
XSnare: Application-specific client-side cross-site
scripting protection

José Carlos Pazos
Department of Computer Science
University of British Columbia

Vancouver
jpazos@cs.ubc.ca

Jean-Sébastien Légaré
Department of Computer Science
University of British Columbia

Vancouver
jslegare@cs.ubc.ca

Ivan Beschastnikh
Department of Computer Science
University of British Columbia

Vancouver
bestchai@cs.ubc.ca

Abstract—We present XSnare, a client-side Cross-Site Script-
ing (XSS) solution implemented as a Firefox extension. The
client-side design of XSnare can protect users before application
developers release patches and before server operators apply
them.

XSnare blocks XSS attacks by using previous knowledge of
a web application’s HTML template content and the rich DOM
context. XSnare uses a database of exploit descriptions, which
are written with the help of previously recorded CVEs. It singles
out injection points for exploits in the HTML and dynamically
sanitizes content to prevent malicious payloads from appearing
in the DOM. XSnare displays a secured version of the site, even
if is exploited.

We evaluated XSnare on 81 recent CVEs related to XSS
attacks, and found that it defends against 93.8% of these exploits.
To the best of our knowledge, XSnare is the first protection
mechanism for XSS that is application-specific, and based on
publicly available CVE information. We show that XSnare’s
specificity protects users against exploits which evade other, more
generic, XSS defenses.

Our performance evaluation shows that our extension’s over-
head on web page loading time is less than 10% for 72.6% of
the sites in the Moz Top 500 list.

I. INTRODUCTION

Cross-Site Scripting (XSS) is still one of the most dom-
inant web vulnerabilities. A 2017 report showed that 50%
of websites contained at least one XSS vulnerability [1].
Countermeasures exist, but many of them lack widespread
deployment, and so web users are still mostly unprotected.

Informally, the cause of XSS is a lack of input validation:
user-chosen data “escapes” into a page’s template and makes
its way into the JavaScript engine, or modifies the Document
Object Model (DOM). Consequently, many of the XSS de-
fenses published so far propose to fix the problem at the
source, by properly separating the template from the user data
on the server, or by modifying browsers [2], [3], [4], [5], [6].
There are also similar solutions that can be implemented in
the front-end code of an application [7]. In all cases, these
technologies must be adopted by the application software
developers, otherwise users are left unprotected.

One barrier to adoption of existing XSS defenses is that
developers may not have the necessary expertise, or sufficient
resources, to use the approach. Luckily, users wishing to gain
reassurance over the safety of the sites they visit can install
browser extensions to filter malicious scripts and content.

Unfortunately, some of the most popular of these extensions,
like NoScript [8], achieve most of their security by disabling
functionality, such as JavaScript, which impairs usability1. A
study by Snyder et al. [10] showed that browser security
can be increased by disabling some rarely used JavaScript
APIs, largely retaining usability. Our work builds on this idea,
retaining website usability after an exploit is disabled.

When an XSS vulnerability is disclosed, some software
vendors respond with patches. If the affected software is
released in the form of packages, frameworks, or libraries,
and used by several web applications, there is delay before
users can benefit from the patch. Most importantly, the patched
software must be re-deployed by site administrators.

Unfortunately, website administrators will not, and often
cannot, apply software updates immediately: one study found
that 61% of WordPress websites were running a version with
known security vulnerabilities [11]. In another report, we learn
that 30.95% of Alexa’s top 1 Million sites run a vulnerable
version of WordPress [12].

Users are at the mercy of developers and administrators if
they want to access safe, up-to-date, applications. Our solution,
XSnare, helps with this problem – based on information from
past disclosures, XSnare patches known page vulnerabilities
directly in the browser.

Dev

Server side
networking

-Server Firewall
-Web Application
firewall

Client side
networking

-Client firewall
-Blacklisted sites
-Proxies

User

-XSS Auditor
-NoScript
-XSnare

1 2 3 4

-Static
analysis
-Sanitization

Browser

Fig. 1: Different web security solutions with XSnare on the
client-side.

Each layer of the web application stack (Figure 1) presents
different options to defend against XSS. Note that solutions at
different layers are often complementary:

1) The application logic is the first line of defence. Code
safety can be enhanced with third-party vulnerability

1As early as 2012, JavaScript was used by almost 100% of the Alexa top
500 sites [9]

scanning solutions, and a thorough code-review process.
Taint, and static code analysis tools can detect unsani-
tized inputs.

2) In the hosting environment, network firewalls, specif-
ically Web Application Firewalls (WAFs) can defend
against attacks such as DDoS, SQL injections and XSS.

3) In the client’s environment (residential or commercial),
users may install network firewalls, network content
filters, and web proxies.

4) The last line of defence is the browser. Browser have
built-in defences, such as Chrome’s XSS Auditor [13].
Users can also install third-party extensions to block
malicious requests and responses, such as NoScript [8],
and XSnare.

We make two observations about existing solutions: (a)
server-side solutions have to be applied independently on each
server, and (b) solutions on the client are typically written
as generic filters which attempt to catch everything, and
consequently do not take full advantage of the specificity of
the application or the vulnerability.

For example, a WAF can effectively protect the users
behind it, but users cannot realistically expect every site to
be protected by a WAF. At the opposite end, in the client’s
environment, a user might configure a network proxy for
all website traffic, with generic rules achieving maximum
coverage, but this will often lead to an elevated rate of false
positives (FPs).

Similarly, browser built-in defences are coarse-grained, and
work on just a subset of exploits. Chrome’s XSS Auditor,
for example, only attempts to defend against reflected XSS.
Google recently announced its intention to deprecate XSS
Auditor, for reasons including “Bypasses abound”, “It pre-
vents some legit sites from working”, and “Once detected,
there’s nothing good to do” [14]. Stock et al. [15] propose
enhancements to XSS Auditor and cover a wider range of
exploits than the auditor, but are limited to DOM-based XSS.
By contrast, our work covers all types of XSS.

Implementing adequate server-side protections [16], [17],
[18], [19] requires time. A 2018 study found that the average
time to patch a known exploit in the form of a Common
Vulnerability and Exposures (CVE), all severities combined,
is 38 days, increasing to as much as 54 days for low severity
CVEs, and the oldest unpatched CVE was 340 days old [20].

Server-side defences also do not commonly protect against
client-only forms of XSS, e.g., reflected XSS, or persistent
client-side XSS, which use a browser’s local storage or cookies
as an attack vector. Steffens et al. [21] present a study of
persistent client-side XSS across popular websites and find
that as many as 21% of the most frequented web sites are
vulnerable to these attacks. To provide users with the means
to protect themselves in the absence of control over servers,
we believe that a client-side solution is necessary.

A number of existing solutions in this area also suffer from
high rates of false-positives and false-negatives. For example,
NoScript [8] works via domain white-listing, thus by default,
JavaScript scripts and other code will not execute. However,

not all scripts outside of the whitelist should be assumed to be
malicious. Browser-level filters like XSS Auditor use general
policies and can therefore incorrectly sanitize non-malicious
content.

We posit that the DOM is the right place to mitigate XSS
attacks as it provides a full picture of the web application.
While most of the functionality we provide could be done by
a network filter in front of the browser, we take advantage
of additional browser context. Particularly, when an exploit
occurs as a result of user interactions, like in response to a
click, our approach benefits from knowing the initiating tab to
filter the response. Previous client-side solutions have opted
for detectors that were generic and site-agnostic [22], [3], [23].
Our work goes in the opposite direction, and tries to instead
prevent precisely-defined exploits in specific applications.

