Mining Temporal Invariants from
Partially Ordered Logs

lvan Beschastnikh W

Yurily Brun
Michael D. Ernst
Arvind Krishnamurthy
Thomas E. Anderson @

University of Washington

Motivating question

| am a developer.

Why does my system
behave In a certain manner?

Synoptic (our prior work)

Ly S« Uy G - e o L sy LS« £y S - v
: 1, timestamp : 9, type : prepare 1 2, i : commit
: 2, timestamp : 10, type : commit : : 0, i : : tx_commit
: 2, timestamp : 11, type : commit : : 1, timestamp : : tx_commit
: 0, timestamp : 12, type : tx_commit : : 2, timestamp : rack
: 1, timestamp : 13, type : tx_commit : : 2, timestamp : rack
: 2, timestamp : 14, type : ack : : 0, timestamp : : prepare
: 2, timestamp : 15, type : ack : : 1, timestamp : : prepare
: 0, timestamp : 16, type : prepare : : 2, timestamp : : commit
: 1, timestamp : 17, type : prepare : : 2, timestamp : : commit
: 2, timestamp : 18, type : commit : : 0, timestam| : tx_commit
: 2, timestamp : 19, type : commit : : 1, timestamp : : tx_commit
: 0, timestamp : 20, type : tx_commit : : 2, timestamp : rack
: 1, timestamp : 21, type : tx_commit : : 2, timestamp : rack
: 2, timestamp : 22, type : ack : : 0, timestamp : : prepare
: 2, timestamp : 23, type : ack : : 1, timestamp : : prepare
: 0, timestamp : 0, type : prepare : : 2, timestamp : 18, type : commit
: 1, timestamp : 1, type : : : 2, timestamp : 19, type : commit
: 2, timestamp : 2, type : i : : 0, timestamp : 20, type : tx_commit
: 2, timestamp : 3, type : i : : 1, timestamp : 21, type : tx_commit
: 0, timestamp : 4, type : : : 2, timestamp : rack
: 1, timestamp : 5, type : tx_¢ i : : 2, timestamp : rack
: 2, timestamp : 6, type : : : 0, timestamp : : prepare
: 2, timestamp : 7, type : : : 1, timestamp : : prepare
: 0, timestamp : 8, type : : : 2, timestamp : : commit
: 1, timestamp : 9, type : : : 2, timestamp : : commit
: 2, timestamp : 10, type : i : : 0, timestamp : : tx_commit p ro pose
: 2, timestamp : 11, type : i : : 1, timestamp : : tx_commit
: 0, timestamp : 12, type : tx_commit : : 2, timestamp : rack

: 1, timestamp : 13, type : tx_commit : : 2, timestam| rack

: 2, timestamp : 14, type : ack : : 0, timestamp : : prepare

: 2, timestamp : 15, type : ack : : 1, timestamp : : prepare

: 0, timestamp : 16, type : prepare : : 2, timestamp : : commit

: 1, timestamp : 17, type : prepare : : 2, timestamp : : commit []
: 2, timestamp : 18, type : commit : : 0, timestamp : : tx_commit

: 2, timestamp : 19, type : commit : : 1, timestamp : : tx_commit

: 0, timestamp : 20, type : tx_commit : : 2, timestamp : rack

: 1, timestamp : 21, type : tx_commit : : 2, timestamp : rack

: 2, timestamp : 22, type : ack : : 0, timestamp : : prepare

: 2, timestamp : 23, type : ack : : 1, timestamp : : prepare

: 0, timestamp : 0, type : prepare : : 2, timestamp : : commit

: 1, timestamp : 1, type : prepare : : 2, timestamp : : commit

: 2, timestamp : 2, type : commit : : 0, timestamp : : tx_commit
: 2, timestamp : 3, type : commit : : 1, timestamp : : tx_commit
: 0, timestamp : 4, type : tx_commit : : 2, timestamp : rack

