SatelliteLab: Adding Heterogeneity to Planetary-Scale Testbeds

Andreas Haeberlen, Marcel Dischinger, Ivan Beschastnikh[†], Krishna P. Gummadi Max-Planck-Institute for Software Systems, [†]University of Washington

. Overview

- Internet testbeds are indispensable for evaluating distributed systems
 - They enable researchers to test prototypes in realistic Internet conditions
- But current testbeds, such as PlanetLab, lack heterogeneity
 - Most PlanetLab nodes are in well connected academic networks
 - Few nodes are in diverse edge networks like cable, DSL, or wireless
- It is challenging to include Internet edge nodes in testbeds

2. How SatelliteLab works

- 1. Constrained by limited resources, edge nodes cannot run arbitrary experimental code
- 2. Edge nodes cannot reach one another directly as they are often behind NATs
- SatelliteLab enables heterogeneous edge nodes to join existing testbeds as satellites – a new class of lightweight testbed nodes
- S_A, S_B : Satellites a new class of lightweight testbed nodes P_A,P_B : Planets – classical well provisioned testbed nodes
- Two key ideas behind SatelliteLab's design
 - 1. Execute code on nearest planets, but route traffic via satellites
 - 2. Detour communication between satellites via nearest planets

3. Evaluation

Does SatelliteLab help add heterogeneity?

- - the United States, and Canada

S	2000					
¥	3000	I	I	1	1	

How well does our design work?

4. Applications

It is useful to test distributed systems in the heterogeneous network environments provided by SatelliteLab

• Distributed systems can behave differently in different environments. The resulting insights can lead to more robust designs