If a patch for a server-side vulnerability can be “translated”
into an equivalent set of operations to apply on the fully
formed HTML document in the browser, then we can seize the
opportunity to defend early against exploits of that vulnera-
bility. Our extension, which has access to the user’s browsing
context, can identify vulnerable pages based on a database
of signatures for previous disclosures. This way, XSnare can
protect users as soon as a patch is implemented and added to
its database. The client-side patch will remain beneficial until
all server operators running that software have had a chance
to upgrade their deployments.

A similar philosophy is adopted by the client-side firewall-
based network proxy Noxes [22]. However, due to their
position in the stack, these policies do not defend against
attacks invisible to the network, e.g., deleting local files.

Our system’s signatures are designed to be application-
specific, both in terms of exploit detection and sanitization.
Application-specific signatures accurately dispose of exploits
while retaining the web site’s usability.

We evaluate XSnare by testing it on 81 recent XSS CVEs.
We also report XSnare’s performance overhead on page load
times across a wide range of sites and show that it does not
significantly impact the user’s browsing experience.

To summarize, our contributions include:
• XSnare: a novel client-side framework that protects users

against XSS vulnerabilities with a database of signatures
for these vulnerabilities, written in a declarative language.

• A mechanism to correctly isolate a vulnerable injection
point in a web page and to apply the intended server-side
patch on the client-side.

• A collection of signatures to protect users against real
XSS CVEs (Section V), demonstrating the practicality
of XSnare; and the evaluation of its impact on browsing
(Section VI).

II. XSNARE DESIGN

We now present the design of XSnare and its components
(Figure 2). We begin by reviewing our threat model.

A. Threat model
Our work makes no assumptions about the web server.

In particular, the server may run out of date and vulnerable

2

HTTP request
(e.g., load
example.com)

Security analyst uploads
signature to database

User’s browser
Request processing DOM render

Detector loads
page’s signatures

Sanitizer deletes
malicious injected
content

Browser displays
clean document

Fig. 2: XSnare’s approach to protect against XSS.

software that delivers pages to the user’s browser with XSS
exploits.

We trust the browser and the browser’s extension mech-
anism to correctly execute XSnare. We also depend on the
browser to disallow malicious tampering with the client-side
signature database.

We trust the analyst who writes the signature definitions
used by XSnare. For XSnare to be effective the signatures
must be correct. However, a signature that fails to match a
vulnerability, will only impact the page with longer load times.

B. Overview

We now review the high-level operation of XSnare with
Figure 2. A user requests a page, example.com, on a browser
with the XSnare extension installed. The response may or
may not contain malicious XSS payloads. Before the browser
renders the document, XSnare analyzes the potentially mali-
cious document. The extension loads signatures from its local
database into its detector. The detector analyzes the HTML
string arriving from the network, and identifies the signatures
which apply to the document. These signatures specify one
or more “injection spots” in the document, which correspond,
roughly speaking, to regions of the DOM where improperly
sanitized content could be injected. The extension’s sanitizer
eliminates any malicious content and outputs a clean HTML
document to the browser for rendering.

C. An example application of XSnare

To further explain our approach, we present a small example
of how HTML context can be used to defend against XSS,
taken from CVE 2018-10309 [24]. This is reproducible in
an off-the-shelf WordPress installation running the Responsive
Cookie Consent plugin, v1.7. This is a stored XSS vulnera-
bility, and as such is not caught by some generic client-side
XSS filters, including Chrome’s XSS auditor.

Consider a website running PHP on the backend which
stores user input from one user, and displays it later to another
user, inside an input element.

The PHP code defines the static HTML template (in black),
as well as the dynamic input (in red):
<input id="rcc_settings[border-size]"
name="rcc-settings[border-size]"
type="text" value="<?php rcc_value(’border-size’);

?>"/>

<label class="description"
for="rcc_settings[border-size]">

Normally, the input might have a value of ”0”:
<input id="rcc_settings[border-size]"
name="rcc-settings[border-size]"
type="text" value="0">
<label class="description"
for="rcc_settings[border-size]">

However, the php code is vulnerable to an injection attack:
border-size = ""><script>alert(’XSS’)</script>

The browser will render this, executing the injected script:
<input id="rcc_settings[border-size]"
name="rcc-settings[border-size]"
type="text" value=""><script>alert(’XSS’)</script>
<label class="description"
for="rcc_settings[border-size]">

Note that the resulting HTML is well-formed, so a mere
syntactic check will not detect the malicious injection. Let
us assume a security analyst knows the original template,
i.e., without injected content. If the analyst were given a
filled-in document, they could (in most cases) separate the
injected content from the server-side template, and get rid of
the malicious script entirely, using proper sanitization.

The injected script is bounded by template elements with
identifiable attributes. Assuming (for now) that there is only
one such vulnerable injection point, we can search for the
input element from the top of the document, and the label
from the bottom to ensnare the injection points in the HTML.

This shares goals with the client/server hybrid approach of
Nadji et al. [4]. They automatically tag injected DOM elements
on the server-side using a taint-tracking, so that the client (a
modified browser) can reliably separate template vs injected
content. We do not require any server-side modifications, but
rather opt for a client-side tagging solution based on exploit
definitions.

The injected content, once identified, must be sanitized
appropriately. The appropriate action will depend on the
application setting, but assuming a patch has been written,
it suffices to translate the intention in the server code’s path
to the client-side. This can be straightforward, once the fix is
understood.

The developer incorrectly claimed the bug had been fixed in
version 1.8 of the plugin. Other similar vulnerabilities had in-
deed been fixed, but not this one [25]. The built-in WordPress
function sanitize text field needed to be applied.

XSnare does not automatically determine the actions to
implement from a patch. We assign this task to a security
analyst, who acts as the signature developer for an exploit.
The system automates signature matching and sanitization.

D. XSnare Signatures

Our signature definitions make two assumptions: first, an
injection must have a start point and end point, that is,
an element can only be injected between a specific HTML
node and its immediate sibling in the DOM tree; second, in a
well-formed DOM, the dynamic content will not be able to

3

example.com

rearrange its location in the document without JavaScript
execution (e.g., removing and adding elements), allowing us
to isolate it from the template.

Pages commonly contain more than one vulnerable injection
point. We discuss the difficulty of supporting these pages in
Section II-G.

We believe CVEs are an ideal source of signature defini-
tions. Previous client-side work does not benefit from our level
of specificity; these tools often use less accurate heuristics
to detect exploits. Of course, XSnare signatures will not
write themselves. Luckily, converting the CVE information
into a signature does not require active participation from
the application developers – security enthusiasts and web
developers are sufficiently skilled to compose signatures.

In general, we do not require the existence of a publicly
disclosed CVE to be able to write a signature for an exploit.
CVEs have been useful to us as we did not discover the ex-
ploits. A knowledgeable analyst can write a signature without a
public CVE. In fact, for security measures, many CVEs are not
publicly available until the application developer has patched
its software. Our system can help reduce the time between
zero day attacks and patch deployment: an analyst can write
a signature for a vulnerability as soon as they know the issue.

Long term, we imagine that volunteers (or entrepreneurs)
would cultivate and maintain the signature database. New
signatures could be contributed by a community of amateur
or professional security analysts, in a manner not so different
from how antispam or antivirus software is managed. The
popular ad blocking extension AdBlock, for example, relies
on filter rules taken from open-source filter lists [26].

The challenge of automatically deriving signatures from
detailed CVEs is an interesting one, albeit outside the scope
of this paper.

