
Mining Specifications from Documentation
Using a Crowd

Peng Sun
Iowa State University

Ames, IA, USA
psun@iastate.edu

Chris Brown
North Carolina State University

Raleigh, NC, USA
dcbrow10@ncsu.edu

Ivan Beschastnikh
University of British Columbia

Vancouver, BC, Canada
bestchai@cs.ubc.ca

Kathryn T. Stolee
North Carolina State University

Raleigh, NC, USA
ktstolee@ncsu.edu

Abstract—Temporal API specifications are useful for many
software engineering tasks, such as test case generation. In
practice, however, APIs are rarely formally specified, inspiring
researchers to develop tools that infer or mine specifications
automatically.

Traditional specification miners infer likely temporal prop-
erties by statically analyzing the source code or by analyzing
program runtime traces. These approaches are frequently con-
founded by the complexity of modern software and by the
unavailability of representative and correct traces. Formally
specifying software is traditionally an expert task. We hypothesize
that human crowd intelligence provides a scalable and high-
quality alternative to experts, without compromising on quality.

In this work we present CrowdSpec, an approach to use
collective intelligence of crowds to generate or improve automat-
ically mined specifications. CrowdSpec uses the observation that
APIs are often accompanied by natural language documentation,
which is a more appropriate resource for humans to interpret
and is a complementary source of information to what is used
by most automated specification miners.

Index Terms—Specification mining, crowdsourcing, Java APIs

I. INTRODUCTION

Software APIs are designed to be used (and abused) by
countless client programs. It is critical to specify correct API
behavior to capture features that are absent or difficult to
infer from the underlying implementation. The resulting API
specifications, or specs for short, can be used as inputs to
a variety of tools, including model checkers [1], automatic
test-case generators [2], and program repair tools [3].

Manually specifying an API’s behavior is a difficult task,
and unsurprisingly, most APIs do not have specs. One line
of work that has approached the problem of missing specs
proposes to automatically infer likely API specs from executions
of API client programs (Robillard, et al. extensively survey
this space [4]). This line of work has produced techniques
that infer a variety of specifications, such as data specs [5],
temporal specs [6], [7], [8], [9], some combination of the
two [10], [11], and other spec varieties [12]. Many of these
are dynamic analysis techniques and require (1) diverse traces
of program behavior, and (2) make the assumption that the
observed behavior is correct. However, all these miners are
incomplete: they will miss true specs for methods that do not
appear in the traces.

Although automated approaches may produce a rough initial
spec, what they sorely need is human-level reflection and
insight. Recent work by Legunsen et al. [13] evaluated 17 Java
API specs mined by automated techniques [14] to evaluate
their bug finding effectiveness. They found a false alarm rate of
96.69%. This indicates that before automatically-derived specs
can be used by practitioners, these specs must be reviewed
for accuracy by humans. As expert knowledge is expensive, a
cheaper and more scalable way to obtain human insight is to
use the crowd. Furthermore, the collective crowd wisdom can
often outperform individuals, even on complex tasks [15].

In this paper we propose CrowdSpec, a methodology to
link automated spec mining approaches with manual creation
of high-quality specs. We demonstrate that human crowd
intelligence in CrowdSpec improves existing automated spec
miners; we illustrate this by applying CrowdSpec to a recent
state-of-the-art automated approach called SpecForge [8]. We
evaluate CrowdSpec using three real world and popular Java
APIs: HashSet, StringTokenizer, and StackAr. Since
the aim of prior techniques like SpecForge has been to forego
humans altogether, CrowdSpec pushes back on this trend by
bringing humans back into the spec creation loop.

CrowdSpec re-introduces humans into the spec mining
process in a lightweight and scalable manner. CrowdSpec
is lightweight because it uses the fact that APIs are often
accompanied by natural language resources, such as docu-
mentation, which are easier for a non-specialist to read and
understand. These resources are better-suited to crowd-based
spec mining than resources like source code or execution traces.
In CrowdSpec, human crowd workers check temporal API specs
against API documentation.

CrowdSpec’s second key feature is scalability. Rather than
using a recruited pool of experts, CrowdSpec uses human
intelligence in a crowd. We prototyped CrowdSpec using
Amazon’s Mechanical Turk (MTurk) [16], a popular crowd-
sourcing platform. Using a thorough automated screening
process, CrowdSpec identifies workers who are technically
competent enough to answer questions about Java APIs and
linear temporal logic (LTL) property types. Furthermore, we
find that this crowd is sufficiently large. The three APIs we
studied contain 1,998 properties in total that require multiple
crowd opinions each (for replication). In our studies, 198
participants commented on 13,944 properties in 2,324 tasks.

