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ABSTRACT
Most large cloud operators offer a lower-priced, lower-
priority alternative to regular (on-demand or reserved) vir-
tual machines, commonly referred to as spot instances. Spot
instances are opportunistically allocated to servers in order
to utilize any residual cloud capacity, but are evicted when-
ever regular virtual machines need to use that capacity. This
paper proposes CoSpot, a lightweight framework for coopera-
tive allocation of regular virtual machines and spot instances,
which allows for easy integration of arbitrary virtual ma-
chine and spot allocators. In our experiments, employing
the framework achieves up to 245% improvement (average
34% improvement) in spot revenue, with no loss in virtual
machine revenue, compared to the baseline VM and spot
allocation without using our framework. We also derive and
release a reusable workload with both virtual machines and
spot instances, based on data previously shared by Microsoft
Azure.
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And this more human love ... will resemble that
which we prepare strenuously and laboriously:

the love that consists in two solitudes that protect
and delimit and greet each other.

— Rainer Maria Rilke, Letters to a Young Poet #7

1 INTRODUCTION
Most large cloud providers offer (at least) two different prod-
ucts: a regular (on-demand or reserved) virtual machine,
which tenants can rent for as long as they need; and a lower-
priority spot instance, which tenants can rent at lower cost,
but which can be preempted/evicted at any time. For exam-
ple (listed in order of current market share), Amazon Web
Services offers Spot Instances, Microsoft Azure offers Spot
VMs (formerly Low Priority VMs), Google Cloud offers Pre-
emptible VMs, and Alibaba Cloud offers Preemptible Instances.
For brevity in this paper, we will use the term spot instance
for this general class of low-priority, preemptible VM, and
simply VM for regular, high-priority VMs.
The business case for spot instances is straightforward:

datacenters must be sized to handle peak VM demand, to
keep regular VM customers happy. But, this results in idle
datacenter capacity most of the time, and spot instances
monetize the surplus resources that would otherwise be
wasted — any revenue is better than nothing. Indeed, the
original AWS spot instance pricingmodel (prior to November
2017 [19]) simply sold excess capacity to the highest bidder.

As a rapidly growing, global cloud provider, Huawei Cloud
must provision capacity to support both peak demand as well
as projected future (rapid) growth. We are therefore very
interested in exploiting spare capacity through new spot
products. Unfortunately, there is a lack of literature outlin-
ing practices for integrating spot products into existing IaaS
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Figure 1: CoSpot allows pre-existing VM and spot allo-
cators tomake VM and spot placement decisions coop-
eratively. It is designed to be minimally disruptive to
the existing code, and to rely only on information and
capabilities that any allocatormust have. In a nutshell,
the VM allocator communicates preferred servers for
a VM it needs to place to the spot allocator; the spot
allocator chooses a server from that list according to
its own preferences, and also communicates its spot
placements to the VM allocator.

infrastructure (Sec. 6). There are no evaluations of tradeoffs
between VM and spot revenue for different VM/spot allo-
cation policies. There are also no existing published frame-
works that enable explicit cooperation between VM and spot
allocation policies or co-optimize VM and spot allocation to
improve cloud operator revenue.

This paper addresses that gap by focusing on the manage-
ment of spot instances from the cloud provider’s perspective.
Specifically, we attack the problem of VM/spot allocation: a
tenant requests a virtual machine with specified computing
requirements (e.g., number of cores, RAM, disk, etc.), and
the allocator must place this virtual machine onto a physical
server in the data center with sufficient unused resources to
meet the request. For regular VMs, the tenant can continue
to use the VM for as long as the tenant desires; for spot in-
stances, the tenant’s job might run to completion, but the
allocator also has the problem/freedom of deciding which
spot instance(s) to evict if their resources are needed to sat-
isfy a request for a regular VM. From the cloud operator’s
perspective, the goal is to have an allocator that can satisfy an
ongoing sequence of such requests, while optimizing some
metric (e.g., maximizing revenue).
Our proposed solution is CoSpot, a novel framework by

which independent VM and spot allocators can cooperate
(Fig. 1). CoSpot allows for easy integration of arbitrary VM
and spot allocators, an important consideration given the
large investment that cloud operators have made in existing
allocators. CoSpot may be especially valuable to newer oper-
ators who want to integrate spots into their existing frame-
work, with minimal disruption to existing operations. How-
ever, large operators, who already have proprietary VM/spot
allocators, might also benefit from the explicit and tunable
cooperation enabled by CoSpot.

CoSpot presupposes the existence of (1) a VM allocator
that places VMs on servers, (2) a spot allocator that does the
same for spots (and that might reuse VM allocation logic),
and (3) a spot eviction mechanism, by which the spot allo-
cator decides on a set of spots to evict, to make room for a
VM request. CoSpot introduces a minimal amount of com-
munication between the two allocators: the VM allocator
communicates a small set of its preferences to the spot al-
locator; the spot allocator communicates its choices back
to the VM allocator. The key insight is that the VM alloca-
tor might be indifferent among a set of placement choices,
whereas that flexibility might be valuable to the spot alloca-
tor. We emphasize that we are not proposing a new category
of VM, changes to any SLAs, or a specific VM/spot alloca-
tor, but rather a framework that adds effective cooperation
between arbitrary, existing VM/spot allocators. The goal is
improved spot revenue with minimal changes to existing
products/code.

We evaluate CoSpot across 54 different VM/spot allocator
combinations. In all cases, CoSpot achieves substantial gains
in spot revenue, compared to the baseline without CoSpot
(where VM and spot allocators do not cooperate). For ex-
ample, in a datacenter with only 1% spare capacity, CoSpot
achieves at least (for the least-improving VM/spot allocator
combination) 23% average improvement, and up to (for the
most-improving combination) 59% average improvement,
with no loss in VM revenue. I.e., CoSpot had no VM allocation
failures while achieving longer spot instance lifetimes. The
allocation latency with CoSpot was negligible in nearly all
cases, and can always be limited by choosing appropriate
framework parameters.

As an additional contribution, we also derive and release
a reusable workload with both VM and spot instances, based
on data logged by Hadary et al. [25] on Microsoft Azure.
“Reusable” means that our synthesized workload contains
concrete, consistent resource vectors for all VM, spot, and
server types, allowing the workload to be reused to evaluate
different allocation and scheduling algorithms, rather than
being only a historical log from one proprietary cloud.

2 CONTEXT AND HYPOTHESES
We start with some context for our work: we establish the
concept that all allocators can be viewed in terms of filtering
and ranking of servers, and we explore the two hypotheses
that underpin our work.