E. Firewall Signature Language

Our signature language needs enough power of expression
for the signature writer to be precise, both for determining the
correct web application and to identify the affected areas in
the HTML. For injection point isolation, a language based on
regular expressions suffices to express precise sections of the
HTML. The following is the signature that defends against the
motivating example of Section II-C:

Listing 1: An XSnare signature
url:

’wp-admin/options-general.php?page=rcc-settings’,
software: ’WordPress’,
softwareDetails: ’responsive-cookie-consent’,
version: ’1.5’,
type: ’string’,
typeDet: ’single-unique’,
sanitizer: ’regex’,
config: ’/ˆ[0-9](\.[0-9]+)?$/’,
endPoints:
[’<input id="rcc_settings[border-size]"

name="rcc_settings[border-size]" type="text"
value="’,

’<label class="description"
for="rcc_settings[border-size]">’]

In summary, a signature will have the necessary informa-
tion to determine whether a loaded page has a vulnerability,
and specify appropriate actions for eliminating any malicious
payloads.

Analysts configure their signatures with one function cho-
sen from the static set of sanitization functions offered by
XSnare (Section III-B). These functions inoculate potentially
malicious injections based on the DOM context surrounding
the injection. The goal of signatures is to provide such
sanitization, ideally without “breaking” the user experience
of the page. The default function preset is DOMPurify’s [7]
default configuration, which takes care of common sanitization
needs [27]. However, DOMPurify’s defaults can be unneces-
sarily restrictive, or not restrictive enough, in which case the
other sanitization methods are preferable.

We considered allowing arbitrary sanitization code in signa-
tures. While it would open complex sanitization possibilities,
we have decided against it, principally for security reasons.
The minimal set of functions we settled on also sufficed to
express all of the signatures defined for this paper.

F. Browser Extension

Our system’s main component is a browser extension which
rewrites potentially infected HTML into a clean document.
The extension detects exploits in the HTML by using signature
definitions and maintains a local database of signatures. We
leave the design of an update mechanism to future work, but
in its current form, the database is bundled with each new
installation of the extension.

The extension translates signature definitions into patches
that rewrite incoming HTML on a per-URL basis, according
to the top-down, bottom-up scan described in Section II-C.

The extension’s detector acts as an in-network filter. We
initially considered other designs but quickly found out that
applying the patch at the network level was necessary for
sanitization correctness: even before any code runs, parsing
the HTML into a DOM tree might cause elements to be
re-arranged into an unexpected order, making our extension
sanitize the wrong spot. Consider the following example,
where an element inside a <tr> tag is rearranged after parsing
the string:
<table class="wp-list-table">
<thead>

<tr>
<th></th>

<th>
<form method="GET" action=""> ...

In this HTML, the signature developer might identify the
exploit as occurring inside the given table. However, if we wait
until the string has been parsed into a DOM tree to sanitize, the
elements are rearranged due to <tr> not allowing an
as its child:

<table class="wp-list-table">

<thead>
<tr>
<th></th>
<th>

4

<form method="GET" action=""> ...

Note that the injected tag is now outside of the
table, simply by virtue of the DOM parsing. The extension
will not find an injection in the expected place, creating a
false negative (FN). Similarly, elements rearranged inside an
injection point can create false positives. This example would
generate a class of circumvention techniques for our detector,
so we can’t wait until the website has been rendered to analyze
the response.

G. Handling multiple injections in one page

In Listing 1, the endPoints were listed as two strings in the
incoming network response. However, there are cases where
arbitrarily many injection points can be generated by the
application code, such as a for loop generating table rows.
For these, it is hard to correctly isolate each endPoint pair, as
an attacker could easily inject fake endPoints in between the
original ones.

*

*

b)

a)

Fig. 3: Example attacker injection when multiple injection
points exist in the page. a) a basic injection pattern. b) an
attempt to fool the detector.

In Figure 3a, the brackets indicate a template. The content in
between is an injection point (the star), where dynamic content
is injected into the template. In the case of a vulnerability,
the injected content can expand to any arbitrary string. The
signature separates the injection from the rest by matching
for the start and end points (the endPoints), represented by
the brackets. This HTML originally has two pairs of endPoint
patterns.

In Figure 3b, the attacker knows these are being used
as injection end points and decides to inject a fake ending
point and a fake starting point (the dotted brackets), with
some additional malicious content in between. If just looking
for multiple pairs of end points, the detector cannot tell the
difference between the solid and dotted patterns, and will not
get rid of the content injected in the star. Therefore, we have
to use the first starting point and the last ending point before a
starting one (when searching from the bottom-up) and sanitize
everything in between.

* + +

Fig. 4: Example attacker injection when multiple distinct
injection points exist in the page.

Figure 4 illustrates a case when there are several injection
points in one page, but each of them is distinct. Now, the

filter is only looking for one pair of brackets, so the attacker
can’t fool the extension into leaving part of the injection
unsanitized. However, they could, for example, inject an extra
ending bracket after the opening parenthesis (or an extra
starting brace). The extension will be tricked into sanitizing
non-malicious content, the black pluses (+). Since we know
the order in which the endPoints should appear, when the
filter sees a closing endPoint before the next expected starting
endPoint, or similarly, a starting endPoint before the next
expected closing endPoint, this attack can be identified. In
the diagram, the order of the solid elements characterizes the
possible malformations in the end points.

In both scenarios, we have to sanitize the outermost end
points. This might get rid of a substantial amount of valid
HTML, so we defer to the signature developer’s judgment of
what behavior the detector should follow. We expand upon
this further in Section IV-A.

Note that these complex cases do not mean that our ap-
proach is not applicable, as the extension provides a choice
for blocking the page entirely if the signature writer believes
a given case is too complex for our signature language.

H. Dynamic injections

The top-level documents of web pages fetch additional
dynamic content via fetch or AJAX APIs. Content fetched in
this way is also vulnerable to XSS, and must be filtered. An
example vulnerability is CVE-2018-7747 (WordPress Caldera
Forms, which allows malicious content retrieved from the
plugin’s database to be injected in response to a click.

XSnare allows XHR requests to be filtered with xhr-type
signatures. To reduce the number of signatures that need to be
considered when a browser issues a request, we require that
signatures for XHR be nested inside a signature for a top-level
document. If a page’s main content matches an existing top-
level signature description, XSnare will then enable all nested
XHR listeners.

Listing 2 shows an example of such a signature. The idea is
extensible to scripts and other objects loaded separately from
the main document (e.g., images, stylesheets, etc.).

