the system. PoF ensures that the influence
of a peer is bounded by their stake (i.e., adversaries cannot
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trivially increase their influence through sybils). Peers may
be assigned multiple roles in a given iteration but cannot be
a verifier and aggregator in the same round. The verification
and aggregation committees are the same for all peers but
the noising committee is unique to each peer.

The initial SHA-256 hash of the last block is repeatedly
re-hashed: each new hash result is mapped onto a hash
ring where portions of the ring are proportionally assigned
to peers based on their stake. The hash is repeated un-
til verifier/aggregator committees of the correct size are
obtained. This provides the same stake-based property as
Algorand [32]: a peer’s probability of winning a lottery is
proportional to their stake. Since an adversary cannot pre-
dict the future state of a block until it is created, they cannot
speculate on outputs of consistent hashing and strategically
perform attacks. Unlike verification and aggregation, the
noising committee is different for each peer for additional
privacy. Each peer can arrive at a unique committee for itself
via consistent hashing by using a different initial hash. The
hash computed should be random yet globally verifiable by
other peers in the system. In Biscotti, a peer computes this
hash by executing their secret key SKi and the SHA-256
hash of the last block through a verifiable random function
(VRF) (see Appendix D). By virtue of the peer’s secret
key, the hash computed is unique to the peer resulting in
distinct committees for different peers. The VRF hash is also
accompanied by a proof that can be combined with a peer’s
public key PKi, allowing other peers to determine that the
correct noising committee is selected by the peer.

At each iteration, peers run the consistent hashing proto-
col to determine whether they are an aggregator or verifier.
Peers that are part of the verification and aggregation com-
mittees do not contribute updates for that round. Each peer
that is not an aggregator or verifier computes their noising
committee, obtains the noise, and hides their updates by
following the noising protocol.

4.4 Noising protocol
To prevent information leakage attacks, peers use differ-
ential privacy to hide their updates during verification by
adding noise sampled from a normal distribution. This
ensures that each step is (✏, �)-differentially private [23]. (See
Appendix B for formalisms).
Using pre-committed noise to thwart poisoning. Attackers
may maliciously use the noising protocol to execute poison-
ing or information leakage attacks. For example, a peer can
send a poisonous update �wpoison, and add noise ⇣p that
unpoisons this update to resemble an honest update �w,
such that �wpoison + ⇣p = �w. By doing this, the honest
update �w passes verification, but the poisonous update
�wpoison is applied to the model since the noise is removed
in the final aggregate.

An information leakage attack may also occur when a
noising peer A and a verifier B collude against a victim
peer C . The noising peer A can commit a set of zero noise
that does not hide the original gradient value at all. When
the victim peer C sends its noised gradient to the verifier B,
B can perform an information leakage attack on client C’s
gradient to reconstruct C’s training data.

To prevent such attacks, Biscotti requires that every peer
pre-commits the noise vector ⇣t for every future iteration

Noise committed            

Noise committed
for iteration 1

comm(noise
2
1)

comm(noise
1
1)

comm(noise
N
1 )

comm(noise
1
T )

comm(noise
2
T )

comm(noise
N
T )

…
…

…

…
…

T iterations

N
peerspeer 2

by

Fig. 3. Peers commit noise to an N by T structure. Each row i contains
all the noise committed by a single peer i, and each column t contains
potential noise to be used during iteration t. When committing noise at
an iteration i, peers execute a VRF and request ⇣ki from peer k

t 2 [1..T ] in the genesis block, and that each iteration uses
a private VRF to select a group of noising peers based on
the victim C’s secret key. In doing so, an adversary cannot
pre-determine whether their noise will be used in a specific
verification round by a particular victim, and also cannot
pre-determine if the other peers in the noising committee
will be malicious in a particular round. We analyze this
probability in Appendix I and show that the probability
of an information leakage is negligible given a sufficient
number of noising peers.
Protocol description. For an ML workload that may be
expected to run for a specific number of iterations T , each
peer i generates T noise vectors ⇣t and commits these noise
vectors into the ledger, storing a table of size N by T

(Figure 3). When a peer is ready to contribute an update
in an iteration, it runs the noising VRF and contacts each
noising peer k, requesting the noise vector ⇣k pre-committed
in the genesis block COMM(⇣k). The peer then uses a
verifier VRF to determine the set of verifiers. The peer
masks their update using this noise and submits to these
verifiers the masked update, a commitment to the noise, and
a commitment to the unmasked update. It also submits the
noise VRF proof that attests to the verifier that its noise is
sourced from peers that are a part of their noise VRF set.

4.5 Verification protocol
Verifier peers run Multi-Krum on the received set of up-
dates and filter out malicious updates by accepting the
top majority of the updates received in each round. Each
verifier receives the following from each peer i: (1) the
masked SGD update: (�wi +

P
k ⇣k), (2) a commitment to

the SGD update: COMM(�wi), (3) a set of k noise commit-
ments: {COMM(⇣1), COMM(⇣2), ..., COMM(⇣k))} and
(4) a VRF proof confirming the identity of the k noise peers.

When a verifier receives a masked update from another
peer, it can confirm that the masked SGD update is consistent
with the commitments to the unmasked update and the
noise by using the homomorphic property of the commit-
ments [55]. A masked update is legitimate if the following
equality holds:

COMM(�wi +
X

k

⇣k) = COMM(�wi) ⇤
Y

k

COMM(�⇣k)

Once the verifier receives a sufficiently large number of
updates R, it proceeds with selecting the best updates using
Multi-Krum, as follows:
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1) For every peer i, the verifier calculates a score s(i)
which is the sum of Euclidean distances of i’s update to
the closest R � f � 2 updates. It is given by:
s(i) =

P
i!j k(�wi +

P
i,k ⇣i,k)� (�wj +

P
j,k ⇣j,k)|2

where i ! j denotes the fact that (�wj +
P

j,k ⇣j,k)
belongs to the R � f � 2 closest updates to (�wi +P

i,k ⇣i,k).
2) The R � f peers with the lowest scores are selected

while the rest are rejected.
3) The verifier signs the COMM(�wi) using its public

key for all the accepted updates.
To prevent a malicious verifier from accepting all up-

dates of its colluders in this stage, we require a peer to obtain
signatures from the majority of verifiers before their update
is accepted and disseminated for aggregation.

4.6 Aggregation protocol
All peers with a sufficient number of signatures from the
verification stage submit their SGD updates for aggregation
into the global model. The update equation in SGD (see
Appendix A) can be re-written as:

wt+1 = wt +
�wverifiedX

i=1

�wi

where �wi is the verified SGD update of peer i and wt is
the global model at iteration t.

The aggregation protocol enables a set of m aggregators,
predetermined by consistent hashing, to compute

P
i �wi

without observing any individual updates. Biscotti uses a
technique that preserves privacy of the individual updates
if at least half of the m aggregators participate honestly in
the aggregation phase. This guarantee holds if consistent
hashing selects a majority of honest aggregators, which is
likely when the majority of stake is honest. Biscotti achieves
the above guarantees using polynomial commitments (de-
scribed in Appendix C) and verifiable secret sharing [43] for
aggregation of individual updates. We describe the details
of the aggregation protocol in Appendix G.