A VM/spot allocator is essentially solving an online, multi-
dimensional bin-packing problem: online, because tenant
requests arrive over time and must be satisfied quickly; multi-
dimensional, because of the different resource types; and bin-
packing, because we want to satisfy as many tenant requests
as possible with the set of servers in our cloud. Since the
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allocator is solving a constrained optimization problem, any
VM or spot allocator must face two issues for each request:
feasibility and suitability. “Feasibility” means enforcing hard
constraints, e.g., the allocator can place a VM/spot instance
onto only servers with sufficient resources required by the
instance. “Suitability” means soft optimization objectives:
the allocator might prefer to place the instance on one server
over another, to try to optimize, e.g., power consumption,
fault tolerance, capacity for anticipated future requests, etc.
For example, the OpenStack allocator architecture [51] ap-
plies “filters” to eliminate from consideration servers that
don’t meet the hard constraints, and then a “weigher”, which
scores each remaining server as to its suitability; Google’s
Borg allocator refers to the same steps as “feasibility check-
ing” and “scoring” [63].
Similarly, when a VM allocation necessitates spot evic-

tions, the spot allocator must choose a set of spot instances
to evict that frees up enough resources for VM allocation (fea-
sibility). But the spot allocator must have some mechanism
to choose which spots it prefers to evict (suitability).

Accordingly, since all allocations must meet the feasibility
requirements, any VM or spot allocator is fully charac-
terized by the ranking policy it uses to evaluate suit-
ability; the choice of ranking policy essentially defines the
allocator. For the remainder of this paper, we will refer to
different allocators solely by the ranking policy used. To give
concrete examples, we will use the following 3 well-known,
published ranking policies that are used in state-of-the-art
VM allocators:

UTIL (Utilization) This policy ranks a server higher the
more fully its cores are already utilized (ignoring spots).
This implements the Best-Fit heuristic for bin-packing,
by placing the VM request in the most full server on
which it fits.

COS (Cosine Similarity) Many allocators use cosine similar-
ity, or closely related measures, when placing VMs or
jobs onto servers (e.g. [21, 22, 55]) and it is a known
geometric heuristic for the vector bin packing prob-
lem [48]. If we consider the resource requirements of
a VM request (e.g., cores, RAM, etc.) as one vector,
and the available resources (residual capacity, ignor-
ing spots) on a server as another, the ranking score is
the cosine of the angle between the two vectors. The
intuition is to place VMs on servers whose residual
capacity is aligned with the resources requested. By
itself, this policy did not work well in our experiments
(described in detail in Sec. 4): VMs were spread around
the datacenter, so larger VMs arriving later could not
be placed because no server had sufficient capacity. We
thus refined COS to rank any non-idle server (i.e., hosts
at least one VM) over all idle servers. This is essentially

the any-fit heuristic in bin-packing algorithms, where
it is preferable to pack into existing open bins than to
open a new empty bin.1

DPD (Delta Perpendicular Distance) Ke et al. [36] introduced
DPD as a key component of the Fundy allocator, report-
ing better packing than COS-based prior work [22].
As with COS, the DPD ranking policy treats the VM
request and the available resources on a server as vec-
tors. The ranking score is a measure of how much the
request vector would move the resource usage on the
server toward a balanced usage of its resources. For
example, a server with too many CPU-intensive-but-
memory-light VMs would be a good place to allocate a
CPU-light/memory-heavy VM request. As with COS,
DPD did not work well by itself, so we added the same
preference for non-idle servers as in COS.

The key insight behind our CoSpot framework is based on
two hypotheses about how the ranking heuristics interact
with the overall optimization objective.

Hypothesis 1: Slightly degrading VM allocation rankings
doesn’t result in a large degradation of VM allocation quality.

We can easily validate this hypothesis experimentally by
simulating different VM allocation policies, but with an ad-
justable “knob” to degrade the rankings. Specifically, we
choose an integer N , and instead of placing a VM request on
the top-ranked server, we place it randomly on one of the
top-N ranked servers. We then compare how many more
VM requests cannot be allocated, versus the original, un-
degraded allocation policy.2
For the workloads in our simulation, we start with the

Resource Central VM trace [10] (which doesn’t have labeled
spot instances), and the VMs only (ignoring spots) from the
Protean trace [25]. For robustness, we randomly sample sub-
traces from these traces: each VM request in the original
trace is included in each sampled trace with 1% probability
(Bernoulli sampling in Sec. 4.2). From the Resource Central
trace, we generate 50 such traces; from the Protean trace, we
generate 10. We assume a server configuration large enough
to accommodate the largest VM flavors in the traces, and
then for each VM allocation policy (original, without degra-
dation), we compute the minimum datacenter size using
the methodology of Sec. 4.3 to generate datacenters with
0%–4% headroom. We then re-simulate each trace, but with
N = 1, . . . , 32, and plot the number of VMs that could not
be allocated.

Fig. 2 shows the results for the Resource Central traces; the
results for the Protean workloads are similar, but the plots

1 Borg [63] and Protean [25] have also noted similar phenomena/solutions.
2 This is intended as a quick experiment just to illustrate the first hypothesis.
Our main experimental results to evaluate CoSpot are in Sec. 4.
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are omitted for space reasons. We can see that the heuristics
do work: degrading them by increasing N does increase
the number of VM allocation failures. However, the number
of failures is minuscule compared to the total number of
VM requests (averaging 19,793 VMs in the Resource Central
traces and 52,231 in the Protean traces). Furthermore, the
number of VM allocation failures is usually zero if N is small,
or if there’s even a bit of spare capacity in the datacenter.
The first hypothesis holds.

Hypothesis 2: The freedom created by not choosing the
top-ranked server for VM allocation gives the spot allocator
flexibility to achieve greater spot revenue.

To evaluate this hypothesis, we need to propose a mech-
anism in which the VM allocator provides flexibility to the
spot allocator, and where the spot allocator can exploit this
flexibility. That is the main contribution of this paper and is
described next.

3 THE COSPOT FRAMEWORK FOR
COOPERATIVE VM/SPOT ALLOCATION

Rather than craft an arbitrarily complex framework for com-
bined VM/spot allocation, we prune the design space via two
principles.
First, we assume VMs are strictly more important than

spots. VMs have both a higher price and higher service level
expectations, e.g., AWS publishes a 99.99% uptime goal for
their EC2 service [3]. Moreover, each failure to allocate a
requsted VM hurts the cloud provider’s reputation and could
result in permanently losing a disappointed customer. Thus,
we seek to minimize how much we perturb the VM allocator.