Listing 2: An example dynamic request signature. This patches
CVE-2018-7747.
...
listenerData: [{
listenerType: ’xhr’, listenerMethod: ’POST’,
sanitizer: ’escape’, type: ’string’,
listenerUrl: ’wp-admin/admin-ajax.php’,
typeDet: ’single-unique’,
endPoints: [’<p>’, ’[AltBody]’]

}]

III. IMPLEMENTATION

We implemented our system as an extension in Firefox 69.0.
Our signatures are stored in a local JavaScript file in the ex-
tension package. We decided on an extension implementation
for several reasons. (1) Privileged execution environment. The
extension’s logic lies in a separate environment from the web
application code. This guarantees that malicious code in the

5

Algorithm 1: Network filter algorithm

1 //global DBSignatures
2 procedure verifyResponse (responseString, url)
3 loadedProbes = runProbes(responseString, url)
4 signaturesToCheck ← []
5 for probe in loadedProbes do
6 signaturesToCheck.append(DBSignatures[probe])
7 end
8 filteredSignatures ← []
9 for signature in signaturesToCheck do

10 if responseString and url match signature then
11 filteredSignatures.push(signature)
12 end
13 versionInfo ← loadVersions(url, loadedProbes)
14 endPoints ← []
15 for signature in filteredSignatures do
16 if (signature,signature.version) ∈ versionInfo

then
17 endPoints.push(signature.endPointPairs)
18 end
19 indices ← []
20 for endPointPair in endPoints do
21 indices.push(findIndices(responseString,

endPointPair))
22 end
23 if discrepancies exist in indices then
24 Block page load and return
25 for endPointPair in endPoints do
26 sanitize(responseString,indices)
27 end
28 end

application cannot affect the extension. (2) Web application
context. Our solution requires knowledge of the application’s
context. The extension naturally retains this context. (3) Inter-
position abilities. As it lies within the browser, the extension
can run both at the network level, e.g., rewrite an incoming
response; and at the web application level, e.g., interpose on
the application’s JavaScript execution.

A. Filtering process

Algorithm 1 describes our network filtering process: once a
request’s response comes in through the network, we process
it and sanitize it if necessary.

Loading signatures. Our detector loads signatures and finds
injection points in the document. However, not all signatures
need to be loaded for a specific website, since not all sites run
the same frameworks. When loading signatures, we proceed in
a manner similar to a decision tree. The detector first probes
the page (line 3) to identify the underlying framework (the
software in our signature language). We currently provide
a number of static probes. However, as more applications
are required to be included, we believe it would be better
to cover this task in the signature definitions. The widely

popular network mapping tool Nmap [28] uses probes in
a similar manner, kept in a modifiable file. As mentioned
in Section V, we currently only have signatures for CMS
applications. Our probes use specific identifiers related to the
application, as well as the particular site that is affected by the
exploit. WordPress pages, for example, have several elements
in the page that identify it as a WordPress page. While this
might seem easier for CMS style pages, and we acknowledge
that application fingerprinting is a hard problem in general,
we believe other web apps will also have similar identifying
information, like headers, element ID’s, script/CSS sources,
classes, etc. Previous work has shown that DOM element
boundaries can be effectively identified given some previous
knowledge of the DOM structure [29].

After running these probes, the detector loads corresponding
frameworks’ signatures and filters out checks whether the
information of each loaded signature matches the page (lines
5-12).

Version identification. We then apply version identification
(lines 13-16). Our objective for versioning is to prevent
signatures from triggering false positives on websites running
patched software. We found this to be one of the harder aspects
of signature loading. In many Content Management Systems
(CMSs), for example, file names are not updated with the latest
version, and versioning information is often unavailable on the
client-side.

We have observed that even if we load a signature when
the application has already been patched on the server, it
will often preserve the page’s functionality. Motivated by this
observation, our mechanism follows a series of increasingly
accurate but less precise version identifiers. If versioning is
unavailable in the HTML, the patch is applied as we cannot
be sure the page is running patched software.

Injection point search and sanitization. Once we have
the correct signatures, we find the indices for the endpoints
using our top-down, bottom-up scan, and need to check for
potential malformations in the injection points (lines 19-24),
as described in Section II-G. If this occurs, the page load
is blocked and a message is returned to the user, or if
the signature developer specifies so, sanitization proceeds on
the new endpoints. Finally, if all endPoint pairs are in the
expected order, we sanitize each injection point (lines 25-27).

B. Sanitization methods
We provide different types of sanitization: ”DOMPurify”,

”escape”, and ”regex”. DOMPurify works well as an out-of-
the-box solution. Escaping can be useful when only a few
characters need to be filtered. Regex Pattern matching can be
particularly effective when the expected value has a simple
representation (e.g., a field for only numbers).

IV. WRITING SIGNATURES

We expect a signature developer to have a solid understand-
ing of the principles behind XSS, as well as web applications,
HTML, CSS and JavaScript, so they can identify precise
injection points. In this section, we aim to show that minor
effort is required from an analyst when writing a signature.

6

A. Case Study: CVE-2018-10309

Going back to our example in Section II-C, we describe the
process for writing a signature using one of our studied CVEs.

Identifying the exploit. An entry in Exploit Database [30]
describes a persistent XSS vulnerability in the WordPress
plugin Responsive Cookie Consent for versions 1.7/1.6/1.5.
This entry describes the Cookie Bar Border Bottom Size
parameter as vulnerable. We run a local WordPress installation
with this plugin.

Establishing the separation between dynamic and static
content. We insert the string ”>script>alert(’XSS’)</script>
in the Cookie Bar Border Bottom Size (rcc settings[border-
size] in the HTML) input field as a proof of concept (PoC).
This results in an alert box popping up in the page.

In general, the analyst can find the vulnerable HTML from
the server-side code without reproducing the exploit. Since we
did not discover the exploit, we had to do this extra step.

In the example, the input element is the injection starting
point, and the label tag is the end point. Identification of
correct endpoints is extremely important, and in particular,
when a page has multiple injection points, the signature
developer must ensure the elements do not overlap with other
innocuous ones. In some cases, the developer might think it
best to stop the page from loading due to the complexity of the
injection points. We believe that if sanitization is impractical,
compromising usability for security is preferable.

Collecting other required page information and
writing the signature. The next step is to gather
the remaining information to determine whether the
signature applies to the page loaded. The full signature
for this example was previously shown in Listing 1. The
page’s HTML includes a link to a stylesheet with href
”http://localhost:8080/wp-content/plugins/responsive-cookie-
consent...”, ”wp-content/plugins/plugin-name” is the standard
way of identifying that a WordPress page is running a certain
plugin, in this case, ”responsive-cookie-consent”. Since the
exploit only occurs in this specific spot in the HTML, the
typeDet is listed as ”single-unique”. Since the vulnerable
parameter is a border-size, the sanitizer applied is ”regex”,
further restricting the pattern to only numbers in config. We
list the endPoints as taken from the HTML.

Testing the signature. Finally, we run the extension. We
expect to not have an alert box pop up, and we manually look
at the HTML to verify correct sanitization. If the exploit is not
properly sanitized, the developer is able to use the debugging
tools provided by the browser to check the incoming network
response information seen by the extension’s background page
and make sure it matches the signature values.

V. APPROACH EVALUATION

To verify the applicability of our detector and signature
language, we tested the system by looking at several recent
CVEs related to XSS. We have three objectives: to verify that
our signature language provides the necessary functionality to
express an exploit and its patch, to test our detector against

existing exploits, and to show that composing signatures takes
a reasonable amount of time.

A. Methodology

We study recent CVEs related to WordPress plugins. We
focus on WordPress for two reasons:

1) WordPress powers 34.7% of all websites according to
a recent survey [31] [32]. The same study states that
30.3% of the Alexa top 1000 sites use WordPress. Thus,
we can be confident that our study results will hold true
for the average user.

2) WordPress plugins are popular among developers (there
are currently more than 55,000 plugins [33]). Due to its
user popularity, WordPress is also heavily analyzed by
security experts. A search for WordPress CVEs on the
Mitre CVE database [34] gives 2310 results. Plugins,
specifically, are an important part of this issue, 52% of
the vulnerabilities reported by WPScan are caused by
WordPress plugins [35].