4.7 Blockchain consensus
Since subsets based on consistent hashing are globally ob-
servable by each peer and rely on the SHA-256 hash of the
latest block in the chain, ledger forks should rarely occur in
Biscotti. For an update to be included in the ledger at any
iteration, the same noising/verification/aggregation com-
mittees are used. Thus, race conditions between aggregators
will not cause forks in the ledger to occur as frequently as
in e.g., BitCoin [31].

When a peer observes a new block through the gossip
protocol, it can verify that the computation performed is
correct by running the consistent hashing protocol for the
latest block and verifying the signatures of the designated
verifiers and aggregators for each new block.

In Biscotti, each verification and aggregation step oc-
curs only for a specified duration. Any updates that are
not successfully propagated in this period of time are
dropped: Biscotti does not append stale updates to the
model once competing blocks have been committed to the
ledger. This synchronous SGD model is acceptable for large

TABLE 1
The default parameters used for all our experiments, unless stated

otherwise.

Parameter Default Value
Privacy budget (") 2
Delta (�) 10�5

Number of peers 100
Number of noisers 2
Number of verifiers 3
Number of aggregators 3
Number of samples needed for
Multi-Krum (R)

70

Adversary upper bound (f < R�2
2 ) 33

Number of updates/block (u = R
2 ) 35

Initial stake Uniform, 10 each
Stake update Linear, + 5

TABLE 2
The dataset/model types used in the experiments

Dataset Model Type Train/Test
Examples Params (d)

Credit Card LogReg 21000/9000 25
MNIST Softmax 60000/10000 7850

scale ML workloads which have been shown to be tolerant
of bounded asynchrony [28]. However, these stale updates
could be leveraged in future iterations if their learning rate
is decayed [60]. We leave this optimization for future work.

5 IMPLEMENTATION

We implemented Biscotti in 4,500 lines of Go 1.10 and 1,000
lines of Python 2.7.12 and released it as an open source
project3. We use Go to handle all networking and distributed
systems aspects of our design. We used PyTorch 0.4.1 [61]
to generate SGD updates and noise during training. By
building on the general-purpose API in PyTorch, Biscotti can
support any model that can be optimized using SGD. We use
the go-python v1.0 [62] library to interface between Python
and Go. Since go-python is incompatible with Python 3, we
were limited to using Python 2.7 for our implementation.

We use the kyber v.2 [63] and CONIKS 0.1.1 [64] libraries
to implement the cryptographic parts of our system. We
use CONIKS to implement our VRF function and kyber
to implement the commitment scheme and public/private
key mechanisms. To bootstrap clients with the noise com-
mitments and public keys, we use an initial genesis block.
We used the bn256 curve API in kyber for generating our
commitments and public keys that form the basis of the
aggregation protocol and verifier signatures. For signing
updates, we use the Schnorr signature [65] scheme instead
of ECDSA because multiple verifier Schnorr signatures can
be aggregated together into one signature [66]. Therefore,
our block size remains constant as the verifier set grows.

6 EVALUATION

We had several goals in the evaluation of our Biscotti pro-
totype. We wanted to demonstrate that (1) Biscotti is robust

3. https://github.com/DistributedML/Biscotti
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to poisoning attacks, (2) Biscotti protects the privacy of an
individual client’s data and (3) Biscotti is scalable, fault-
tolerant and can be used to train different ML models.

For experiments done in a distributed setting, we de-
ployed Biscotti across 20 Azure A4m v2 virtual machines,
with 4 CPU cores and 32 GB of RAM. We deployed a varying
number of peers in each of the VMs. The VM’s were spread
across six locations: West US, East US, Central India, Japan
East, Australia East and Western Europe. Each experiment
was executed for 100 iterations and the test error of the
global model was recorded. To evaluate Biscotti’s defense
mechanisms, we ran information leakage and poisoning
attacks on federated learning from prior work [13], [44] and
measured their effectiveness under various attack scenarios
and Biscotti parameters. We also evaluated the performance
implications of our design by isolating specific components
of Biscotti across varying committee sizes. For all our exper-
iments, we deployed Biscotti with the parameter values in
Table 1 unless stated otherwise.

We evaluated Biscotti with both a logistic regression and
softmax classifiers. We evaluate logistic regression with a
Credit Card fraud dataset [67], which uses an individual’s
financial and personal information to predict if they will
default on their next credit card payment. Our softmax clas-
sifier contains a 1-layer neural network with a binary cross
entropy loss, and we evaluate it on the MNIST [68] dataset,
a task that involves predicting a digit based on its image. We
claim that the general-purpose PyTorch API allows Biscotti
to support models of arbitrary size and complexity, as long
as they can be optimized with SGD and can be stored in our
block structure.

The MNIST and Credit Card datasets have 60,000 and
21,000 training examples respectively. We used 5-fold cross
validation on the training set to determine training param-
eters for each model. The Credit Card logistic regression
model uses a batch size of 10, learning rate of 0.01 and no
momentum. The MNIST softmax model uses a batch size of
10, learning rate of 0.001 and momentum of 0.75.

The MNIST/Credit Card models were tested using a
separately held-out test set of 10,000 and 9,000 examples
respectively. For all experiments, the training dataset was
divided equally among the peers unless stated otherwise.
As a result, each client possesses 600 training examples for
MNIST and 210 examples for the credit card dataset. Table 2
shows the details of our datasets. In local training we were
able to train a model on the Credit Card and MNIST datasets
with accuracy of 98% and 92%, respectively.

6.1 Tolerating poisoning attacks
In this section, we evaluate Biscotti’s performance against a
label-flipping poisoning attack [44]. We also investigate the
different parameter settings required for Biscotti to success-
fully defend against a poisoning attack and evaluate how
well it performs under attack from 30% malicious nodes
compared to a federated learning baseline.

Biscotti requires each peer in the verification committee
to collect a sufficient sample of updates before running
Multi-Krum. We evaluate the effect of varying the percent-
age of total updates collected in each round by Multi-Krum
against varying poisoning attack rates in MNIST to evaluate
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Fig. 4. Biscotti’s performance on the MNIST dataset with a varying
number of poisoners, from 5% to 50%. Both the total execution time
and the final attack rate are scaled such that the maximum is 1.

0 20 40 60 80 100 
Training Iterations 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

Te
st

 E
rro

r 

Federated learning - No Poison  
Federated Learning - 30% Poison 
Biscotti - 30% Poison 

Fig. 5. Federated learning and Biscotti’s test error on the CreditCard
dataset with 30% of poisoners.

Multi-Krum’s effectiveness. To ensure uniformity and to
eliminate latency effects in the collection of updates, in these
experiments the verifiers waits to collect all updates from
all peers that are not assigned to a committee and then
randomly samples a specified number of these updates. In
addition, we also ensured that all verifiers deterministically
sampled the same set of updates by using the last block
hash as the random seed. This allows us to investigate how
well Multi-Krum performs in a decentralized ML setting
like Biscotti unlike the original Multi-Krum paper [42] in
which updates from all clients are collected before running
Multi-Krum.