: 1, timestamp : 5, type : tx_commit : : 2, timestamp : rack

[]
: 2, timestamp : 6, type : ack : : 0, timestamp : : prepare
: 2, timestamp : 7, type : ack : : 1, timestamp : : prepare
: 0, timestamp : 8, typ repare : : 2, timestam| : commit
8 & 8 8 3 : commit

: 1, timestamp : 9, type : prepare : : 2, timestamp :

: 2, timestamp : 10, type : commit : : 0, timestamp : : tx_commit
: 2, timestamp : 11, type : commit : : 1, timestamp : : tx_commit
: 0, timestamp : 12, type : tx_commit : : 2, timestamp : rack

: 1, timestamp : 13, type : tx_commit : : 2, timestamp : rack

: 2, timestamp : 14, type : ack : : 0, timestamp : : prepare
: 2, timestamp : 15, type : ack : : 1, timestamp : : prepare
: 0, timestamp : 16, type : prepare : : 2, timestamp : : commit

: 1, timestamp : 17, type : prepare : : 2, timestamp : : commit

: 2, timestamp : 18, type : commit : : 0, timestamp : : tx_commit
: 2, timestamp : 19, type : commit : : 1, timestamp : : tx_commit
: 0, timestamp : 20, type : tx_commit : : 2, timestamp : rack

: 1, timestamp : 21, type : tx_commit : : 2, timestamp : rack

: 2, timestamp : 22, type : ack : : 0, timestamp : : prepare

: 2, timestamp : 23, type : ack : : 1, timestamp : : prepare

: 0, timestamp : 0, type : prepare : : 2, timestamp : : commit

: 1, timestamp : 1, type : : : 2, timestamp : : commit

: 2, timestamp : : i : : 0, timestamp : : tx_commit
: 2, timestamp : i : : 1, timestam, : tx_commit
: 0, timestamp : : tx_commit : : 2, timestamp : rack

: 1, timestamp : : tx_commit : : 2, timestamp : rack

: 2, timestamp : : : : 0, timestamp : : prepare

: 2, timestamp : : : : 1, timestamp : : prepare

: 0, timestamp : : : : 2, timestamp : : commit

: 1, timestamp : : : : 2, timestamp : : commit

: 2, timestamp : : i : : 0, timestamp : : tx_commit
: 2, timestamp : : i : 21, timestamp : : tx_commit
: 0, timestamp : : tx_commit : : 2, timestamp : rack

: 1, timestamp : : tx_commit : : 2, timestamp : rack

: 2, timestamp : :ack : : 2, timestamp : : commit

: 2, timestamp : :ack

: 0, timestamp : : prepare

: 1, timestamp : : prepare

: 2, timestamp : : commit

: 2, timestamp : : commit

: 0, timestamp : : tx_commit

: 1, timestamp : : tx_commit

: 2, timestamp : :ack

: 2, timestamp : 23, type : ack

Input

But, what if the question is ...

Why does my concurrent

system behave in a certain
manner?

Log analysis of concurrent systems

e Concurrency is widespread and is becoming
commonplace (Hadoop, Ajax, Multicore)

e Many log analysis tools exist to help understand
sequential, but not concurrent systems

e Assume totally ordered logs
e Cannot reason about concurrent executions

e |nsufficient for debugging concurrency issues

Log analysis of concurrent systems

Need to develop tools for
concurrent systems logs

Our approach

e Mine the partially ordered log to extract temporal
invariants between events

e (Capture the essence of what happened
e Simple to understand

¢ Show invariants to the developer
e May notice missing invariants

e May find unexpected invariants

e Developer modifies and re-runs the system

Qutline

e Why a total order is not enough

e Mining temporal invariants from
concurrent executions

e Tool demo

e Two algorithms to mine temporal
iInvariants

e Algorithms’ scalability evaluation

Limitations of total order

T1

e A system with two threads: T1, T2

e T1 generates event (a), T2 generates event (b)

T2

Logger

—>

e | ogging pipeline:

Log file

e Generated log file:

1
2

a
b

Limitations of total order

e A system with two threads: T1, T2

T1

T

T2

P

e T1 generates event (a), T2 generates event (b)

e | ogging pipeline:

Logger

Log file

e Generated log file:

1
2

a
b

Which of these three systems generated the log?