Second, our framework must work with any VM/spot
allocators. Cloud operators have existing allocators, which
they have optimized and tuned extensively, both for obvious
objectives (revenue, energy, etc.) and proprietary ones, too.
A useful cooperation strategy must respect and interoperate
with this existing investment. Accordingly, CoSpot must rely
only on information that any allocator must have readily
available, and request only actions any allocator can perform.

Whatmight these information/actions be? Obviously, each
allocator needs basic information to perform allocations:
total and residual capacity for each resource type on each
server in the datacenter, as well as where each VM/spot
instance is currently placed. Each allocator must be able to
allocate and deallocate its instance type (VM or spot), and
the spot allocator must be able to evict spot instances when
the VM allocator requests. Beyond these obvious capabilities,
we established in Sec. 2 that any allocator must have the
ability to rank server choices. Thus, we construct CoSpot
to rely on only these basic actions, and the two hypotheses
from Section 2: that the VM allocator’s top choices might
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Figure 2: Loss of Allocation Quality as the VM Allo-
cation Policy Is Degraded. The parameter N on the x-
axis determines how much we degrade the VM alloca-
tor: instead of choosing the top-ranked server for each
VM, the allocator randomly chooses one of the top-N
ranked servers. (N = 1means the VM is always placed
on the top-ranked server, as would normally be done;
N = 2 means the VM is placed on one of the top two
server choices with equal probability; etc.) The y-axis
is the number of VM requests that could not be allo-
cated (due to resource fragmentation). The lines show
the average # of VM allocation failures for each of the
3 VM allocation policies, over 50 randomly sampled
workloads; the shaded regions show the interquartile
range. Increasing N does result in more failures, but
the number is small (compared to an average 19,793
VM requests in each workload sample), and is zero for
small N and/or greater headroom.
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not differ much (Hypothesis 1), but this flexibility may be
valuable to the spot allocator (Hypothesis 2).

Our design baseline is without cooperation: a VM allocator
handles VM requests without regard to spots; the VM allo-
cator communicates its decisions to the spot allocator; and
the spot allocator handles spot requests, using datacenter
capacity leftover by VMs, and also decides and performs spot
evictions when a VM allocation (which ignored resources
consumed by spots) exceeds residual capacity (including
spots) on a server. CoSpot augments this baseline with a lim-
ited amount of communication between the two allocators
(Fig. 1). This communication is controlled by two indepen-
dent parameters that adjust how hard the VM allocator tries
to cooperate with the spot allocator: (Fig. 3 gives a pictorial
summary of how these two parameters work in CoSpot.)
Offer Top N (OTN). The OTN parameter exploits the suit-
ability ranking that any VM allocator must perform. It is
a positive integer, and OTN = n means the VM allocator,
instead of placing a VM on its top-ranked server, will instead
pass a list of its top n ranked servers to the spot allocator.
The spot allocator then chooses among these n servers, all
of which the VM allocator ranked highly, on which server it
wants the VM allocator to place the VM. Varying n adjusts
how much the VM allocator is willing to defer, among its top
choices, to the spot allocator’s preferences. Modifications to
the pre-existing allocators are minimal: The VM allocator
needs to perform ranking anyway, and the spot allocator
can reuse whatever eviction suitability policy it already has,
evaluated on all n choices, to choose the most suitable server,
as well as what set of spots (if any are needed) to evict on
that server.
Spot Avoiding Filter (SAF). The SAF parameter explores
the more extreme position that avoiding spot evictions is
preferable whenever feasible. It is a Boolean flag, and if true,
the VM allocator will always rank higher any server where
the VM can be allocated without requiring any spot evic-
tions. For example, if SAF is true and OTN = 1, then the
VM allocator will pick its top-ranked server among those
that can accommodate the request without any spot evic-
tions (if such a server exists), or else its top-ranked server
regardless of spots (if no such server exists). If OTN =n>1
(and SAF is true), the spot allocator gets to choose from a
list of n servers, exactly as above, but this list will always
have servers that avoid spot evictions ranked higher. Con-
ceptually, this is equivalent to pre-filtering out all servers
that require spot evictions, and falling back to spot eviction
only if necessary. SAF is easily implemented in the VM al-
locator by allowing it to see (or track, by snooping the spot
allocator’s decisions) the spot allocator’s residual capacity.
We use OTN = 1 and SAF = false as the baseline in our

evaluation. This corresponds to the VM allocator optimizing
purely for VMs, with no regard for the spot allocator. We will

Spot placement (p,s)

VM placement (v,s)

VM v

SAF=True SAF=False

CoSpot VM Allocator CoSpot Spot Allocator

Filter servers to those that 
do not require spot evictions

Top n servers

Server choice s of n

Spot p

SAF=True SAF=False

Notify VM allocator 
of spot placement

Server s

SAF: Spot Avoiding Filter

SAF: Spot Avoiding Filter

OTN: Offer Top N

Pre-existing Spot Allocator

Pre-existing VM Allocator

(a) VM placement process

(b) Spot placement process

CoSpot VM Allocator CoSpot Spot Allocator

Figure 3: CoSpot Framework Overview. CoSpot as-
sumes a pre-existing VM allocator, which chooses on
which server to place an incoming VM request, and a
pre-existing spot allocator, which does the same for
spot requests. The CoSpot framework adds limited
communication between the two allocators, to enable
cooperation (Fig. 1). This communication is controlled
via two independent parameters:OTN (“Offer Top N”)
and SAF (“Spot Avoiding Filter”). Subfigure (a) (above)
shows the process of allocating a VM request. If SAF
is true, the VM allocator will consider only servers
where no spot evictions are required to allocate VMs
and filter out the rest from consideration. (Not shown
is that if there are no such servers, the VM allocator
will fall back to the full set of servers.) When OTN =n
and the VM allocator is trying to allocate a VM, it com-
municates its top n choices of servers to the spot allo-
cator, which selects its preference among them. Subfig-
ure (b) (below) shows the process of allocating a spot
request. The only change to the pre-existing process is
that if SAF is true, the spot allocator communicates its
placement decisions (or residual capacity) to the VM
allocator so that the latter is capable of determining
whether a given server can host an incoming virtual
machine without requiring spot evictions.
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Parameter Values
Workload 10 Random Samples Each Using

{Bernoulli,Batched} Sampling
Datacenter 0%, 1%, 2%, 3%, 4% Headroom
VM Allocation UTIL, COS, DPD
Spot Allocation sUTIL, sCOS, sDPD,

vmaUTIL, vmaCOS, vmaDPD
Spot Eviction FIFO, LPML, LPO
SAF True, False
OTN 1, 2, 4, 8, 16, 32
Table 1: Summary of Experiments. We measure spot
revenue gained and VM revenue lost (if any) for all
64,800 combinations of these parameters. We vary
workload and datacenter headroom to assess robust-
ness to workload variation and operating conditions.
We vary VM/spot allocation and eviction policies to
assess the generality of CoSpot to different allocator
designs. SAF andOTN are CoSpot parameters that con-
trol the degree of cooperation.

also show results for the two VM/spot allocation algorithms
proposed by López García et al. [39], which are the only
comparable, published VM/spot allocation algorithms.