We used a CVE database, CVE Details [36] to find the
100 most recent WordPress XSS CVEs, as of October 2018.
For each CVE, we set up a Docker container with a clean
installation of WordPress 5.2 and installed the vulnerable
plugin’s version. For CVEs that depended on a particular
WordPress version, we installed the appropriate version. Of the
CVEs we looked at, only one occurred in WordPress core. We
believe it would be harder to precisely sanitize injection points
in WordPress core, as many of the plugins have particular
settings pages where the exploits occur, and the HTML is
more identifiable. WordPress core, on the other hand, can
be heavily altered by the use of themes and the user’s own
changes. However, as evidenced by our investigation, the vast
majority of exploits occur in plugins.

Next, we reproduced the exploit in the CVE and we
analyzed the vulnerable page and wrote a signature to patch
the exploit.

B. Results

Plugin Installations
WooCommerce 5+ million

Duplicator 1+ million
Loginizer 900,000+

WP Statistics 500,000+
Caldera Forms 200,000+

TABLE I: Most popular studied WordPress plugins

Of the initial 100 CVEs, we were able to analyze 76 across
44 affected pages. We dropped 24 CVEs due to reproducibility
issues: some of the descriptions did not include a PoC, making
it difficult for us to reproduce; or, the plugin code was no
longer available. In some cases, it had been removed from
the WordPress repository due to ”security issues”, which
emphasizes the importance of being able to defend against
these attacks.

The resulting plugins we studied averaged 489,927 instal-
lations: Table I shows the number of installations for the 5

7

most popular plugins we studied. For the vulnerabilities, 27
(35.5%) could be exploited by an unauthenticated user; 56
(73.7%) targeted a high-privilege user as the victim, 7 (9.2%)
had a low-privilege user as the victim, the rest affected users
of all types.

Many of the studied CVEs included attacks for which there
are known and widely deployed defenses. For example, many
were cases of Reflected XSS, where the URL revealed the
existence of an attack, e.g.,: http://〈target〉&page-uri=〈script〉
alert(”XSS”)〈/script〉 While Chrome’s built-in XSS auditor
blocked this request, Firefox did not, and so we still wrote
signatures for such attacks2.

We wrote 59 WordPress signatures in total, which got rid of
the PoC exploit when sanitized with one of our three methods.
Note that while a PoC is often the most simple form of
an attack, our sanitization methods can get rid of complex
injections as well. We were able to include several CVEs
in some PoCs because they occurred in the same page and
affected the same plugin. Overall, these signatures represent
71 (93.4%) signed CVEs. The 5 we were not able to sign were
due to lack of identifiers in the HTML, which would result in
potentially large chunks of the document being replaced3.

After manual testing, the majority of the 71 signatures
maintained the same layout and core functionality of the
webpage. However, 12 signatures caused some elements to
be rearranged. One caused a table showing user information
to render as blank. Most of the responsibility of maintaining
functionality is left to the signature developer. We found that
being precise is key to retaining functionality. Furthermore,
even if the layout of the page is affected, we believe that
applying the signature is preferable to allowing an exploit.
And, unlike the complete blocking approach commonly used
by malware detection software, our approach allows the user
to access the page.

While our goal is to retain as much information of the page
as possible after sanitization, we believe that even if a part of
the page becomes unusable, this does not impact the user’s
experience as much, since many of the exploits occur in small
sections of the HTML. A usability study is out of scope for
this paper and we leave it to future work.

C. Generalizability beyond WordPress

To test the generalizability of our approach to other frame-
works, we analyzed 5 additional CVEs, 2 related to Joomla!,
2 for LimeSurvey, and 1 for Bolt CMS. We chose Joomla!
because it is another popular CMS. Unfortunately, we only
found 2 CVEs that we were able to reproduce, as the software
for its extensions is often not available. For fairness, we looked
for the most recent CVEs we could reproduce listed in the
Exploit Database [37], since these have recorded PoCs. We
carried out the same procedure as with the WordPress CVEs,

2In practice, we found several cases where even XSS auditor did not block
a reflected XSS.

3In these cases, the signature developer can weigh the trade-offs and decide
whether the added cost is worth it.

and were able to patch all of the 5 exploits. This brought our
CVE coverage rate up to 93.8%.

D. Signature writing times

Figure 5 plots a histogram of the times it took one of
the authors to compose each of the signatures. Each time
measurement includes the time it took to check the HTML
injection points, write the signature and to debug it. We do not
include the time taken to discover and carry out an exploit, as
we assume a vulnerability has been discovered already. The
median time is 3.89 minutes, and the standard deviation is 4.18
minutes. 72% of signatures were written in under 5 minutes.
We believe this to be a reasonable amount of time considering
the security granted by our extension.

The signature which took the longest time to write (25
minutes) corresponds to an exploit with 12 HTML injection
points. Additionally, testing this signature proved difficult,
as some of the injections were a result of a script inserting
elements in the DOM after the page had loaded. This caused
the initial HTML to look innocuous, but with exploits still
occurring after sanitization. As this script was part of the initial
request, we eventually got to the root of the problem. We
believe a more experienced exploit analyst might be able to
detect this kind of behaviour more easily.

5 10 15 20 25
Time taken (minutes)

0

5

10

15

20

Si
gn

at
ur

es

Fig. 5: Histogram of time taken to write signatures.

VI. LOAD TIME PERFORMANCE ON TOP WEBSITES

XSnare’s performance goal is to provide its security guar-
antees without impacting the user’s browsing experience. We
now briefly report XSnare’s impact on top website load times,
representing the expected behaviour of a user’s average web
browsing experience.

In our setup, we used a headless version of Firefox 69.0,
and Selenium WebDriver for NodeJS, with GeckoDriver. All
experiments were run on one machine with an Intel Xeon
CPU E5-2407 2.40GHz processor, 32 GB DRAM, and our
university’s 1GiB connection.

In our tests we used the top 500 websites as reported
by Moz.com [38]. For each website, we loaded it 25 times
(with a 25 second timeout) and recorded the following values:
requestStart, responseEnd, domComplete, and decodedBody-
Size. From the initial set of 500, we only report values for
441: the other 59 had consistent issues with timeouts, insecure

8

http://<target>&page-uri=<script>alert("XSS")</script>
http://<target>&page-uri=<script>alert("XSS")</script>

certificates, and network errors. We believe these to have been
caused by the Selenium web driver, as our extension runs after
a response has been delivered to the browser. We manually
loaded each page on a personal computer with our extension
running successfully and were not able to reproduce the issues.

We ran four test suites: No extension cold cache: Firefox
is loaded without the extension installed and the web driver
is re-instantiated for every page load. Extension cold cache:
As before, but Firefox is loaded with the extension installed.
No extension warm cache: Firefox is loaded without the
extension installed and the same web driver is used for the
page’s 25 loads. Extension warm cache: As before, but
Firefox is launched with the extension installed.

For each set of tests, we reduced the recorded values to two
comparisons: network filter (responseEnd - requestStart), and
page ready (domComplete - responseStart). The first analyzes
the time spent by the network filter, while the second deter-
mines the time spent until the whole document has loaded.
We calculate the medians for each website for each of these
measures as well as the decodedByteSize.

40 20 0 20 40
Percentage slowdown

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f s
ite

s

cold network filter
cold page ready
warm network filter
warm page ready
x=[-10,10]

Fig. 6: Cumulative distribution of relative percentage slow-
down with extension installed for top sites.

We compare the load times with/without the extension by
calculating the relative slowdown with the extension installed
according to the following formula:

100 ∗ x̃with − x̃without

x̃without

where x̃ is the median with/without the extension running.
Figure 6 plots the results. We can see a slowdown of less

than 10% for 72.6% of sites, and less than 50% for 82% of
sites when the extension is running. Note that these values are
recorded as percentages, and while some are as high as 50%,
the absolute values are in 77% of cases less than a second. This
overhead should not alter the user’s experience significantly.