To evaluate the success of an attack, we define attack rate

as the fraction of target labels that are incorrectly predicted.
An attack rate of 1 specifies a successful attack while a value
close to zero indicates an unsuccessful one. Figure 4 shows
both the total execution time and the resulting attack rate
when Biscotti is attacked by a varying number of poisoners.
Although our theoretical guarantee ensures that Biscotti
can withstand poisoning attacks from up to 30% poisoners,
Biscotti performs well even against 35% poisoners. Beyond
35%, Multi-Krum is unable to prevent the poisoning attack
from occurring, impacting both the final model performance
and the total execution time. Multi-Krum is also impacted
by the privacy parameter " and the number of samples
used when removing anomalies. Experiments detailing the
impact of both parameters on Multi-Krum’s poisoning de-
terrence are in Appendix J.
Biscotti vs Federated Learning Baseline. We deployed
Biscotti and federated learning and subjected both systems
to a poisoning attack while training on the Credit Card
and MNIST datasets. Using the parameters from the above
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Fig. 6. Federated learning and Biscotti’s test error on the MNIST dataset
with 30% of poisoners.
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Fig. 7. Federated learning and Biscotti’s test error on the MNIST dataset
with 200 total nodes, 30% poisoners, with a verification and aggregation
committee size of 26.

experiments, Biscotti sampled 70% of updates and used a
value of 2 for the privacy budget ✏.

We introduced 30% of the peers into the system with
the same malicious dataset: for the Credit Card dataset
they labeled all defaults as non-defaults, and for MNIST
these peers labeled all 1s as 7s. Figures 5 and 6 show the
test error when compared to federated learning. The results
show that for both datasets, the poisoned federated learning
deployment struggles to converge. In contrast, Biscotti per-
forms as well as the baseline un-poisoned federated learning
deployment on the test set.

Biscotti requires a larger number of iterations to con-
verge than un-poisoned federated learning. The conver-
gence is slower for Biscotti because a small verification
committee of 3 peers was used, which allows the poisoning
peers to control a majority in the committee frequently and
accept updates from fellow malicious peers. Biscotti finally
converges as the honest peers gain enough stake over time,
thereby reducing the influence of malicious peers in the
system. Over the course of this experiment, where a constant
+5 stake update function is used, the stake of the honest
clients increases from 70% to 87%.

To demonstrate the effect of the committee size on
convergence under attack, we re-ran the experiment on
the MNIST dataset with a larger verification and aggre-
gation committee size of 26 peers, which we analytically
determine is large enough to provide protection against
an adversary that controls 30% of the stake in the system
(shown in Appendix K). Since peers in the verification or
aggregation committees do not contribute updates in that
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Fig. 9. The average amount of time taken per iteration with an increasing
number of noisers, verifiers, or aggregators.

particular round, 100 nodes cannot generate the 70% of
updates needed to protect against Multi-Krum. Therefore,
for this experiment we increased the number of nodes to
200. The results in Figure 7 show that Biscotti, with a larger
verification and aggregation committee size, converges in
the same number of iterations as unpoisoned federated
learning.

6.2 Performance, scalability and fault tolerance
In this section, we evaluate the overhead of each stage in
Biscotti and investigate the effect as the number of peers
increase. We also measure Biscotti’s performance as we scale
the size of different committees and compare its perfor-
mance against federated learning. Finally, we evaluate if
client churn has any effect on Biscotti’s convergence.
Performance cost break-down. In breaking down the over-
head in Biscotti, we deployed Biscotti over a varying num-
ber of peers in training an MNIST softmax model. We
capture the amount of time spent in each of the major stages
of our algorithm in Figure 1: collecting the noise from the
noising clients (steps 2 and 3 ), verification via Multi-
Krum and signature collection (steps 4 and 5 ) and secure
aggregation of the SGD update (steps 6 and 7 ). Figure 8
shows the average cost per iteration for each stage under a
deployment of 40, 60, 80 and 100 nodes over 3 runs. During
this experiment, the committee sizes were kept constant to
the default values in Table 1.

The results show that the cost of each stage is almost
constant as we vary the number of peers in the system.
Biscotti spends most of its time in the aggregation phase
since it requires the aggregators to collect secret shares of
all the accepted updates and share the aggregated shares
with each other to generate a block. The noising phase is
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Fig. 10. Comparing the convergence of Biscotti to a federated learning
baseline over time, while training an MNIST model over 200 nodes.

the fastest since it only involves a single round trip to each
member of the noising committee while the verification
stage involves collecting a predefined percentage (70%) of
updates to run Multi-Krum in a asynchronous manner from
all the nodes. The time per iteration also stays fairly constant
as the number of nodes in the system increases.
Scaling up committee sizes in Biscotti. We evaluate
Biscotti’s performance as we change the size of the
noiser/verifier/aggregator sets. For this we deploy Biscotti
on Azure with the MNIST dataset with a fixed size of
100 peers, and only vary the number of noisers needed
for each SGD update, number of verifiers used for each
verification committee, and the number of aggregators used
in secure aggregation. Each time one of these sizes was
changed, the change was performed in isolation; the rest
of the committees used a set of 3. Figure 9 plots the average
time taken per iteration over 3 executions of the system.

The results show that increasing the size of the noising,
verifiers or aggregator sets increases the time per iteration.
The iteration time increases slightly with noising committee
since additional peers must be contacted to determine the
total noise. Increasing the number of aggregators leads to
a larger overhead because the secret shares are exchanged
between more peers and recovering the aggregate requires
coordination among more peers. Lastly, a large number
of verifiers results in frequent timeouts in the aggregation
stage. Verifiers wait for the first 70 updates and select 37
updates while aggregators wait for shares from the first
35 updates before initiating the aggregate recovery process.
With an increased verifier set, the size of the intersection of
updates accepted by a majority of verifiers frequently falls
below 35, as each verifier runs Multi-Krum on a different
set of updates. Hence, the aggregators wait until the update
timeout is hit. Since the timeout is a constant value of 90
seconds, the verifier overhead does not increase significantly
when increasing the verifier set from 10 to 26. However, our
design could decrease this verifier overhead by decreasing
the number of updates that aggregators wait for before
starting their coordination.
Baseline performance. We compare Biscotti to the original
federated learning baseline [5] with an execution using 5
noisers, 26 verifiers and 26 aggregators. We analytically
determine that these committee sizes provide a guarantee
of protecting against an adversary that holds 30% stake
from unmasking updates in the noising (Appendix I) and
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Fig. 11. Comparing the convergence of Biscotti to a federated learning
baseline over the number of iterations, while training an MNIST model
over 200 nodes.
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Fig. 12. The impact of churn on model performance. Churn is injected
by failing/joining random nodes at a pre-determined rate.

aggregation stages (Appendix K). These committee sizes
also ensure convergence under poisoning from an attack by
30% of the nodes (Section 6.1).