4 EXPERIMENTAL EVALUATION
Our experimental methodology is the cross-product of mul-
tiple layers. First, we seek to establish that CoSpot pro-
vides benefits for arbitrary VM and spot allocators. Hence,
we evaluate 54 such combinations (= 3 VM allocators ×
6 spot allocators × 3 spot eviction policies). For each com-
bination, we sweep through 12 settings for OTN and SAF .
For robustness, we repeat each of the above experiments
for 10 workloads sampled using each of 2 different random
sampling methods, and 5 different levels of spare capacity
(“headroom”) in the datacenter, yielding 64,800 total experi-
ments. Each experiment was run on a purpose-built simula-
tor, simulating each VM/spot request/deallocation/eviction
in the workload, and computing VM and spot revenue. Ta-
ble 1 summarizes the experiments. Details are below.

4.1 Revenue as Figure of Merit
Our goal is to maximize spot revenue while minimizing
(or avoiding altogether) any loss to VM revenue. Different
providers have varied and idiosyncratic pricing models (e.g.,
billing by the second or hour, depending on OS version;
not being charged if interrupted in the first hour, or without
enough notice, etc.), but in all cases, the revenue of a VM/spot
is basically the product of how expensive the VM/spot is

(bigger costs more) times how long the VM/spot ran. Accord-
ingly, for simplicity and vendor-neutrality, if a VM/spot uses
c cores for t seconds, we adopt the product ct as the figure
of merit in our experiments, and refer to this as “revenue”
for brevity. (We will revisit this topic briefly in Finding 8 in
Sec. 5.) Accordingly, a VM/spot that is not allocated is a loss
of revenue, as is a spot that is evicted before completion (we
assume no migration of evicted spots). Also, note that we
will always report both VM and spot “revenue”, refraining
from trying to compare them or combine them into a single
figure of merit, because each cloud operator may choose
different relative pricing of VMs and spots.

4.2 Workload Synthesis
A realistic evaluation requires a realistic workload. Fortu-
nately, Hadary et al. [25] recently published a log of all
VMs/spot instances on a portion of Microsoft Azure’s cloud
over a 14 day period (with deallocations tracked for 90 days).
This is the only publicly available commercial cloud work-
load that has both VMs and spots identified.

Unfortunately, this original log is not usable for evaluating
allocators, as the log does not contain the actual sizes of each
VM/spot type; instead, it contains the fractional resource
usage of a VM/spot type on a specific server type, and only
if that VM/spot-server combination occurred in the log. If a
different allocator placed the VM/spot on a different server,
we would not know how much resources it would consume.
For example, if VM v1 uses half the cores3 on server type t1,
we know nothing about how much resources v1 would use
on a different server type t2.

To resolve this missing information we formulated an in-
teger linear program (ILP), with variables for the amount
of each resource in each VM/spot and server type, and con-
straints for each fractional resource usage datapoint in the
log. Any solution to the ILP computes consistent resource
amounts for every VM/spot and server type. Continuing our
example, if VM v2 uses all the cores on server type t1, but
only half the cores on server type t2, then we can compute
that v1 would use only a quarter of the cores on t2:

vcores1 = 0.5tcores1

vcores2 = tcores1

vcores2 = 0.5tcores2

∴ vcores1 = 0.5tcores1 = 0.5vcores2 = 0.5
(
0.5tcores2

)
Surprisingly, the resulting ILP was infeasible, meaning the

published log is inconsistent with any possible concrete re-
source quantities. Investigating, we discovered that some VM

3 These numbers are for illustration only. The actual log provides ratios
for cores, RAM, hard disk, SSD, and networking, but in this paper, we used
cores and RAM only, as these were in use in all VM/spot and server types.
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types had inconsistent resource requirements, e.g., one VM
type apparently meant the bare metal server, which implies
different resource amounts on different servers. We tried
to compute irreducible infeasible subsets to identify such
inconsistent VM types, but the ILP solver failed to complete.
(We used the state-of-the-art Gurobi [24] solver.)

What eventually worked was a slack-based relaxation:
We added one slack variable per constraint, e.g., the first
constraint above becomesvcores1 = 0.5tcores1 +si , where the
slack variable si is a new, completely unconstrained variable.
These ensure that the ILP is feasible, and we can then ask the
solver to minimize the sum of the absolute values of the slack
variables. This new model determined which constraints
required the largest slack to be satisfied. We removed the
VM/spot types associated with these constraints one-by-one
until no slack was required for a feasible solution. Solving
the resulting model gave consistent, concrete core and RAM
requirements for the remaining VM/spot types. Note that
this solution is not necessarily the original VM, spot, and
server numbers — they might be scaled arbitrarily — but
the consistency means these numbers will behave exactly
the same way for any allocation policy. In all, 18 out of
265 types were excluded, accounting for less than 6% of
the original trace. The result is a reusable workload, with
concrete core and RAM numbers for all VM/spot and server
types, containing 94% of the originally logged data.
The synthesized workload is a single, very long (approx.

10 million create/delete events) trace. For experimentation,
we found it desirable to have multiple (to avoid overfitting
and assess robustness), shorter (to keep simulation tractable)
traces. Accordingly, we created two sets of 10 smaller inde-
pendent traces via two different random sampling methods:
(1) Bernoulli Sampling: To create each independently sam-
pled trace, each VM/spot in the original trace is included
in each sampled trace with probability p = 0.01. The sam-
ple includes both allocation and deallocation events for the
sampled VMs/spots. (2) Batched Sampling as advocated by
Bergsma et al. [6]: Contiguous VM or spot requests from a
single user are grouped into a batch, and the entire batch
is included in a sampled trace with probability p = 0.01.
This creates higher variance in the sampled traces, but better
preserves the burstiness of the original trace.
The workload traces and associated scripts are available

at https://github.com/DCResourceManage/cospot-socc2022

4.3 Datacenter Headroom
The best evaluation of a VM/spot allocator combination is
when a datacenter is nearly at full utilization with just the
VM workload: a datacenter overloaded with VMs has no
room for spots, and a lightly loaded datacenter can trivially

accommodate all spot requests. Accordingly, we tune the dat-
acenter size to explore the behavior of CoSpot when dealing
with a small, controlled amount of spare capacity.

