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Internet services depend on
distributed key-value stores
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Scatter:
Goals

v linearizable consistency semantics
v scalable in a wide area network
v high availability

v performance close to existing systems



Scatter:
Approach

combine ideas from:

scalable peer-to-peer
systems

v distributed hash table
v self-organization
v decentralization

consistent datacenter
systems

v consensus
v replication
v transactions




Distributed Hash Tables:
Background

core functionality: partition and assign keys to nodes

nodes
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links between nodes form overlay

system structure:

knowledge of system state is
distributed among all nodes

\ system management:

nodes coordinate locally to
respond to churn, e.qg.,

® give keys to new nodes

e take over keys of failed
nodes



Distributed Hash Tables:
Faults Cause Inconsistencies

Example: c joins between a and b

c.pred = a
c.succ = b

d.Succ = C

b.keys = (kc,kp]

x%a b.pred = ¢
@
<:> <:> 2‘a c.keys = (ka,ke]




Distributed Hash Tables:
Faults Cause Inconsistencies

Example: c joins between a and b
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what could go wrong?

FAULT

OUTCOME
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.pred
. succ
. succ
.pred
. keys
. keys
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(kcrkb]
(Kaske]

communication
fault between b
and c

both b and c claim
ownership of
(KasKke]

c fails during
operation

no node claims
ownership of
(kar kC]

communication
fault between a
and c

routes through a
skip over c




Distributed Hash Tables:
Weak Atomicity Causes Anomalies

DHTs use ad-hoc protocols to add and remove nodes

what happens Iif...

* two nodes join at the same place at the same time
* two adjacent nodes leave at the same time
* during a node join the predecessor leaves

* one node mistakenly thinks another node has failed
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Scatter:

Design Overview

How is Scatter different?
use groups as building blocks instead of nodes

What is a group?

set of nodes that cooperatively manage a key-range

What does this give us?

e nodes within a group act as a single
entity

e a group is much less likely to fail than an

group

O node

individual node

e distributed transactions for operations
involving multiple groups




Scatter:
Group Anatomy

] | | -
K2 Kb
» group replicates all state » key-range further partitioned
among members with Paxos among nodes of group for
performance
nodes = {a,b,c}
keys = (kz,kec]
values = {...} a.keys = (kz,ka]
b.keys = (ka,Kkp]
» changes to group membership c.keys = (kb, ke
are Paxos reconfigurations:
e include new nodes » each node orders client

e exclude failed nodes operations on its keys



Scatter:
Self-Reorganization

some problems can’t be handled within a single group

e small groups are at risk of failing
e large groups are slow
e |load imbalance across groups

) ) . .
2 2 multi-group operations:
I SPLIT ! e merge two small groups into
_> b, one
b $ e split one large group into two
I 4— b e rebalance keys and nodes
MERGE 3 between groups
C

\4 v

distributed transactions coordinated locally by groups
10
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Example: Group Split

2PC

b |split?




Example: Group Split

2PC
a a |ok!
/ \
b |split? b
\ A
C c |ok!




Example: Group Split

2PC
a a |ok! a
% \ %
b |split? b b |split!
\ / \
c c |ok! C




2PC

Example: Group Split

split?

ok!

ok!

split!
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Example: Group Split

2PC a
ok!
% \ % b
split? split!
\1 g \1 b,
ok!
O ok!
bl@ spli/t,? v
\ /
O ok




Example: Group Split

2PC a
ok!
% \ % b
spli\'j? g splig! -,
ok!
O ok!
a|@| split b?/‘
\
¢ /(')k\', ® ok
b |@|split?
of b o .
c | @ |split b?
\ 7
@ ok!
¥




Example: Group Split

a a Ok! a
/ N\ Vi
b |split? b b |split!
\ A \
C c | ok! C
@ ok! .
a|@| split b? RECO[;\IFIGURE!
o \'{‘ ® ok by
f \l . ok! f NE
b |@|split? b|@| split! —>
@ ok ® ok o L -
A a
c|@ |split b?
V7 .
' [}
¢ ol , committed




Example: Group Split

2PC a
a a |ok! a
/ \ / 2
b |split? b b |split!
b2
v / \
C c | ok! C
C
O ok! . ® Ok\!l
a|@| split b? RECO[;\IFIGURE! al@|b SP\I,it!/‘
® o ' {‘ @ ok by ® ok
/l \1 . ok! /, \1
b | @|spiit? b |@| splitt Y =
\ / \ A ’
© ok o ok! ® o b, O ok!
7\ a
c | @ |split b? : c | @ |b split!
V7 i \ 7
' .
® ok , committed ® oK
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Scatter

v linearizable consistency semantics

...group consensus, transactions
v scalable in a wide area network

...local operations
v high availability

...replication, reconfiguration
v performance close to existing systems

...key partitioning, optimizations
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Evaluation:
Overview

Questions:

1.How robust is Scatter in high-churn peer-to-
peer environment?

2.How does Scatter adapt to dynamic
workload in datacenter environment?

Comparisons:

Environment Datacenter

Comparison
System

ZooKeeper




Comparison: OpenDHT

el ™~ _
| | > Layered OpenDHT'’s recursive
I X “ \ routing on top of Scatter groups
N L X / Implemented a Twitter-
- like application, Chirp

Experimental Setup:

@ e 840 PlanetLab nodes
® injected node churn at varying rates
e Twitter traces as a workload
e tweets and social network stored in DHT

| 4
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Comparison: OpenDHT

Consistency Availability
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Scatter has zero inconsistencies and high availability
even under churn
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Comparison: OpenDHT

Latency
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Scalable consistency is cheap

|6

16



Comparison: Replicated ZooKeeper

ZooKeeper:
small-scale, centralized coordination service

Replicated ZooKeeper:

statically partitioned global key-space to
multiple, isolated ZooKeeper instantiations

ﬁ
Experimental Setup:

e testbed: Emulab

e Vvaried total number of nodes
e no churn
®

same Chirp workload

|7
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Comparison: Replicated ZooKeeper

Scalability

400

1} Scatter

O ZooKeeper
300

200

100

throughput (1000 ops/sec)
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total number of nodes

Dynamic partitioning adapts to changes in workload
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Scatter:
Summary

v' consensus groups of nodes as fault-
tolerant building blocks

v distributed transactions across groups
to repartition the global key-space

v evaluation against OpenDHT and
Z00Keeper shows strict consistency,
linear scalability, and high availability
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