We divide the MNIST dataset [68] into 200 equal par-
titions, each of which was shared with an honest peer
deployed in one of 20 Azure VMs, with each VM hosting
10 peers. These peers collaborated on training an MNIST
softmax classifier, and after 100 iterations both Biscotti and
federated learning approached the global optimum. To en-
sure a fair comparison, the number of updates included in
the model in each round are kept the same. In federated
learning, we receive updates from 35% of the nodes selected
at random for every round, while in Biscotti we include the
first 35% verified updates in the block. The convergence
for both systems are shown in Figures 10 and Figure 11,
showing time and the number of iterations respectively. In
this deployment, Biscotti takes about 13.8 times longer than
Federated Learning (20.8 minutes vs 266.7 minutes), yet
achieves similar model performance (92% accuracy) after
the same 100 iterations.

We also evaluated the effect on Biscotti of an increased
dataset size and model parameters in Appendix L. For
dataset size, we increased the MNIST dataset to 600,000 and
6,000,000 training examples respectively by replicating the
data available at each node. Our results shows that, despite
increased dataset size, the Biscotti overhead stays at 14x.
When increasing the model parameter size, we were able
to train models with up to 117,540 parameters before the
system failed. Biscotti can support larger models with better
tuning of timeouts and a reduced communication overhead,
which is discussed in Section 7.
Training with node churn. A key feature of Biscotti’s P2P
design is that it is resilient to node churn (node joins and
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failures). For example, the failure of any Biscotti node does
not block or prevent the system from converging. We evalu-
ate Biscotti’s resilience to peer churn by performing a Credit
Card deployment with 50 peers, failing a peer at random
at a specified rate. For each specified time interval, a peer
is chosen randomly and is killed. In the next time interval,
a new peer joins the network, maintaining a constant total
number of 50 peers. Figure 12 shows the time to converge
for varying churn rates. When a verifier or an aggregator
fails, Biscotti defaults to the next iteration after a timeout, so
this does not harm convergence, but does introduce variance
in execution time. When the churn rate increases to 35
nodes/minute, the system does not converge, likely since
35 is the minimum updates required to create a block in our
setup. Even with churn Biscotti makes progress towards the
global objective; we found that Biscotti is resilient to churn
rates up to 32 nodes per minute (1 node joining and 1 node
failing every 1.875 seconds).

7 LIMITATIONS AND FUTURE WORK

Multi-Krum limitations. For Multi-Krum to be effective, it
needs to observe a large number of honest samples in each
round. This may not always be possible in a decentralized
system with node churn. In addition, Multi-Krum could also
reject updates from peers that have non-iid data e.g., a peer
that only possesses one class in the model. We did not face
this issue in our experiments because we partitioned the
data uniformly. However, Biscotti is compatible with other
SGD aggregation approaches [49], [50]. For example, in an
earlier version of our design we used a version of RONI [69]
to validate peer updates.
Deep Learning. Biscotti currently does not scale to large
deep learning models with millions of parameters due to
the communication overhead. Previous work in federated
learning addressed this problem by reducing the model size
updates through learning in a restricted parameter space or
compressing model updates [70], [71]. There is also exten-
sive research outside of federated learning in training more
compact and efficient neural networks with techniques such
as weight quantization [72], network pruning [73], knowl-
edge distillation [74], and designs for resource-constrained
settings [75]. Another strategy to increase scalability in-
volves improved communication efficiency. This can be
achieved through transfer learning [76] on a restricted pa-
rameter space or by better partitioning and rearranging of
the tensor updates [77]. We leave the application of these
techniques to Biscotti as future work.
Leakage from the aggregate model. Since no noise is
added to the updates present in the ledger, Biscotti is
vulnerable to attacks that exploit privacy leakage from the
model itself [51], [52], [59]. Apart from differential privacy,
these attacks can be mitigated by adding regularization like
dropout [13], [51].
Stake limitations. A client’s stake plays a significant role
in their chance of being selected as a noiser, verifier, or
aggregator. We assume that a large stake-holder will not
subvert the system because (1) they accrue more stake by
participating, and (2) their stake is tied to a monetary reward
at the end of training. However, a malicious client could

pose as honest, accrue stake, and finally switch to acting
maliciously to subvert our system.

8 RELATED WORK

Securing ML. AUROR [21] and ANTIDOTE [78] are alterna-
tive techniques to Multi-Krum to defend against poisoning.
AUROR has been proposed for the model averaging use
case and uses k-means clustering on a subset of important
features to detect anomalies. ANTIDOTE uses a robust PCA
detector to protect against attackers on anomaly-detection
models.

Other defenses like TRIM [79] and RONI [69] filter out
poisoned data from a centralized training set based on their
impact on performance on the dataset. TRIM trains a model
to fit a subset of samples selected at random, and identifies
a training sample as an outlier if the error when fitting the
model to the sample is higher than a threshold. RONI trains
a model with and without a data point and rejects it if it
degrades the performance of the classifier. Recent work has
also demonstrated the performance of robust aggregation
schemes, such as the median or trimmed-mean [49] as a
defense for federated learning. However, these techniques
can be manipulated by adversaries [18], [48].

Finally, Baracaldo et al. [80] employ data provenance
as a measure against poisoning attacks by tracking the
history of the training data and removing information from
anomalous sources.
Poisoning attacks. Apart from label flipping attacks [44],
which are handled by Biscotti, gradient ascent tech-
niques [58], [79] are another popular way of generating
poisoned samples one sample at a time by solving a bi-
level optimization problem. Backdoor attacks have also been
used to produce a classifier that misclassifes a manipulated
image with certain pixels or a backdoor pattern [12], [17],
[81]. Defending against such training attacks is a difficult
and open problem.
Privacy attacks. Shokri et al. [82] demonstrated a mem-
bership inference attack using shadow model training that
learns if a victim’s data was used to train the model. Follow
up work [51] showed that it is quite easy to launch this
attack in a black-box setting. In addition, model inversion
attacks [59] have been proposed to invert class images from
the final trained model. However, these are attacks on class-
level privacy, which we do not protect against in Biscotti.
These are only effective against a user’s privacy if a class
represents a significant chunk of a person’s data, such as in
facial recognition systems.
Privacy-preserving ML systems. Although a variety of
recent work has proposed the use of blockchain systems
for distributed learning [38], [39], [40], [83], [84], [85], [86],
Biscotti addresses a unique point in the space of solutions.
The existing prior work either relies on a trusted central
authority, does not address poisoning attacks, does not
handle privacy attacks, or are actually layer-2 blockchain
solutions, which are machine learning applications built on
top of an existing blockchain systems such as Ethereum [87].
We summarize previous work that combines blockchains
with ML in Appendix M.

Other solutions that do not rely on blockchain use multi-
party party computation [88], [89] or trusted execution
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environments [36] to encrypt the model parameters and
the training data when performing multi-party ML. Biscotti
does not rely on such techniques to provide privacy.