First, we selected a single server type from the ILP solution
that is large enough to accommodate any of the VM/spot
types in the full workload. Then, for each randomly sam-
pled workload (because samples differ in difficulty), and for
each VM allocation policy (because policies differ in pack-
ing effectiveness), we used exhaustive simulation to find the
smallest number of servers needed to handle all VM requests
in the workload.We define this to be the datacenter size
that has 0% “headroom” or “spare capacity”, as this is
the smallest datacenter size that can handle all the VMs in
the workload. Additionally, as it is unrealistic to expect even
a heavily loaded datacenter to constantly operate at 100% uti-
lization, we consider datacenters with an additional (within
rounding) 1%, 2%, 3%, and 4% number of servers, which gives
some spare capacity in the datacenter. This characterizes
the behavior of CoSpot in the most challenging operating
conditions, as the datacenter approaches full utilization.

4.4 VM Allocation Policies
As noted earlier, we wish to evaluate CoSpot against a wide
variety of different VM/spot allocation/eviction policies. For
VM allocation, our experiments use the 3 well-known, pub-
lished, state-of-the-art policies described in Sec. 2: UTIL,
COS, and DPD.

4.5 Spot Allocation Policies
The spot allocator does the same jobs as the VM allocator,
except allocating spots instead of VMs onto servers. For
our evaluation, we consider six policies for ranking which
feasible server is most preferable:

sUTIL, sCOS, and sDPD. are identical to UTIL, COS, and
DPD, except they include spots when computing residual
capacity and non-idle servers.

vmaUTIL, vmaCOS, and vmaDPD. “vma” stands for “vir-
tual machine avoiding”. These are identical to sUTIL, sCOS,
and sDPD, except they always prefer servers where no VM
has been allocated to servers where there are VMs, instead
of preferring non-idle servers. This is complementary to the
preference for non-idle servers in UTIL, COS, and DPD, and
captures the fact that spot allocation policies can be designed
to try to avoid spot evictions.

4.6 Spot Eviction Policies
When eviction is necessary, the spot allocator needs a policy
to choose which spots to evict. We consider three eviction
suitability policies:

https://github.com/DCResourceManage/cospot-socc2022
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Figure 4: Spot Revenue Gained vs. VM Revenue Lost. These scatter plots summarize all 64,800 simulations. The
x-axis is spot revenue achieved (for each of 5 different levels of datacenter headroom); the y-axis is VM revenue
lost. Note that these revenues are given as percentages of the total requested in each sampled workload trace,
ignoring evictions or resource fragmentation, so 100% might not actually be achievable. Each point represents a
combination of VM allocator, spot allocator, and the tunable CoSpot parameters OTN and SAF , (216 points per
headroom level), but for legibility, averaging the results over the 3 eviction policies (FIFO, LPML, LPO), the 2
sampling methods (Bernoulli, Batched), and the 10 samples per method. Colors indicate which VM allocator was
used. Lines connect points that used the same VM/spot allocator combination, to highlight the trade-off as OTN
varies: solid line for SAF false; dashed for SAF true. The baseline point (OTN = 1, SAF = F ) for each allocator
combination is plotted as a black square. Results for the two allocators from prior work [39] are plotted as Xs.
The ideal result would be the bottom-right corner (100% spot revenue, with 0% VM revenue lost); a result Pareto-
dominates any point above it and to its left. Note that over 76% of the simulations had 0 VM allocation failures,
so most of the information in this plot is obscured in all the points on the x-axis. Nevertheless, some overall
trends are apparent: CoSpot enables substantial increases in spot revenue, over both baseline as well as prior art,
and usually with no loss in VM revenue; greater headroom allows greater gains with no loss in VM revenue; and
tuning CoSpot parameters allows even more gains in spot revenue but with small losses in VM revenue.

FIFO (First-In-First-Out). We use FIFO to represent a simple
and fast eviction policy. The policy considers the removal of
the spots in FIFO order: spots allocated earlier get removed
first. For a given server, it tallies up the cores and RAM
consumed by the spots until enough capacity has been freed
for the VM allocation. The “score” for this set of evictions is
the number of spots evicted; smaller is better.

LPO (Lifetime Prediction Oracle). In contrast to FIFO, we
use LPO to represent a heavyweight eviction policy that
tries hard to optimize its decision. Fundamentally, eviction is
difficult because the future is unknown. However, when sim-
ulating allocator designs, the full workload trace is available,
so, in this case, the future is known. This policy models the
(impossible-to-realize) gains from having perfect knowledge
about spot lifetimes. This policy tries all subsets of spots run-
ning on a particular server. It computes the cores and RAM
consumed by each subset, and if the collective resources
consumed by the subset are sufficient such that the virtual
machine request could be satisfied if these spots were evicted

(feasibility), the future spot revenue lost by evicting this set
is computed using the perfect knowledge from the workload
trace of the spot end times. Finally, the subset with the least
lost spot revenue is selected (suitability).

LPML (Lifetime Prediction Machine Learning). is a realizable
approximation to LPO. LPML is identical to LPO, except that
it uses a neural network to predict a spot’s remaining lifetime
when considering evictions. We developed the network as a
model trained on the workload trace to predict ending times
for spots. Themodel contains a single hidden layerwith ReLU
activations. The training features for a spot request include
workload information such as the spot type, the time and
day of the week. We additionally augment the features with
the lifetime of the previous completed VM from the same
customer, since subsequent requests are often similar [25].
The model is trained to predict a hazard function for spot
lifetimes, from which we compute the expected remaining
lifetime when a spot is (or might be) evicted. The model was
trained on the first three days of the full workload trace.
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Figure 5: Results for a Typical VM/Spot-Allocator Combination (COS,sDPD) on a Datacenter with 2% Headroom,
using Batch-Sampled Workloads. The y-axis is the percent of spot/VM revenue achieved (more is better) or failed
(less is better) as a percentage of the total spot/VM revenue requested in the workload. Spot revenue is above; VM
revenue is below. SAF andOTN are CoSpot’s tunable parameters (Fig. 3 in Sec. 3). The left side of the graph is SAF
false; the right side, SAF true. Within each side, the x-axis is OTN . The leftmost grouping is the baseline, when
SAF is false andOTN = 1. The boxes show median and quartiles, the whiskers show min and max that are within
1.5 times the interquartile range from the lower and upper quartiles, and outliers beyond those points are plotted
individually. The batch-sampled workloads vary markedly in difficulty, which makes the box plots very wide;
the dashed grey lines connect data points from each sample workload, to better illustrate the effect of CoSpot’s
parameters on the different workloads. For example, one workload was much easier and generated all the spot
revenue results at the top of each bar. By setting the SAF parameter to true, spot revenue improves significantly
over the baseline, but with some losses in VM revenue. The choice ofOTN has little effect when SAF is true. When
SAF is set to false, tuning OTN can provide an increase to spot revenue without losses to VM revenue.