The slowdown increases by at most 5% when we take
caching into account. This is likely because the network filter
causes the browser to use less caching, especially for the
DOM component, as it might have to process it from scratch
every time. While it may seem counter-intuitive that some
pages have shorter loading times with the extension, there are
several variables at play that can affect these measurements

(local network, server-side load, internal scheduling, etc). We
manually checked the websites for which values were higher
than |40%| and verified that our extension did not change the
page’s contents, a possible cause of faster load times. We also
checked the timings for the page as reported by the browser
and noted a high variance even within small time windows.
The time spent by our verification function was less than 10ms
for 87.6% of sites (Figure 7). This corroborates our findings
that the slowdown is mostly negligible.

0 40 80 120 160
Length (thousands of characters)

0

10

20

30

40

Ve
rif

ica
tio

n
tim

e
(m

s) trend line (no probes)
trend line (probes)
trend line (overall)
verification time (no probes)
verification time (probes)

Fig. 7: Scatter plot of network filter time as a function of
character length for top sites.

Figure 7 shows the time spent by the call to our string
verification function in the network filter as a function of
the length of the string to be verified, differentiating between
websites for which some probes tested positive and ones which
no probes did. We applied least squares regression to calculate
the shown trend lines. Since both our probes and signatures
use regex matching, we expect both trend lines to be linear,
as seen in the graph. We expect the slope of the line to be
higher when a probe passes, as it performs additional string
verification. Around 37.4% of all web sites use frameworks
covered by our probes [31], thus, we expect the impact of
our network filter to be closer to the non-probe values, as
corroborated by our overall trend line.

False positives on the Web. For each website, we recorded
the number of loaded signatures. We report a 0% FP rate
for these. Thus, we can infer with confidence that the rate
of falsely loaded signatures during an average user’s web
browsing is similarly low. This rate could possibly go up as
we cover more frameworks. Since many of these pages are not
running WordPress and are very popular and more prone to
fixing their vulnerabilities, the rate of false negatives is likely
extremely low as well.

Scalability with signatures. We tested our system with a
large number of signatures. We added 15,500 signatures to
our database and recorded the time spent by the network
filter to process these sites4. These were crafted so that the
extension would check each one against the loaded sites,
without triggering the injection search and sanitization. Thus,
we effectively forced our extension to test each site against
15,500 signatures. The mean time spent by the filtering process
was 1,930ms, with less than 2,000ms for 88% of the sites. In
practice, we expect a smaller filter time, as many frameworks

4There are 15,303 CVEs related to XSS in CVE Details [39].

9

would have many signatures. For example, there are currently
200+ CVEs listed for WordPress core and its plugins.

VII. LIMITATIONS AND FUTURE WORK

Generalizability and scope of study. As discussed in
Section V-A, while many websites share similar structures
to the ones we covered, our study only considered 4 other
sites apart from those running on WordPress, and we only
considered sites using a CMS. Not all websites might be
identified as easily. Furthermore, we only studied 81 CVEs.
In the future we intend to study a more diverse set of CVEs
and go beyond CMS-based sites.

False positives and false negatives. It is extremely hard to
get completely rid of FPs. If the sanitization targets JavaScript
code, for example, a FP will likely be triggered. Furthermore,
since we rely on handwritten signatures, vulnerable sites for
which no signature has been written will be subject to FNs.
In the future, we intend to study the rate of FPs and FNs in
our approach and compare it to previous work.

Protection against CSRF. We believe that we can adapt our
work to defend against Cross-Site Request Forgery (CSRF)
exploits, as well. Using a similar signature language as the
one for XSS, a signature developer could specify pages with
potential vulnerabilities to only allow network requests that
cannot exploit such vulnerabilities.

Filtering network data. Our filter’s design depends on
Firefox’s implementation of the WebRequest API. Firefox’s
filterResponseData method allows the extension to modify an
incoming HTTP request5. This feature has been requested in
other browsers like Chrome, but it has not been implemented.
This design limits our deployability to Firefox users.

Design considerations. Currently, each browser user has to
install our extension. However, the same functionality could
be offloaded to a single processing unit similar to a proxy,
which can handle the filtering for all machines in a network.
This deployment model might be more appropriate in certain
environments, such as in enterprises.

VIII. RELATED WORK

We classify existing work into several categories: client-
side, server-side, browser built-in, and hybrid: a combination
of these.
Server-side techniques. In addition to existing parameter
sanitization techniques, taint-tracking has been proposed as
a means to consolidate sanitization of vulnerable parameters,
and identify vulnerabilities automatically. [2], [16], [17], [18],
[19], [40]. These techniques are complementary to ours, and
provide an additional line of defence against XSS.

There has also been work on other server-side analysis
approaches to find bugs security vulnerabilities in web ap-
plications. [41], [42], [43]. However, these do not target XSS
specifically.
Client-side techniques. DOMPurify [7] presents a robust XSS
client-side filter. The authors argue that the DOM is the ideal

5https://developer.mozilla.org/en-US/docs/Mozilla/Add-
ons/WebExtensions/API/webRequest/filterResponseData

place for sanitization to occur. While we agree with this view,
this work relies on application developers to adopt the filter
and modify their code to use it. We have partly automated this
step by including it as our default sanitization function.

Jim et al. [3] present a method to defend against injection
attacks through Browser-Enforced Embedded Policies. This
approach is similar to ours, as the policies specify prohibited
script execution points. Similarly, Hallaraker and Vigna [23]
use a policy language to detect malicious code on the client-
side. Like XSnare, they make use of signatures to protect
against known types of exploits. However, unlike our ap-
proach, their signatures are not application-specific, and there
is no model for signature maintenance.

Snyder et al. [10] report a study in which they disable
several JavaScript APIs and test the number of websites that
are do not work without the full functionality of the APIs.
This approach increases security due to vulnerabilities present
in several JavaScript APIs, however, we believe disabling API
functionality should only be used as a last resort.

Additionally, client-side taint tracking, through the use of
static and dynamic analysis, has also been applied as a means
to detect XSS, either at the browser level or at the extension
level [44], [45].
Browser built-in defences. Browsers are equipped with sev-
eral built-in defences. We previously described XSS Auditor
in Section I, another important one is the Content Security
Policy (CSP) [46]. It has been widely adopted and in many
cases provides developers with a reliable way to protect against
XSS and CSRF attacks. However, CSP requires the developer
to identify which scripts might be malicious. Previous work
has also highlighted the need for further built-in defences [47].
Client and server hybrids. XSS-Dec [6] uses a proxy which
keeps track of an encrypted version of the server’s source
files, and applies this information to derive exploits in a page
visited by the user. This approach is similar to ours, since we
assume previous knowledge of the clean HTML document.
Furthermore, they use anomaly-based and signature-based
detection to prevent attacks. In a way, our system offloads
all this functionality to the client-side, without the need for
any server-side information.

IX. CONCLUSION

Users cannot depend on administrators to patch vulnerable
server-side software or for developers to adopt best practices
to mitigate XSS vulnerabilities. Instead, users should protect
themselves with a client-side solution. In this paper we de-
scribed the design, implementation, and evaluation of XSnare,
one such client-side approach. XSnare prevents XSS exploits
by using a database of exploit signatures and by using a novel
mechanism to detect XSS exploits in a browser extension. We
evaluated XSnare through a study of 81 CVEs in which we
showed that it defends against 93.8% of the exploits.