9 CONCLUSION

The emergence of large scale multi-party ML workloads and
distributed ledgers for scalable consensus have produced
two rapid and powerful trends. Biscotti’s design lies at their
confluence. To the best of our knowledge, this is the first
system to provide privacy-preserving P2P ML through the
design of a secure layer-1 distributed blockchain ledger.
Unlike prior work, we do not rely on a centralized service,
trusted execution environments or specialized hardware to
provide defenses against adversaries. In our evaluation we
demonstrate that Biscotti can coordinate P2P ML across
200 peers and produces a final model that is similar in
utility to federated learning. We also illustrated its ability
to withstand poisoning attacks and node churn (one node
joining and one node leaving every 1.875 seconds). Our
prototype is open source, runs on commodity hardware, and
interfaces with PyTorch, a popular framework for machine
learning: https://github.com/DistributedML/Biscotti
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APPENDIX A
FEDERATED LEARNING AND DISTRIBUTED SGD
Given a set of training data, a model structure, and a
proposed learning task, ML algorithms train an optimal set
of parameters, resulting in a model that optimally performs
this task. In Biscotti, we assume stochastic gradient descent
(SGD) [57] as the optimization algorithm.

In federated learning [5], a shared model is updated
through SGD. Each client uses their local training data and
their latest snapshot of the shared model state to compute
the optimal update on the model parameters. The model
is then updated and clients update their local snapshot of
the shared model before performing a local iteration again.
The model parameters w are updated at each iteration i as
follows:

wt+1 = wt � ⌘t(�wt +
1

b

X

(xi,yi)2Bt

rl(wt, xi, yi)) (1a)

where ⌘t represents a degrading learning rate, � is a regular-
ization parameter that prevents over-fitting, Bt represents a
gradient batch of local training data examples (xi, yi) of size
b and rl represents the gradient of the loss function.

SGD is a general learning algorithm that can be used to
train a variety of models, including neural networks [57]. A
typical heuristic involves running SGD for a fixed number
of iterations or halting when the magnitude of the gradient
falls below a threshold. When this occurs, model training
is considered complete and the shared model state wt is
returned as the optimal model w

⇤.
In a multi-party ML setting federated learning assumes

that clients possess training data that is not identically and
independently distributed (non-IID) across clients. In other
words, each client possesses a subset of the global dataset
that contains specific properties distinct from the global
distribution.

When performing SGD across clients with partitioned
data sources, we redefine the SGD update�i,twg at iteration
t of each client i to be:

�i,twg = �⌘twg +
⌘t

b

X

(x,y)2Bi,t

rl(wg, x, y) (1b)

where the distinction is that the gradient is computed on a
global model wg , and the gradient steps are taken using a
local batch Bi,t of data from client i. When all SGD updates
are collected, they are averaged and applied to the model,
resulting in a new global model. The process then proceeds
iteratively until convergence.

To increase privacy guarantees in federated learning,
secure aggregation protocols have been added to the central
server [26] such that no individual client’s SGD update is
directly observable by server or other clients. However, this
relies on a centralized service to perform such an aggre-
gation and does not provide security against adversarial
attacks on ML.

APPENDIX B
DIFFERENTIALLY PRIVATE STOCHASTIC GRADIENT
DESCENT
We use the concept of (✏, �) differential privacy as explained
in Abadi et al. [22]. Each SGD step becomes (✏, �) differ-

Data: Batch size b, Learning rate ⌘t, Privacy
parameters (", �), Expected update dimension
d

Result: Precommited noise for an SGD update ⇣t 8T

for iteration t 2 [1..T ] do
// Sample noise of length d for each

expected sample in batch
for Example i 2 [1..b] do

Sample noise ⇣i = N (0,�
2
I) where

� =
q

2log
1.25

� /✏

end
⇣t = ⌘t

b

P
i ⇣i

Commit ⇣t to the genesis block at column t.
end

Algorithm 1: Precommiting differentially Private noise
for SGD, taken from Abadi et al. [22].

entially private if we sample normally distributed noise
as shown in Algorithm 1. Each client commits noise to
the genesis block for all expected iterations T . We also
requires that the norm of the gradients be clipped to have a
maximum norm of 1 so that the noise does not completely
obfuscate the gradient.

This precommited noise is designed such that a neutral
third party aggregates a client update�i,twg from Equation
(1b) and precommitted noise ⇣t from Algorithm 1 without
any additional information. The noise is generated without
any prior knowledge of the SGD update it will be applied
to while retaining the computation and guarantees provided
by prior work. The noisy SGD update g�i,twg follows from
aggregation:

g�i,twg = �i,twg + ⇣t

APPENDIX C
POLYNOMIAL COMMITMENTS AND VERIFIABLE SE-
CRET SHARING

Polynomial Commitments [55] is a scheme that allows com-
mitments to a secret polynomial for verifiable secret sharing
[43]. This allows the committer to distribute secret shares
for a secret polynomial among a set of nodes along with
witnesses that prove in zero-knowledge that each secret
share belongs to the committed polynomial. The polynomial
commitment is constructed as follows:

Given two groups G1 and G2 with generators g1 and
g2 of prime order p such that there exists an asymmetric
bilinear pairing e : G1 ⇥ G2 ! GT for which the t-SDH
assumption holds, a commitment public key (PK) is gener-
ated such that PK = {g, g

↵
, g

(↵)2
, ..., g

(↵)t} 2 G
t+1
1 where

↵ is the secret key. The committer can create a commitment
to a polynomial �(x) =

Pt
j=0 �jx

j of degree t using the
commitment PK such that:

COMM(PK,�(x)) =
deg(�)Y

j=0

(g↵j

)�j

Given a polynomial �(x) and a commitment
COMM(�(x)), it is trivial to verify whether the
commitment was generated using the given polynomial
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Fig. 13. Biscotti uses a consistent hashing protocol based on the current
stake to determine the roles for each iteration.

or not. Moreover, we can multiply two commitments to
obtain a commitment to the sum of the polynomials in the
commitments by leveraging their homomorphic property:

COMM(�1(x) + �2(x)) = COMM(�1(x)) ⇤ COMM(�2(x))

Once the committer has generated COMM(�(x)), it
can carry out a (n, t) - secret sharing scheme to share the
polynomial among a set of n participants in such a way that
in the recovery phase a subset of at least t participants can
compute the secret polynomial. All secret shares (i,�(i))
shared with the participants are evaluations of the polyno-
mial at a unique point i and are accompanied by a com-
mitment to a witness polynomial COMM( i(x)) such that
 i(x) = �(x)��(i)

x�i . By leveraging the divisibility property of
the two polynomials {�(x), (x)} and the bilinear pairing
function e, it is trivial to verify that the secret share comes
from the committed polynomial [55]. This is carried out by
evaluating whether the following equality holds:

e(COMM(�i(x)), g2)
?
= e(COMM( i(x)),

g
↵
2

gi
2

)e(g1, g2)
�wi(i)

If the above holds, then the share is accepted. Otherwise,
the share is rejected.