Limitations of total order

A totally ordered log is
insufficient.

Logging the partial order

e We know how to do this

e |Lamport defined the happens-before relation in 1978

e (Operationalized with vector clocks in 1988, 1989

[1,0] [1,0] [1,1]
[1,1] [0,1] [0,1]

T T

Example system

e A server with tickets, two clients who buy tickets

e Each client checks availability of tickets and then
buys a ticket

Client O

“Tickets

Server
o DB

-, —
prd

™

Client 1

Partial order is complex

Partially ordered log : Execution:

[1,0,0] client O: search for tickets to Portugal for 23/10/11 client 0 client 1 server
[0,1,0] client 1: search for tickets to Portugal for 23/10/11 search

[1,0,1] server: there is a ticket available for 505P \ﬁ\>

[1,1,2] server: there is a ticket available for 505P
[2,0,1] client 0: buy ticket search
[2,1,3] server: sold

[1,2,2] client 1: buy ticket
[2,2,4] server: tickets sold out available

buy <
UY\

sold

available

sold-out

Partial order is complex

Partially ordered log :

[1,0,0] client O: search for tickets to Portugal for 23/10/11
[0,1,0] client 1: search for tickets to Portugal for 23/10/11
[1,0,1] server: there is a ticket available for 505P

[1,1,2] server: there is a ticket available for 505P

[2,0,1] client O: buy ticket

[2,1,3] server: sold

[1,2,2] client 1: buy ticket

[2,2,4] server: tickets sold out

[1,0,0] client O: search for tickets to Portugal for 23/10/11
[1,0,1] server: there is a ticket available for 505P

[2,0,1] client O: buy ticket

[2,0,2] server: sold

[0,1,0] client 1: search for tickets to Portugal for 23/10/11
[2,1,3] server: tickets sold out

[0,1,0] client 1: search for tickets to Portugal for 23/10/11
[1,0,0] client O: search for tickets to Portugal for 23/10/11
[0,1,1] server: there is a ticket available for 505P

[1,1,2] server: there is a ticket available for 505P

[0,2,1] client 1: buy ticket

[1,2,3] server: sold

[2,1,2] client O: buy ticket

[2,2,4] server: tickets sold out

[1,0,0] client O: search for tickets to Portugal for 23/10/11
[1,0,1] server: there is a ticket available for 505P

[0,1,0] client 1: search for tickets to Portugal for 23/10/11
[1,1,2] server: there is a ticket available for 505P

[1,2,2] client 1: buy ticket

[1,2,3] server: sold

[2,0,1] client O: buy ticket

[2,2,4] server: tickets sold out

[1,0,0] client O: search for tickets to Portugal for 23/10/11
[1,0,1] server: there is a ticket available for 505P
[0,1,0] client 1: search for tickets to Portugal for 23/10/11
[1,1,2] server: there is a ticket available for 505P

Executions:

client O client 1 server
search

\h\’ available

search
/)<available
y <

buy bu

sold

sold-out

client O client 1 server

search search

available

buy available

/\K sold

—

buy

sold-out

client O client 1 server
search

search available

buy /\Xavallable
\ﬁ%sold

buy

sold-out

client O client 1 server
search

—

available

available

client O client 1 server
search

\ﬁ\>
</IV
buy

search sold

sold-out

available

Partial order is complex

Need a way to summarize a
partially ordered log

Temporal invariants

e Mine the partially ordered log to extract
temporal invariants between events

e Temporal invariants
e True for all logged executions
e Capture the essence of what happened
e Simple to understand
e Each invariants involves at most two hosts

e Summarize the partial order

Five temporal log invariants

Invariant Type 1

X—> Y liveness :

always followed by @\» @
XI(_ yz @)\

safety

always precedes

Execution 1

XA Y2 | safety Ho o @

never followed by

ol | satery @\% 0
X, 1+ Y, safety

never concurrent with

Execution 2 Execution 3

Five temporal log invariants

T1

)