In our experiments, the LPML policy should not use its neu-
ral network until after the first three days of logging, because
the network was trained on those days. As a workaround,
the FIFO policy is used to make eviction decisions until the
three day mark regardless of the specified eviction policy.
After this point, the specified eviction policy kicks in. This
degrades performance of both LPML and LPO (relative to
FIFO), but provides an apples-to-apples comparison between
the two.

5 EXPERIMENTAL RESULTS
With a large space of experimental parameters, it is hard to
summarize all results. Yet a number of patterns were clear.

Finding 1: CoSpot increases spot revenue, over both baseline
and prior art, at minimal or no loss to VM revenue.

Agglomerating all 64,800 simulation runs, we achieved an
average spot revenue gain of 35% and a maximum of 245%,
compared to the baseline without cooperation (OTN = 1
and SAF = false). Average VM revenue loss was 0.014%,
and the maximum was 0.67%. Although the VM losses are
tiny, tenants have much higher service level expectations for
VMs, so we target zero VM revenue loss. If we include only
simulation runs with zero VM revenue loss, average spot
revenue gain drops to 34%, but the maximum is still 245%.

Note that these summary statistics, although concise, are
somewhat contrived, e.g., a provider’s allocator designs are
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Figure 6: Results for the VM/Spot-Allocator Combination (COS,vmaDPD) on a Datacenter with 2% Headroom,
using Batch-Sampled Workloads. This graph shows the same experimental parameters as Fig. 5, except that the
spot allocation policy is changed from sDPD to vmaDPD. The vma policies try to reduce spot eviction without our
cooperative framework, and do improve the baseline over Fig. 5. CoSpot further improves on this higher baseline.

not random, so it makes no sense to average over differ-
ent policy combinations. A more nuanced summary would
consider what gains are achievable under specific operat-
ing conditions by specific allocator combinations with some
tuning of the CoSpot parameters. For example, with 1% head-
room in the datacenter, we can achieve at least (i.e., the
least improvement for any allocator combination) an aver-
age (over 10 batch-sampled workloads) spot revenue gain
of 23% with an average VM revenue loss of 0% (i.e., no VM
revenue lost on any of the 10 runs) by using parameters
OTN = 32 and SAF false, for the allocator combination
(COS,vmaUTIL,FIFO). The most-improving allocator combi-
nation with the 1% headroom datacenter and no VM revenue
loss was (UTIL,sUTIL,LPML), which had an average spot
revenue gain of 59%, by using parametersOTN = 4 and SAF
true. However, there are 52 other allocator combinations
at 1% headroom, and then 4 more headroom levels in our
experiments, so we need to summarize broadly.

Fig. 4 is a scatter plot presenting the spot revenue gained
vs. VM revenue lost in all experiments. (Details in figure
caption.) It also shows how the spectrum of CoSpot results
generally outperforms prior work [39]. Although the graph is

very dense, some overall trends are visible: as noted already,
that CoSpot enables substantial gains in spot revenue at
minimal (usually zero) loss in VM revenue; that CoSpot does
better when there is more headroom in the datacenter; and
that tuning the CoSpot parameters allows controlling the
VM revenue loss vs. spot revenue gain. We will explore these
and other finds in more detail below.

Finding 2: SAF greatly improves spot revenue, but gener-
ally loses some VM revenue. Increasing OTN improves spot
revenue, with gradual impact on VM revenue.

Fig. 5 shows results for a typical VM/spot-allocator com-
bination. (Details in caption.) Setting SAF to true greatly
improved spot revenue, but for some workloads caused a
minuscule loss of VM revenue. Varying OTN makes little
difference when SAF is true — revenue gain levels off.

Fig. 5 also shows that when SAF is false, increasing OTN
from 1 to 32 produces a gradual improvement in spot revenue,
approaching that resulting from SAF being true, but with
less (and controllable) loss of VM revenue.



CoSpot: A Cooperative VM Allocation Framework for Increased Revenue from Spot Instances SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

0

20

40

60

80

100
%

 S
po

t R
ev

en
ue

Ac
hi

ev
ed

SAF = F SAF = T

1
Baseline

2 4 8 16 32

OTN = n

0.0

0.2

0.4

%
 V

M
 R

ev
en

ue
Fa

ile
d

None
1 2 4 8 16 32

OTN = n

FIFO LPML LPO

Figure 7: Results for VM/Spot-Allocator Combination (COS,sDPD) on a Datacenter with 0% Headroom, using
Batch-Sampled Workloads. This graph shows the same experimental parameters as Fig. 5, except the datacenter
is changed from 2% headroom to 0% headroom. With no headroom, even small perturbations to the VM allocator
can produce loss in VM revenue. Comparing to Fig. 5 shows that a small amount of headroom in the datacenter
gives CoSpot greater freedom to improve spot revenue.

Finding 3: The vma spot allocators start from a higher
baseline, but still show improvement with CoSpot.

Fig. 6 shows the same combination as Fig. 5, except the
spot allocator has been changed to the vma (VM-Avoiding)
version. The baseline performance is improved, which is not
surprising, as the vma spot allocators are already “cooperat-
ing” in some sense with the VM allocator. However, CoSpot
still yields further improvements in spot revenue.

Finding 4: Even FIFO works well as an eviction policy, with
LPML and LPO working slightly better.

This is not the focus of this paper, as we are not proposing
or investigating spot eviction policies. However, our results
suggest either that FIFO is good enough, or that a better
eviction policy would need to be smarter than just finding
the optimum set to evict at each point in time.

Finding 5: As datacenter headroom increases, there is
greater benefit to greater cooperation.