This commitment scheme is unconditionally binding and
computationally hiding given the Discrete Logarithm as-
sumption holds [55]. This scheme can be easily extended to
provide unconditional hiding by combining it with another
scheme called Pedersen commitments [90] however we do
not implement it.

APPENDIX D
VERIFIABLE RANDOM FUNCTIONS

A verifiable random function V RFsk(x) is a function that
takes in as input a random seed (x) and a secret key (sk).
Subsequently, it outputs two values: a hash and a proof.
The hash output is a hashlen-bit-long value that is uniquely
determined by the sk therefore is unique to a peer. The proof
allows anyone with the peer’s public key (pk) to check that
the hash has indeed been generated by a client who holds
the private key. Therefore, it provides each client in the

system to deterministically produce a hash that cannot be
faked and is unique to the client for that seed value.

In Biscotti, a VRF is used to select a unique committees
that provides noise to a peer for protecting its update. A
peer uses as inputs to the VRF its own secret key and the
SHA-256 hash of the previous block. To select a committee,
the hash output of the VRF is input to a consistent hashing
procedure. The hash output from the VRF is mapped to a
hash ring where each peer is assigned a space proportional
to their stake (See Figure 13). The peer in whose portion of
the ring the hash lies is selected as part of the committee.
The process is repeated until the peer gets a committee of
the right size.

APPENDIX E
INFORMATION LEAKAGE ATTACKS

When doing collaborative learning, each client computes
their gradients by back-propagating the loss through the
entire network from the last layer to the first layer. The
gradient for a layer is computed by using the layer’s features
and the error from the preceding layer. If the layers are
sequential and fully connected, then the output for layer
hl+1 is computed as follows:

hl+1 = Wl ⇤ hl

where Wl is the weight matrix.
Hence, the gradient of the error (E) with respect to Wl is

computed as follows:

dE

dWl
=

dE

dhl+1
⇤ hl

Note that the gradient of the weights dE
dWl

is computed
by using the inner products from the layer above and also
the features of that particular layer. Therefore, the values of
the gradients of the first layer will be proportional to the
input features. By exploiting this property, observation of
gradient updates can be used to infer feature values, which
are in turn based on the participants private training data.

In the information leakage attack that we launch on
Biscotti, we select the values of the gradient in the first layer
that correspond to a certain class, rescale the values to lie
between (0,255) and visualize the resulting image.

APPENDIX F
PROOF OF STAKE

Blockchain based systems need a mechanism to prevent
any arbitrary peer from proposing blocks and extending
the chain at the same time. Otherwise, anyone can extend
the blockchain and nothing would stop the blockchain from
developing forks at a rate equal to the number of users and
there will be no consensus eventually. A rate limiting solu-
tion is needed to prevent the ledger from being extended
infinitely by all the peers. Proof of Work (POW) and Proof
of Stake (POS) are two popular solutions to this problem.

Proof of Work uses a puzzle to solve the rate limiting
problem but it has its limitations. Peers who want to propose
the next block have to solve a hard cryptographic puzzle
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that is trivial to verify by other peers. The peer that solves
the puzzle first gets to propose the next block. The puzzle
acts as a rate limiter because by creating new identities
(Sybils) peers do not gain any advantage in being the
next proposer. In addition to preventing Sybils, it acts as
a probabilistic back off mechanism that tries to limit forks in
the system. It does not completely eliminate forks and users
have to wait for a certain amount of time (6 blocks in Bitcoin)
before their transaction is confirmed as accepted. This leads
to long wait times (60 minutes for Bitcoin) for transactions to
be accepted. Furthermore, it is also energy consuming since
it takes a lot of computational power to solve the puzzles.
Despite its limitations of long wait times and high energy
consumption, POW is a widely used solution.

To mitigate the problems of Proof of Work, Proof of
Stake has been recently proposed as an alternate. POS based
systems assign the responsibility of proposing blocks each
round to specific peers. The probability that a peer will be
selected to propose is proportional to the value (stake) that
they have in the system. In cryptocurrencies, the stake of a
peer is equal to the amount of money that they have in the
system. Based on the distribution of stake at that particular
time, a predefined algorithm is used to choose a peer/subset
of peers that is responsible for proposing the next block.
The algorithm ensures that that at any time a group of
malicious nodes holding a certain amount of stake in the
system cannot act maliciously and take over the system.
All other users observe the protocol messages, which allows
them to learn the agreed-upon block.

For cryptocurrencies, Algorand [32] is a popular pro-
posal for a proof of stake based system. In Algorand, each
peer is assigned a priority for two particular roles: block
proposal and block selection. To determine their priority
for a particular role, each peer runs a verifiable random
function (VRF’s) (see D) using their private key, the role
(selection/proposal) and a random seed which is public
information on the blockchain. The VRF outputs a pseudo-
random hash value that is passed by the user through cryp-
tographic sortition to determine their influence in proposing
or selecting a block for that particular round. At a high
level, the cryptographic sortition is a random algorithm that
assigns each user a priority such that the priority assigned
is proportional to the user’s account balance. If the user’s
priority is above a threshold, they are selected for that
particular role. Subsequently, all users assigned a proposal
role, propose a block based on the user’s priority. To reach
consensus on a single block proposal, peers assigned the
selection role agree on one proposal for the next block using
a multi-step Byzantine Agreement protocol. In each step,
the peers responsible for that step vote for a proposal until
in some step enough users have agreed on a proposal. This
proposal becomes the next block in the chain.

Similar to Algorand, Biscotti uses verifiable random
functions to assign roles to peers in the system. However,
instead of using the cryptographic sortition algorithm, Bis-
cotti uses a consistent hashing protocol described in Section
4.3 to select a peer for a role such that the probability of
getting selected for a role is proportional to the peer’s stake.
In Biscotti, we define stake to be the reputation that a peer
acquires over the training process by contributing updates.

APPENDIX G
SECURE AGGREGATION PROTOCOL IN BISCOTTI

In Biscotti, an update of length d is encoded as a d-degree
polynomial, which can be broken down into n shares such
that (n = 2 ⇤ (d + 1)). These n shares are distributed equally
among m aggregators. Since an update can be reconstructed
using (d + 1) shares, it would require m

2 colluding aggrega-
tors to compromise the privacy of an individual update.

A peer with a verified update already possesses a com-
mitment C = COMM(�wi(x)) to its SGD update signed
by a majority of the verifiers from the previous step. To
compute and distribute its update shares among the aggre-
gators, peer i runs the following secret sharing procedure:

1) The peer computes the required set of secret shares
sm,i = z,�wi(z)|z 2 Z for aggregator m. In order to
ensure that an adversary does not provide shares from
a poisoned update, the peer computes a set of asso-
ciated witnesses witm,i = {COMM( z(x))| z(x) =
�w(x)��w(z)

x�z }. These witnesses will allow the aggre-
gator to verify that the secret share belongs to the
update �wi committed to in C . It then sends <

C, sm,i, witm,i > to each aggregator along with the
signatures obtained in the verification stage.