Invariant Type

X—> Y liveness

always followed by @ @
X< safety @\

always precedes

Execution 1

x>, safety @

never followed by

SRS safety @

always concurrent with

X T+ Y, safety

never concurrent with

Execution 3

Five temporal log invariants

Invariant Type 11 T:Z
X—> % liveness @

always followed by @
XY

safety

always precedes

X7 Y, safety

never followed by

T1
X, ||y
always céncurrer?t with safety @ @
X Tt %, safety

never concurrent with

Execution 1

12

Execution 2

Five temporal log invariants

Invariant Type

Xi—> Y,

liveness
always followed by

XY
always precedes

x> Y, safety

never followed by

safety

X ”)2 . safety Execution 1
always concurrent with

X T+ ¥, safety

never concurrent with Execution 2

Five temporal log invariants

Invariant Type

Xi—> Y,

liveness
always followed by

XY
always precedes

safet
never followed by 4 T1 T2

Xi || 7, safety ®\®

always concurrent with

safety

Execution 1

X T+ ¥, safety

never concurrent with

Execution 2 Execution 3

Inputs Invariants Model

1:ShoppingCart 2:TwoPhaseCommit

3:abstract

4:TicketReservation

Log lines

Regular
expressions

Partition
expression

Separator
expression

Log input type: e Text area

1,0,0 client-0 search
0,1,0 client-1 search
1,0,1 server available
1,1,2 server available
2,0,1 client-0 buy
2,1,3 server sold
1,2,2 client-1 buy
2,2,4

0

server sold-out

0,1,0 client-1 search

Choose File No file chosen

(?<VTIME>)(?<PID>)(?<TYPE>.+)

A--$

Parse Log

Text file

Inputs

Mined invariants

Invariants Model

AlwaysFollowedBy

NeverFollowedBy

AlwaysPrecedes

AlwaysConcurrentWith

INITIAL,
search_client-0

search_client-0,
search_client-0

search_client-0,
buy_client-0

search_client-1,
search_client-0

search_client-0,
available_server

available _server,
search_client-0

search_client-0,
sold_server

INITIAL,
search_client-1

buy_client-0,
search_client-0

search_client-0,
sold-out_server

buy_client-1,
buy_client-0

INITIAL,
available server

sold_server,
search_client-0

search_client-1,
buy_client-1

buy_client-0, sold-
out_server

buy_client-1,
search_client-0

search_client-1,
sold-out_server

sold_server, sold-
out_server

sold-out_server,
search_client-0

available_server,
buy_client-0

buy_client-1, sold-
out_server

search_client-1,
search_client-1

available_server,
sold _server

available server,
search_client-1

available server,
buy_client-1

Mined invariants

—

always followed by

<=

always precedes

availables <= buy,.
availables <— buy,,
sold-outs /4 buy,

sold-outs # buy,.

> | I

never followed by | always concurrent with | never concurrent with

sold-outs 4~ soldg

sold, < sold-out, buycO — sold-out,

buyCO | ‘ buycl

buy. — sold-out,

search., || search, buy, < sold-out,

Mined invariants
— — I I i

always followed by = always precedes never followed by | always concurrent with never concurrent with

available, <— buy, sold-outs 4~ soldg

available; < buy, = | solds <— sold-out, buy. — sold-out,

sold-out, /4 buy, buy, || buy,, buy. — sold-out,

sold-outsy/A buyry |searche)| searche, buy, < sold-out,

N7

Server event lient events

Mined invariants

—

always followed by

e

always precedes

availables <= buy,.
availables <— buy,,
sold-outs /4 buy,

sold-outs # buy,.