Fig. 7 shows results for the same combination as Fig. 5,
except with 0% headroom instead of 2%.When the datacenter
is already packed tightly with VMs, even minor perturba-
tions to VM allocation can cause some loss in VM revenue,
although potentially with large gains in spot revenue.

If we abuse the boxplots to group all 54 allocator combina-
tions together in each column, we can generalize the compar-
ison between Figs. 5 and 7, as shown in Fig. 8. Each grouping
shows how CoSpot can better improve spot revenue and bet-
ter avoid VM revenue loss as headroom increases. Even with
a bit of spare capacity, CoSpot can increase spot revenue
substantially, without detriment to VM revenue. Conversely,
these results suggest that when a datacenter is fully- or over-
loaded with VMs, any cooperation with the spot allocator
can (at least slightly) degrade VM revenue.

Finding 6: CoSpot performs less well on the burstier, batch-
sampled workloads, but still improves spot revenue with
minimal or no loss in VM revenue.

We have emphasized the batch-sampled results, because
they preserve the realistic burstiness of the original trace.
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Figure 8: Combined Results Over All Allocator Combinations, using Batch-Sampled Workloads. This graph gen-
eralizes the comparison between Figs. 5 and 7. The graph groups results for all 54 VM/spot allocator combinations
times 10 random workloads into each column. The groupings show how greater spare capacity enables greater
gains in spot revenue and lower losses in VM revenue. However, even at 0% headroom, CoSpot can improve spot
revenue, although with some VM revenue loss.

The Bernoulli-sampled workloads have less variability, re-
sulting in cleaner graphs (omitted for space) and somewhat
better results. Overall, restricting to only configurations with
zero VM revenue loss (which eliminates some of the larger
spot revenue gains), the average spot revenue gain over all
configurations increased from 29% using batch-sampling to
37% using Bernoulli-sampling.

Finding 7: CoSpot’s impact on allocation latency is negli-
gible in nearly all cases, and always manageable.

CoSpot had a 99th-percentile VM allocation latency of
24ms. There were a few outliers, due to the exhaustive subset
search embedded in the LPML and LPO eviction policies, i.e.,
in cases where spot eviction is slow even without CoSpot.
These can be eliminated by choosing a faster or more efficient
eviction policy. E.g., using FIFO, the longest VM allocation
latency was 18ms.

CoSpot has no effect on spot allocation latency — the spot
allocator behaves exactly the same with or without CoSpot.

Finding 8: Using a realistic customer-oriented revenue func-
tion results in revenue losses of 0.5% at most.

We repeated the above experiments with a revenue func-
tion that considered spots to be free if they were evicted
within an hour of being launched, as in Amazon EC2 [4].
Spot revenue losses (compared to our original results) were
within 0.5%, with a mean loss of 0.05%. Such realistic rev-
enue functions can incentivize customers to use spots, with
negligible revenue loss when used with CoSpot.

Takeaways: We have shown that CoSpot provides sub-
stantial spot revenue gains at minimal or no loss in VM
revenue. These results are general across a wide range of VM
and spot allocation policies, and robust to different operating
conditions and workloads. For best results, a cloud provider
should explore the parameter space through simulation with
their own VM/spot allocators, server configurations, revenue
policies, and historical workload traces to determine the op-
timal settings for SAF and OTN . In general, though, a cloud
operator with very heavily loaded datacenters and demand-
ing VM SLAs should stick to SAF = false and a small OTN ,
e.g., 2 or 4, and would still see gains in spot revenue; a cloud
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operator with more headroom might try SAF = true and/or
larger values of OTN to gain much more spot revenue.

6 RELATEDWORK
Deriving Greater Utility from Low Priority VMs.Much
of the research on spot instances has been from the customer
perspective, particularly centered around AWS’s original
bidding-based pricing model. This includes: (1) work that pre-
dicts future spot instance prices [1, 2, 9, 17, 29, 40, 56, 74, 75],
(2) work that proposes bidding strategies for spot instances
[9, 23, 34, 38, 40, 43, 52, 57, 60, 65, 70, 74, 75], and (3) work
that aims to help users to migrate their work between VMs
and spot instances, and avoid (or recover from) preemptions
[30, 32, 33, 37, 44, 53, 58, 64, 67, 69]. After November 2017,
AWS transitioned from bidding to a more stable (and gener-
ally higher [19]) fixed price for spot instances.
There have been proposals for how cloud providers may

derive greater value from their spot instances, although these
proposals do not directly concern spot allocation and pre-
emption. Zhang et al. [72] suggest providers shut down idle
machines in order to save energy, and study the interaction
of energy saving and spot pricing. Shastri et al. [54] suggest
cloud providers introduce spot instances with probabilistic
guarantees on eviction rates. Dawoud et al. [12] and Ambati
et al. [5] both propose a new VM class, which they call elastic
virtual machines and harvest virtual machines, respectively,
that grow and shrink as available resources fluctuate.
Scheduler Designs for High and Low Priority Work-
loads. For computeworkloads beyondVMs,many approaches
have been developed to enable low-priority workloads to
share resources with high-priority jobs. Here, we focus on
approaches used in large-scale compute clouds, such as those
used in Facebook, Microsoft, and Google.
Centralized monolithic schedulers [20, 28, 71] are often

used for HPC and big data workloads. In these workloads,
jobs can remain pending in scheduling queues for some time.
Schedulers are thereby able to optimize placement decisions
by batch-scheduling multiple pending jobs together at the
same time [18, 20, 28]. Demanding throughput and latency
requirements in the IaaS context preclude these approaches
from being used for VM and spot instance allocation [25].
Two-level schedulers [27, 62] handle course-grained re-

source management while letting application frameworks
handle fine-grained scheduling duties. Distributed sched-
ulers [45, 47, 49] use elaborate queue processing strategies
at the target machine level. Hybrid schedulers [13, 14, 35]
work by employing both centralized and distributed sched-
uling approaches. These two-level, distributed, and hybrid
scheduling approaches have previously been avoided for
VM and spot instance allocation, again because of the la-
tency and throughput requirements of the IaaS layer [25].

In Omega [50], multiple schedulers leverage a shared state
view of cluster resources to compete for placements “in a
free-for-all manner.” Facebook’s Twine cluster management
system [59] uses separate resource pools for different work-
load priorities, but moves hosts between pools dynamically
based on demand. For spot allocation, this would introduce
counter-productive fragmentation as each host could only
run either spots or regular VMs.