2) After receiving the above vector from peer i, the aggre-
gator m runs the following sequence of validations:

a) m ensures that C has passed the validation phase by
verifying that it has the signature of the majority in
the verification set.

b) m verifies that in each share (z,�wi(z)) 2 sm,i

�wi(z) is the correct evaluation at z of the polyno-
mial committed to in C . (See Appendix C for details.)

Once every aggregator has received shares for the min-
imum number of updates u required for a block, each
aggregator aggregates its individual shares and shares the
aggregate with all of the other aggregators. As soon as a
aggregator receives the aggregated d+1 shares from at least
half of the aggregators, it can compute the aggregate sum
of the updates and create the next block. The protocol to
recover

Pu
i=1�wi is as follows:

1) All m aggregators broadcast the sum of their accepted
shares and witnesses <

Pu
i=1 smi ,

Pu
j=1 witmj >

2) Each aggregator verifies the aggregated broadcast
shares made by each of the other aggregators by check-
ing the consistency of the aggregated shares and wit-
nesses.

3) Given that m obtains the shares from m
2 aggregators

including itself, m can interpolate the aggregated shares
to determine the aggregated secret

Pu
j=1�wj

Once m has computed
Pu

i=1�wi, it can create a block
with the updated global model. All commitments to the
updates and the list of signatures that contributed to the
aggregate are added to the block. The block is then dissem-
inated in the network. Any peer in the system can observe
that all updates were verified by looking at the signature list
and homomorphically combining the commitments to check
that the update to the global model was computed honestly
(see Section 4.2). If any of these conditions are violated, the
peer rejects the block.
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Fig. 14. The utility trade-off if differentially private noise is added directly
to the updates in the ledger. Biscotti, which aggregates non-noisy up-
dates, has the best utility (lowest test error).

Fig. 15. Visualized privacy trade-off for curves in Figure 14.

APPENDIX H
EXPERIMENTALLY DEMONSTRATING THE PRIVACY-
UTILITY TRADEOFF

Figure 14 illustrates the privacy-utility trade-off for learn-
ing a softmax model to recognize hand-written digits. The
model is trained using the MNIST dataset over 100 iter-
ations for different values of ✏. Smaller ✏ results in more
noise and more privacy, but lower utility, or test error. The
bottom-most line in the Figure is Biscotti, which aggregates
original updates: a design choice that we have made to
prioritize utility. By default Biscotti uses a batch value of
35. Figure 15 illustrates the privacy-utility trade-off visually
for batches of size 35 with noisy updates as compared
to Biscotti (right-most image), which aggregates un-noised
updates. The images are reconstructed using an information
leakage attack [13] on the aggregated gradients of two
different machine learning models. The top row of images
are constructed from aggregated gradients of the MNIST
model with respect to the 0 digit class. The bottom row
shows results for a softmax model trained to recognize
gender from faces using the Labelled Faces in the Wild
(LFW) dataset. The pictures are reconstructed with respect
to the female class. These results demonstrate that although
aggregation protects individual training examples it does
reveal information about how a target class appears in ag-
gregate. Differentially-private noise needs to be included in
the aggregate to provide this additional level of protection.
However, our design favours utility, therefore we choose
to remove the noise before aggregating the updates in the
ledger.

APPENDIX I
PRIVACY EVALUATION

In this section, we evaluate the privacy provided by secure
aggregation in Biscotti. We subject Biscotti to an information
leakage attack [13] and demonstrate that the effectiveness
of this attack decreases with the number of securely aggre-
gated updates in a block. We also show that the probability
of a successful collusion attack to recover an individual
client’s private gradient decreases as the size of the com-
mittees grows.
Information leakage from aggregated gradients. We subject
the aggregated gradients from several different datasets
to the gradient-based information leakage attack described
in [13]. We invert the aggregated gradient knowing that the
gradient for the weights associated with each class in the
fully connected softmax layer is directly proportional to the
input features. To infer the original features, we take the
gradients from a single class and invert them with respect to
all the classes in the CIFAR-10 (10 classes of objects/animals)
and LFW datasets(2 classes male/female). We also invert the
gradients for three classes (0,3,5) on the MNIST dataset. We
visualize the gradient in grayscale after reshaping to the
original feature dimensions in Figure 16. The aggregated
gradient will have data sampled from a mixture of classes
including the target class. Our results show that having a
larger number of participants in the aggregate decreases the
impact of this attack. As shown in Figure 16, as the number
of aggregates batched together increases, it becomes harder
to distinguish the individual training examples.

By default Biscotti aggregates/batches 35 updates. Fig-
ure 16 illustrates how the individual class examples from
the inverted images are difficult to determine. It might be
easy to infer what a class looks like from the inversions.
But if the class does not represent an individual’s training
set, secure aggregation provides privacy. For example, in
LFW we get an image that represents what a male/female
looks like but we do not gain any information about the
individual training examples. Hence, the privacy gained is
dependent on how close the training examples are to the
class representative.
Recovering a client’s individual gradient. We also evaluate
a proposed attack on the noising protocol, which aims to de-
anonymize peer gradients. This attack is performed when a
verifier colludes with several malicious peers. When boot-
strapping the system, the malicious peers pre-commit noise
that sums to 0. As a result, when a noising committee selects
these noise elements for verification, the masked gradient is
not actually masked with any " noise, allowing a malicious
peer to perform an information leakage attack on the victim.

We evaluated the effectiveness of this attack by varying
the proportion of malicious stake in the system and calcu-
lating the probability of the adversary being able to unmask
the updates for various sizes of the noising committee. A
malicious peer can unmask an update if it controls all the
noisers for a peer and has at least one verifier in the verifica-
tion committee. Figure 17 shows the probability of a privacy
violation as the proportion of adversarial stake increases for
noising committee sizes of 3, 5 and 10 respectively.

When the number of noisers for an iteration is 3, an
adversary needs at least 15% of stake to successfully unmask
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Fig. 16. The results of an information leakage attack on different number of aggregated gradients for different classes.
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Fig. 17. Probability of a successful collusion attack to recover an individ-
ual client’s gradient.

an SGD update. This trend continues when 5 noisers are
used: over 30% of the stake must be malicious. When the
number of noisers is 10 (which has minimal additional
overhead according to Figure 9), privacy violations do not
occur even with 50% of malicious stake. By using a stake-
based consistent hashing to select noising clients, Biscotti
prevents adversaries from performing information leakage
attacks on other clients unless their proportion of stake in
the system is overwhelmingly large.

APPENDIX J
HYPERPARAMETER EFFECTS ON MULTI-KRUM POI-
SONING DETERRENCE

Attack Rate vs Number of Samples. Figure 18 shows that,
as the percentage of poisoners in the system increases, a
higher fraction of updates need to be collected for Multi-
Krum to be effective (achieving a low attack rate). A large
sample ensures that the poisoners do not gain majority in
the set being fed to Multi-Krum, otherwise Multi-Krum
cannot prevent poisoned updates from leaking into the
model. The results show that in each round, updates need
to be selected from 70% of the peers to prevent poisoning
from 30% of the nodes.
Attack Rate vs Noise. To ensure that updates are kept
private in the verification stage, differentially private noise
is added to each update before it is sent to the verifier.
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Fig. 18. Evaluating the effect of the number of sampled updates each
round on Krum’s performance.
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Fig. 19. Multi-Krum’s performance in defending against a 30% attack on
the MNIST dataset for different settings of ✏ noise.