Temporal orderings
between server and
client events

> | I

never followed by | always concurrent with | never concurrent with

sold-outs 4 sold,

sold, < sold-out, buycO — sold-out,

buyCO | ‘ buycl

buy. — sold-out,

search., || search, buy, < sold-out,

Mined invariants
— — I I i

always followed by = always precedes never followed by | always concurrent with never concurrent with

Server-side
correctness invariants

available, <— buy, sold-outs 4~ soldg

available; < buy, = | solds <— sold-out buy. — sold-out,

sold-out, /4 buy, buy, || buy,, buy. — sold-out,

sold-outs # buy. | |search., || searche, buy, < sold-out,

Temporal orderings
between server and
client events

Mined invariants
— — I I i

always followed by = always precedes never followed by | always concurrent with never concurrent with

Server-side
correctness invariants

available, <— buy, sold-outs 4~ soldg

available; < buy, = | solds <— sold-out, buy. — sold-out,

sold-out, /4 buy, buy, || buy,, buy. — sold-out,

sold-outs # buy. | |search., || searche, buy, < sold-out,

Temporal orderings Concurrency
between server and between clients
client events

Mined invariants
— — I I i

always followed by = always precedes never followed by | always concurrent with never concurrent with

Server-side
correctness invariants

available, <— buy, sold-outs 4~ soldg

available; < buy, = | solds <— sold-out, buy. — sold-out,

sold-out, /4 buy, buy, || buy,, buy. — sold-out,

sold-outs # buy. | |search., || searche, buy, < sold-out,

Temporal orderings Concurrency Over-fit
between server and between clients invariants
client events

Qutline

e Motivation
e Why a total order is not enough

e Mining temporal invariants from
concurrent executions

ool demo

Two algorithms to mine temporal
Invariants

e Algorithms’ scalability evaluation

Algorithms to mine invariants

1. An algorithm based on the transitive closure
2. A co-occurrence counting algorithm (v1)

3. A modified co-occurrence counting algorithm (v2)
that omits “never concurrent with”

More details in the paper

Transitive closure mining

e Compute the transitive closure of all execution DAGs

e Use the transitive closure to compute invariants

T1 T2

ORNERL
W=y @
I K R
T+ CTb2> @ always followed by
D £

Execution 2 Execution 3 Execution 2 Execution 3

T2

Log Transitive Closure Invariants
21

Co-occurrence counting mining

e Count the number of times events co-occur

e Use counts to compute invariants

total count

3

4

event pair

H# co-occurrences

xl,y2

3

Execution 2

Execution 3

Log Counts

T1 — Yo

always followed by

Invariants
22

Evaluation methodology

e A discrete time simulator of a distributed

system with H hosts that use vector clocks
to maintain a partial order Vary each variable

to evaluate
Each host generates a total of E events algorithm scalability
Each event is one of T types
Hosts communicate with probability 0.3

Invariants are mined from the resulting log

Scalability results

—|— Transitive Closure

s |E| - Co-occurrence Counting v1
_ —e— Co-occurrence Counting v2

10 15 20 25 30 35 40 45 50
Nodes in the system

| | | | | |
Transitive Closure

|E| - Co-occurrence Counting v1
—e— Co-occurrence Counting v2

20 40 60 80 100 120 140 160 180 200
Number of executions

| | | |
Transitive Closure

|E| - Co-occurrence Counting v1
Co-occurrence Counting v2

80 100
Number of event types

| | |
Transitive Closure

|E| - Co-occurrence Counting v1
—e— Co-occurrence Counting v2

500 1000 1500 2000
Length of an execution trace

2500

24

Limitations and future work

e | ogging the partial order explicitly has a performance
penalty: extra network traffic/computation/state

Charron-Bost IPL 1991
Khotimsky and Zhuklinets ICATM 1999

e |nvariants are a summary and do not provide a
complete view Dwyer et al. ICSE 1999

e Has been previously studied

e Visualization of distributed traces Edwards etal. IPDPS 1994

Conclusion

e Studying logs of concurrent systems is becoming
increasingly important

e Temporal invariants can help explain a complex
concurrent system log

e Presented algorithms to mine five types of
temporal invariants

Try 1t!
http://synoptic.googlecode.com

http://code.google.com/p/synoptic/
http://code.google.com/p/synoptic/