ACKNOWLEDGMENT

We would like to thank Dr. William Aiello, who provided
crucial expert advice and insight in the early stages of the
project. We miss him dearly.

10

REFERENCES

[1] I. Muscat. (2017, jun) Acunetix vulnerability test-
ing report 2017. https://www.acunetix.com/blog/articles/
acunetix-vulnerability-testing-report-2017/.

[2] G. Wassermann and Z. Su, “Static detection of cross-site scripting
vulnerabilities,” in Proceedings of the 30th International Conference
on Software Engineering, ser. ICSE ’08. New York, NY, USA:
Association for Computing Machinery, 2008, p. 171–180. [Online].
Available: https://doi.org/10.1145/1368088.1368112

[3] T. Jim, N. Swamy, and M. Hicks, “Defeating script injection attacks
with browser-enforced embedded policies,” in Proceedings of the
16th International Conference on World Wide Web, ser. WWW ’07.
New York, NY, USA: ACM, 2007, pp. 601–610. [Online]. Available:
http://doi.acm.org/10.1145/1242572.1242654

[4] Y. Nadji, P. Saxena, and D. Song, “Document structure integrity: A
robust basis for cross-site scripting defense.” in NDSS, vol. 20, 2009.

[5] P. Wurzinger, C. Platzer, C. Ludl, E. Kirda, and C. Kruegel, “Swap:
Mitigating xss attacks using a reverse proxy,” in Proceedings of the
2009 ICSE Workshop on Software Engineering for Secure Systems, ser.
IWSESS ’09. Washington, DC, USA: IEEE Computer Society, 2009,
pp. 33–39. [Online]. Available: http://dx.doi.org/10.1109/IWSESS.2009.
5068456

[6] S. Sundareswaran and A. C. Squicciarini, “Xss-dec: A hybrid solution
to mitigate cross-site scripting attacks,” in Proceedings of the 26th
Annual IFIP WG 11.3 Conference on Data and Applications Security
and Privacy, ser. DBSec’12. Berlin, Heidelberg: Springer-Verlag,
2012, pp. 223–238. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-31540-4 17

[7] M. Heiderich, C. Späth, and J. Schwenk, “Dompurify: Client-side
protection against xss and markup injection,” in Computer Security –
ESORICS 2017, S. N. Foley, D. Gollmann, and E. Snekkenes, Eds.
Cham: Springer International Publishing, 2017, pp. 116–134.

[8] Noscript homepage. https://noscript.net/.
[9] B. Stock, M. Johns, M. Steffens, and M. Backes, “How the web

tangled itself: Uncovering the history of client-side web (in)security,” in
Proceedings of the 26th USENIX Conference on Security Symposium,
ser. SEC’17. Berkeley, CA, USA: USENIX Association, 2017,
pp. 971–987. [Online]. Available: http://dl.acm.org/citation.cfm?id=
3241189.3241265

[10] P. Snyder, C. Taylor, and C. Kanich, “Most websites don’t
need to vibrate: A cost-benefit approach to improving browser
security,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’17. New
York, NY, USA: ACM, 2017, pp. 179–194. [Online]. Available:
http://doi.acm.org/10.1145/3133956.3133966

[11] (2016) Hacked website report 2016/q3. https://sucuri.net/reports/
Sucuri-Hacked-Website-Report-2016Q3.pdf.

[12] (2019) Statistics show why wordpress is a popular hacker tar-
get. https://www.wpwhitesecurity.com/statistics-70-percent-wordpress-
installations-vulnerable/.

[13] (2019) Xss auditor. https://www.chromium.org/developers/
design-documents/xss-auditor.

[14] (2019) Intent to deprecate and remove: Xssauditor. https:
//groups.google.com/a/chromium.org/forum/#!msg/blink-dev/
TuYw-EZhO9g/blGViehIAwAJ.

[15] B. Stock, S. Lekies, T. Mueller, P. Spiegel, and M. Johns, “Precise client-
side protection against dom-based cross-site scripting,” in Proceedings
of the 23rd USENIX Conference on Security Symposium, ser. SEC’14.
Berkeley, CA, USA: USENIX Association, 2014, pp. 655–670.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2671225.2671267

[16] W. Xu, S. Bhatkar, and R. Sekar, “Taint-enhanced policy enforcement:
A practical approach to defeat a wide range of attacks,” in Proceedings
of the 15th Conference on USENIX Security Symposium - Volume 15,
ser. USENIX-SS’06. Berkeley, CA, USA: USENIX Association, 2006.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1267336.1267345

[17] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans,
“Automatically hardening web applications using precise tainting,” in
Security and Privacy in the Age of Ubiquitous Computing, IFIP TC11
20th International Conference on Information Security (SEC 2005), May
30 - June 1, 2005, Chiba, Japan, 2005, pp. 295–308.

[18] T. Pietraszek and C. V. Berghe, “Defending against injection attacks
through context-sensitive string evaluation,” in Proceedings of the 8th
International Conference on Recent Advances in Intrusion Detection,

ser. RAID’05. Berlin, Heidelberg: Springer-Verlag, 2006, pp. 124–145.
[Online]. Available: http://dx.doi.org/10.1007/11663812 7

[19] P. Bisht and V. N. Venkatakrishnan, “Xss-guard: Precise dynamic
prevention of cross-site scripting attacks,” in Proceedings of the 5th
International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, ser. DIMVA ’08. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 23–43. [Online]. Available: http://dx.doi.org/
10.1007/978-3-540-70542-0 2

[20] (2018) Security report for in-production web applications.
https://www.rapid7.com/resources/security-report-for-in-production-
web-applications/.

[21] M. Steffens, C. Rossow, M. Johns, and B. Stock, “Don’t trust the locals:
Investigating the prevalence of persistent client-side cross-site scripting
in the wild,” in 26th Annual Network and Distributed System Security
Symposium, NDSS 2019, San Diego, California, USA, February 24-27,
2019, 2019.

[22] E. Kirda, N. Jovanovic, C. Kruegel, and G. Vigna, “Client-side cross-site
scripting protection,” Comput. Secur., vol. 28, no. 7, pp. 592–604, Oct.
2009. [Online]. Available: http://dx.doi.org/10.1016/j.cose.2009.04.008

[23] O. Hallaraker and G. Vigna, “Detecting malicious javascript code in
mozilla,” in Proceedings of the 10th IEEE International Conference
on Engineering of Complex Computer Systems, ser. ICECCS ’05.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 85–94.
[Online]. Available: http://dx.doi.org/10.1109/ICECCS.2005.35

[24] (2018) Wordpress plugin responsive cookie consent 1.7 / 1.6 / 1.5
- (authenticated) persistent cross-site scripting. https://www.exploit-db.
com/exploits/44563.

[25] (2019) Responsive cookie consent 1.8 patches. https://plugins.trac.
wordpress.org/browser/responsive-cookie-consent/tags/1.8/includes/
admin-page.php.

[26] (2018, aug) How does adblock work? https://help.getadblock.com/
support/solutions/articles/6000087914-how-does-adblock-work-.

[27] (2019) Safely inserting external content into a page. https:
//developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/
Safely inserting external content into a page.