This noise is parametrized by the ✏ and � parameters. The
� parameter indicates the probability with which plain ✏-
differential privacy is broken and is ideally set to a value
lower than 1/|d| where d is the dimension of the dataset.
Hence, we set � to be 10�5 in all our experiments. ✏ rep-
resents privacy-loss and a lower value of ✏ indicates that
more noise is added to the updates. We investigate the
effect of the ✏ value on the performance of Multi-Krum with
30% poisoners in a 100-node deployment with 70 received
updates in each round on the MNIST dataset. Figure 19
shows that Multi-Krum loses its effectiveness at values of
✏  1 but performs well on values of ✏ � 2.
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TABLE 3
Blockchain-based systems designed to support multi-party ML.

System Layer Distribution Anti-poisoning Smart contract
value distribution Privacy Consensus Deployability

FedCoin [83] L2 Client-server 5 4
4

secure agg. PoSV 4
1 server, 100 clients

BlockFL [84] L2 P2P 5 5 5 PoW 5
Simulated

LearningChain [40] L2 P2P 4
l-nearest agg 5

4
diff. priv. PoW 4

Ethereum

BEMA [38] L2 P2P 4
Krum, MPMC 5 5 PoW 5

Simulated

TCLearn [85] L1 Client-server 4
Test dataset 5

4
hom. encryption BFT 5

Simulated

MEC BChain [39] L1 Client-server and
P2P Hybrid

5
Auditing 5

4
diff. priv. N/A 5

Simulated

DeepChain [86] L1 P2P 5
Auditing 4

4
hom. encryption BFT 5

Simulated
Biscotti

(this paper) L1 P2P 4
Krum 5

4
diff. priv. + secure agg. PoF 4

Azure, 200 clients
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Fig. 20. Size of committee needed such that the probability of an
adversary successfully colluding is below a threshold.

APPENDIX K
ANALYZING THE MINIMUM COMMITTEE SIZE TO PRE-
VENT COLLUSION

In Biscotti, the verification and aggregation stages involve
committees that use a majority voting scheme to reach
consensus. By making these committee sizes large enough,
we can prevent an adversary controlling a certain fraction
of the stake from acting maliciously. An adversary having
the majority vote can act maliciously by accepting poisoned
updates or recovering an individual peer’s updates during
aggregation. In this section, we carry out an analysis of the
least committee size needed such that the probability of an
adversary having the majority is below a threshold.

Using the consistent hashing protocol, the probability of
a peer being selected is proportional to their stake. Hence,
the probability p of an adversary having the majority in a
committee size k can be calculated by:

p =
kX

(i= k
2 +1)

 
k

i

!

s
i(1 � s)k�i

where s is the fraction of stake controlled by the adver-
sary.

By assuming that p follows a binomial distribution, we
obtain a loose upper bound for an adversary controlling the
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Fig. 21. Federated learning and Biscotti’s test error on the MNIST
dataset with 600,000 datapoints, across iterations

majority in Biscotti. A binomial distribution assumes sam-
pling peers with replacement allowing a peer to be elected
more than once in the committee. Since Biscotti limits a peer
to only one vote in the committee, the actual probability of
the adversary controlling the majority in Biscotti is less than
p.

Since p is an upper bound, we can safely use it to
calculate the smallest committee size that bounds p below
a threshold (t). To obtain the minimum committee size for
p, we use a brute force approach and try out different
committee sizes and pick the least size that causes p to fall
below the threshold.

Figure 20 plots the minimum committee size needed
against adversarial stake for probability thresholds of 0.01,
0.05 and 0.001 respectively. The minimum committee size is
independent of the number of nodes and grows exponen-
tially with adversarial stake in the system. Since our exper-
imental evaluation is limited to training for a 100 rounds,
the probability threshold of an adversary controlling the
majority t needs to be less than 0.01. For this threshold, a
committee size of 26 protects against an adversary control-
ling 30% of the stake in the system.
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Fig. 22. Federated learning and Biscotti’s test error on the MNIST
dataset with 600,000 datapoints, across time
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Fig. 23. Federated learning and Biscotti’s test error on the MNIST
dataset with 6,000,000 datapoints, across iterations

APPENDIX L
EXTRA SCALE EXPERIMENTS

To evaluate Biscotti at greater scales, we performed ad-
ditional baseline experiments with 200 nodes. Cases with
600,000 training examples (Figures 21 and 22) and 6,000,000
training examples (Figures 23 and 24) are shown. The
test error over training iterations (Figures 21 and 23) and
seconds (Figures 22 and 24) are shown. In each case, the
results are similar to the cases shown in Figures 11 and 10:
the performance across iterations is similar, while the time
overhead imposed is still 14X.

APPENDIX M
EXISTING BLOCKCHAIN FOR ML SYSTEMS

Table 3 reviews the existing state of the art in blockchain
systems designed specifically for ML workloads. The listed
systems have been all published in the last two years (2018
and later). Biscotti, the system described in this paper, is
listed in the last row. The table compares the systems across
seven dimensions:

• Layer. is the system a custom blockchain (layer 1) co-
designed with the application, or is the system built on
top of an existing, generic, blockchain (layer 2)?

• Distribution. What is the distribution model in the
system? Is the system P2P or does it rely on trusted
authorities, like a server?

• Poisoning defense. Does the system offer a defense
against poisoning attacks?
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Fig. 24. Federated learning and Biscotti’s test error on the MNIST
dataset with 600,000 datapoints, across time

• Smart contract value distribution. Does the system
support smart contracts to reward participants for their
contributions to the learning process?

• Privacy. Is privacy offered by the system, and how is it
provided?

• Consensus. What is the consensus protocol used by the
blockchain?

• Deployability. How deployable is the system. In partic-
ular, is the presented artifact evaluated in a simulation
or a real deployment?

Each system comes with various design tradeoffs, and
may be suitable for different types of ML workloads. Most
other solutions are inadequate for our decentralized, ad-
versarial setting: either they do not provide a poisoning
defense, they do not provide privacy for its peers, or they
rely on trusted authorities and are not a true, decentralized
system.

A key Biscotti’s feature is its layer-1 design. Within the
space of layer-2 solutions, LearningChain [40] also provides
all of the above guarantees, but it is deployed as a layer-
2 application solution on top of Ethereum. As a result, it’s
performance is tied to the Ethereum network, and it relies
on Ethereum’s costly proof-of-work consensus mechanism.

To the best of our knowledge, Biscotti is the only
layer-1 solution that is (1) fully decentralized (P2P), (2)
addresses both poisoning and privacy attacks against the
global model and client datasets, and (3) is deployable in a
WAN environment across hundreds of nodes. And, unlike
most of the systems in Table 3, Biscotti is open-source:
https://github.com/DistributedML/Biscotti