For task-scheduling with large queues of pending requests,
scheduling priorities are used to give precedence to high-
priority workloads at the time of workload placement [7,
62, 63]. However, if tasks are long-lived, scheduling priority
alone will not prevent low-priority workload from monopo-
lizing resources and starving high-priority jobs. One solution
is to reserve resources for known high-priority jobs in ad-
vance [11, 61]. Another is preemption: evict low-priority
workload when the resources are needed. In Microsoft’s
Apollo [7], low-priority tasks “can be preempted or termi-
nated if the server is under resource pressure,” but no further
details are provided. Google’s Borg [63] also uses priority
evictions. The paper briefly mentions that Borg tries to min-
imize “the number and priority of preempted tasks” when
choosing machines for high-priority placements, but no de-
tails are public. Borg also has mechanisms to prevent tasks
from the same job from getting evicted too often [61].
For VM allocation, there are few public details on mech-

anisms for jointly handling regular and preemptible VM
instances. In general, many VMs allocators follow the Open-
Stack design [51], where candidate servers are first filtered
using hard constraints and then scored according to cer-
tain soft preferences. Protean [25], the VM scheduler used
in Microsoft Azure, also uses a filtering/scoring approach.
Since Protean is reported to minimize the eviction rate of
preemptible VMs, it presumably also uses a scoring rule that
prefers placements not requiring evictions. However, this
information is not publicly disclosed. Protean is similar to
Sparrow [47], Apollo [7] and Omega [50] in that it uses mul-
tiple allocation agents over a shared inventory. CoSpot is en-
tirely compatible with a multiple allocation agent approach,
as each instance of an allocation agent can be architected to
use CoSpot (with conflicts over the shared inventory being
handled through normal mechanisms). For openly published
allocation algorithms, Wu et al. [66] propose a framework
for sharing servers between VMs and spot instances. In their
approach, when VMs are allocated, the existence of spot jobs
is simply ignored; evicting spots as needed. Conceptually,
this corresponds to the baseline in CoSpot, withOTN =1 and
SAF = false, but they are addressing an incomparable prob-
lem, in which servers can host at most one VM/spot at a time,
and the goal is to minimize the overhead of migrating spots.
As mentioned earlier, López García et al. [39] propose an
allocator design that supports both VMs and spot instances
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and is directly comparable to CoSpot, and we compared our
results against their two proposed scoring functions. How-
ever, we emphasize that CoSpot is not just a specific scoring
function, but a framework to combine arbitrary VM and spot
allocators.

The aforementioned prior works include both monolithic
(a centralized system places both low and high priority work-
load) and polylithic (multiple schedulers operate in parallel
on a shared inventory) architectures. CoSpot is capable of
being employed in either architecture, in order to introduce
explicit cooperation between schedulers. In the case of mono-
lithic architectures, the division into VM vs. spot schedulers
is logical rather than physical.

Some systems allow low-priority VMs to be oversubscribed
on a host (for example, when the host is fully allocated, but ac-
tual host CPU usage remains low) [10]. As oversubscription
is equivalent to logically adding more resources to certain
hosts, it is compatible with CoSpot.
Resource Efficiency inCloud Schedulers.There has been
extensive prior work aimed at improving resource usage ef-
ficiency in cloud schedulers. These include techniques such
as harvesting underutilized resources, reclaiming unused re-
sources, resource heterogeneity, resource usage profiling and
interference awareness, e.g., [5, 8, 10, 15, 16, 26, 31, 41, 42,
46, 63, 68, 73]. CoSpot can be considered in this category, as
it attempts to minimize interference on spot instances from
VMs while mitigating the ramifications of this minimization
on VM SLA guarantees; however, we are the first to explore
VM and spot allocator cooperation.
Takeaways: Prior work generally provides few details con-
cerning allocation and preemption of spot workloads in large-
scale compute clouds. There are no evaluations of trade-offs
between VM and spot revenue for different allocation poli-
cies. There are also no existing published frameworks that
enable explicit cooperation between VM and spot allocation
policies or co-optimize VM and spot allocation to improve
cloud operator revenue. CoSpot addresses these open issues.

7 CONCLUSION AND FUTUREWORK
We have introduced CoSpot, a lightweight framework for
cooperative allocation of VMs and spot instances. CoSpot
works with arbitrary, pre-existing VM and spot allocators.
Experimentally, CoSpot performed well across 54 different
allocator combinations, averaging a 34% gain in spot rev-
enue across all experiments with zero loss in VM revenue.
CoSpot did particularly well when the datacenter is near, but
not at, full capacity. We are actively exploring ways to inte-
grate CoSpot into our production VM allocators alongside
potential new spot products. The simplicity of CoSpot al-
lows us to expedite prototyping via simulation studies with

our proprietary existing allocators and extended internal
workloads.

For future work, there are many possibilities to extend or
generalize CoSpot. For example, CoSpot’s greater benefit as
headroom increases suggests dynamically varying CoSpot
parameters. The VM allocator always knows the datacen-
ter’s current load, so it would be easy to increase cooperation
(e.g., increase OTN ) when the load is very light, but let the
VM allocator dominate as the datacenter approaches satura-
tion. This should allow even greater spot revenue gains with
even lower VM revenue losses. Similar in spirit, instead of
a fixed N in OTN , the VM allocator could offer all servers
whose score is within some epsilon of the best score. This
idea requires that the ranking functions produce numeri-
cally meaningful scores (interval/ratio scale) instead of just a
ranking (ordinal scale), but the advantage is that the number
of choices would vary depending on how many are close to
optimal. A natural generalization of CoSpot would be having
more than two classes of VMs with different priorities. The
CoSpot framework should extend in the obvious manner
(higher-priority VM classes avoid evicting or offer multiple
choices to the lower-priority allocator), but whether this
would work well in practice would require extensive empiri-
cal evaluation with realistic workloads. A more open-ended
direction for generalization is to explore richer cooperation
between allocators. We have explicitly chosen to limit this
cooperation (to leverage pre-existing allocators, to simplify
the architecture), but greater cooperation could potentially
better optimize the VM/spot revenues. Another important
generalization would be to explore issues of job migration
and reliability. For spot migration upon eviction, we would
need a new revenue model, as migration incurs costs, but
allows a spot to continue to generate revenue. For more gen-
eral research on reliability and VM migration upon server
failure, a necessary pre-condition would be the availability
of realistic fault models and workloads. Finally, in the longer
term, we believe there is considerable promise in more ef-
fective predictions of various quantities (e.g., revenue lost
to eviction, future request arrival times), which would allow
the allocators to make smarter decisions.
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