[28] (2019) nmap network mapper. https://nmap.org/.
[29] C.-P. Bezemer, A. Mesbah, and A. van Deursen, “Automated security

testing of web widget interactions,” in Proceedings of the 7th
Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on The Foundations of Software
Engineering, ser. ESEC/FSE ’09. New York, NY, USA: Association
for Computing Machinery, 2009, p. 81–90. [Online]. Available:
https://doi.org/10.1145/1595696.1595711

[30] (2019) Wordpress plugin responsive cookie consent 1.7 / 1.6 / 1.5
- (authenticated) persistent cross-site scripting. https://www.exploit-db.
com/exploits/44563.

[31] (2019) Usage of content management systems for websites. https:
//w3techs.com/technologies/overview/content management/all.

[32] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks:
Exploiting speculative execution,” CoRR, vol. abs/1801.01203, 2018.
[Online]. Available: http://arxiv.org/abs/1801.01203

[33] (2019) Wordpress: Plugins. https://wordpress.org/plugins/.
[34] (2019) Wordpress cves. https://cve.mitre.org/cgi-bin/cvekey.cgi?

keyword=wordpress.
[35] (2019) Wpscan. https://wpscan.org/.
[36] (2019) Wordpress: Vulnerability statistics. https://www.cvedetails.com/

product/4096/Wordpress-Wordpress.html?vendor id=2337.
[37] (2019) Exploit database. https://www.exploit-db.com/.
[38] Moz top 500 websites. https://moz.com/top500.
[39] (2020) Cve details vulnerabilities by type. https://www.cvedetails.com/

vulnerabilities-by-types.php.
[40] A. Kieyzun, P. J. Guo, K. Jayaraman, and M. D. Ernst, “Automatic

creation of sql injection and cross-site scripting attacks,” in 2009 IEEE
31st International Conference on Software Engineering, 2009, pp. 199–
209.

[41] G. Wassermann, D. Yu, A. Chander, D. Dhurjati, H. Inamura, and
Z. Su, “Dynamic test input generation for web applications,” in
Proceedings of the 2008 International Symposium on Software Testing
and Analysis, ser. ISSTA ’08. New York, NY, USA: Association
for Computing Machinery, 2008, p. 249–260. [Online]. Available:
https://doi.org/10.1145/1390630.1390661

[42] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M. D.
Ernst, “Finding bugs in web applications using dynamic test generation

11

https://www.acunetix.com/blog/articles/acunetix-vulnerability-testing-report-2017/
https://www.acunetix.com/blog/articles/acunetix-vulnerability-testing-report-2017/
https://doi.org/10.1145/1368088.1368112
http://doi.acm.org/10.1145/1242572.1242654
http://dx.doi.org/10.1109/IWSESS.2009.5068456
http://dx.doi.org/10.1109/IWSESS.2009.5068456
http://dx.doi.org/10.1007/978-3-642-31540-4_17
http://dx.doi.org/10.1007/978-3-642-31540-4_17
https://noscript.net/
http://dl.acm.org/citation.cfm?id=3241189.3241265
http://dl.acm.org/citation.cfm?id=3241189.3241265
http://doi.acm.org/10.1145/3133956.3133966
https://sucuri.net/reports/Sucuri-Hacked-Website-Report-2016Q3.pdf
https://sucuri.net/reports/Sucuri-Hacked-Website-Report-2016Q3.pdf
https://www.chromium.org/developers/design-documents/xss-auditor
https://www.chromium.org/developers/design-documents/xss-auditor
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/TuYw-EZhO9g/blGViehIAwAJ
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/TuYw-EZhO9g/blGViehIAwAJ
https://groups.google.com/a/chromium.org/forum/#!msg/blink-dev/TuYw-EZhO9g/blGViehIAwAJ
http://dl.acm.org/citation.cfm?id=2671225.2671267
http://dl.acm.org/citation.cfm?id=1267336.1267345
http://dx.doi.org/10.1007/11663812_7
http://dx.doi.org/10.1007/978-3-540-70542-0_2
http://dx.doi.org/10.1007/978-3-540-70542-0_2
http://dx.doi.org/10.1016/j.cose.2009.04.008
http://dx.doi.org/10.1109/ICECCS.2005.35
https://www.exploit-db.com/exploits/44563
https://www.exploit-db.com/exploits/44563
https://plugins.trac.wordpress.org/browser/responsive-cookie-consent/tags/1.8/includes/admin-page.php
https://plugins.trac.wordpress.org/browser/responsive-cookie-consent/tags/1.8/includes/admin-page.php
https://plugins.trac.wordpress.org/browser/responsive-cookie-consent/tags/1.8/includes/admin-page.php
https://help.getadblock.com/support/solutions/articles/6000087914-how-does-adblock-work-
https://help.getadblock.com/support/solutions/articles/6000087914-how-does-adblock-work-
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Safely_inserting_external_content_into_a_page
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Safely_inserting_external_content_into_a_page
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Safely_inserting_external_content_into_a_page
https://nmap.org/
https://doi.org/10.1145/1595696.1595711
https://www.exploit-db.com/exploits/44563
https://www.exploit-db.com/exploits/44563
https://w3techs.com/technologies/overview/content_management/all
https://w3techs.com/technologies/overview/content_management/all
http://arxiv.org/abs/1801.01203
https://wordpress.org/plugins/
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=wordpress
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=wordpress
https://wpscan.org/
https://www.cvedetails.com/product/4096/Wordpress-Wordpress.html?vendor_id=2337
https://www.cvedetails.com/product/4096/Wordpress-Wordpress.html?vendor_id=2337
https://www.exploit-db.com/
https://moz.com/top500
https://www.cvedetails.com/vulnerabilities-by-types.php
https://www.cvedetails.com/vulnerabilities-by-types.php
https://doi.org/10.1145/1390630.1390661

and explicit-state model checking,” IEEE Transactions on Software
Engineering, vol. 36, no. 4, pp. 474–494, 2010.

[43] X. Xiao, A. Paradkar, S. Thummalapenta, and T. Xie, “Automated
extraction of security policies from natural-language software
documents,” in Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, ser. FSE ’12.
New York, NY, USA: Association for Computing Machinery, 2012.
[Online]. Available: https://doi.org/10.1145/2393596.2393608

[44] J. Pan and X. Mao, “Detecting dom-sourced cross-site scripting in
browser extensions,” in 2017 IEEE International Conference on Software
Maintenance and Evolution (ICSME), 2017, pp. 24–34.

[45] F. Sun, L. Xu, and Z. Su, “Client-side detection of xss worms by
monitoring payload propagation,” in Computer Security – ESORICS
2009, M. Backes and P. Ning, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 539–554.

[46] (2019) Same-origin policy. https://developer.mozilla.org/en-US/docs/
Web/Security/Same-origin policy.

[47] E. Abgrall, Y. L. Traon, S. Gombault, and M. Monperrus, “Empirical
investigation of the web browser attack surface under cross-site scripting:
An urgent need for systematic security regression testing,” in 2014 IEEE
Seventh International Conference on Software Testing, Verification and
Validation Workshops, 2014, pp. 34–41.

12

https://doi.org/10.1145/2393596.2393608
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy

	Introduction
	XSnare Design
	Threat model
	Overview
	An example application of XSnare
	XSnare Signatures
	Firewall Signature Language
	Browser Extension
	Handling multiple injections in one page
	Dynamic injections

	Implementation
	Filtering process
	Sanitization methods

	Writing Signatures
	Case Study: CVE-2018-10309

	Approach evaluation
	Methodology
	Results
	Generalizability beyond WordPress
	Signature writing times

	Load time performance on top websites
	Limitations and Future Work
	Related Work
	Conclusion
	References