To summarize, our work evaluates whether or not a crowd
can positively contribute to spec mining tasks. Our results show
that the crowd can improve the accuracy of a state-of-the-art
miner, SpecForge [8], with gains in recall of 13.9% to 26.8%
on three Java APIs: HashSet, StringTokenizer, and
StackAr. Furthermore, we find that the crowd can perform
as well as experts on two of the three APIs. The contributions
of this work are:
• Evidence that crowd intelligence, when applied to Java API

documentation, improves the accuracy and recall of API
specs generated by the spec miner SpecForge (RQ1).

• Evidence that screening through qualification tests can iden-
tify a large crowd (198 workers) that is technically competent
enough to answer questions about LTL specifications (RQ1).

• Qualitative analysis of where and why the crowd made
mistakes in extracting LTL properties from Java API docu-
mentation. We find that ambiguities in API documentation
were not the dominant source of errors, suggesting that
documentation can be a reliable source of information for
composing LTL specifications for Java APIs (RQ2).

• Results indicating that a combination of Spec-
Forge+CrowdSpec can perform as well as voting experts.
This hints at the power of hybrid approaches that combine
crowd and automated specification miners to derive software
specifications (RQ3).
In the following section we provide essential background

information for understanding the rest of the paper.

II. BACKGROUND

The broad objective of this research is to determine whether
human crowd intelligence can enhance, or even replace,
automated specification miners.

Java APIs. We consider specs for three Java APIs:
HashSet, StringTokenizer, and StackAr. We chose
these libraries for two reasons.

1) They are used in prior work so we can compare Crowd-
Spec to prior mining approaches [8].

2) They have small enough APIs that we can manually derive
a ground truth to use to evaluate crowd accuracy.

Both HashSet and StringTokenizer are widely used
and are part of the standard Java library, which has high
quality documentation in the form of publicly available JavaDoc
pages. We use the Java 7 version of these libraries with the
assumption that more participants would be familiar with this
earlier version. The StackAr library is an external library
that has several different implementations (we use [17]). The
three APIs have between six and nine methods each and have
multiple constructors; to limit the study costs without loss
of generality, we only consider the primary constructor, e.g.,
HashSet().

Temporal specification property types. We mine specs
based on six common linear temporal logic (LTL) property
types listed below. These have been studied by Dwyer, et
al. [18] and have been used by prior spec miners such as Spec-
Forge [8], InvariMint [19], Synoptic [20], and Perracotta [21].

For each of these six property types we consider property
instances, or properties for short, formed by all possible
combinations of the methods from each API1.

We define a property to be true if (1) a program that uses
an API and does not follow the property will trigger a Java
exception, or (2) a violation of the property is impossible in the
Java language (e.g., a constructor call must precede any other
object method call, otherwise the code is not well-formed).
Next, we explain each LTL property type in the context of the
HashSet API:

• a is always followed (AF 2) by b: an occurrence of event
a must be eventually followed by an occurrence of event
b (e.g., a false property example: size() AF clone()).

• a is never followed (NF 3) by b: there are no occurrences
of event b after an occurrence of event a (e.g., a true
property example: iterator() NF HashSet()).

• a always precedes (AP 4) b: an occurrence of event b must
be preceded by event a (e.g., a true property example:
HashSet() AP size()).

• a always immediately precedes (AIP 5) b: an occurrence
of event b must be immediately preceded by an occurrence
of event a (e.g., a false property example: size() AIP
clear()).

• a is always immediately followed (AIF 6) by b: an
occurrence of event a must be immediately followed by
an occurrence of event b (e.g., a false property example:
contains(Object o) = false AIF clear()).

• a is never immediately followed (NIF 7) by b: there are no
occurrences of event b immediately after any occurrence
of event a (e.g., a true property example: clear() NIF
add(E e) = false).

SpecForge. In this paper we use CrowdSpec to improve
the SpecForge tool [8]. SpecForge is a specification mining
approach that infers specifications using multiple state-of-the-
art finite state automaton (FSA) miners: k-tails [23], CON-
TRACTOR++, SEKT, and TEMI [24], although SpecForge is
not constrained to combining just these spec miners. SpecForge
combines these algorithms in a way that allows it to outperform
each of them individually, thus representing one of the most
accurate automated LTL specification mining tools based on
execution traces.

SpecForge uses a three-step algorithm:
1) Runs the FSA spec mining algorithms on the input traces

to independently generate multiple FSA models, one
model per spec miner.

2) Uses model checking to perform model fissions [8] to
extract temporal constraints that are common across the
mined FSAs.

1We follow the majority of prior work in scoping each property to a single
object instance; we do not consider multi-object properties [22].

2LTL: G(a→ XF b)
3LTL: G(a→ XG(¬b)).
4LTL: ¬b W a
5LTL: F (a) → (¬a U(b ∧Xa)).
6LTL: G(a→ X b).
7LTL: G(a→ X(¬b)).

3) Performs model fusions [8] to combine the common
temporal constraints into a single FSA model that it then
outputs.

To improve SpecForge with CrowdSpec, we introduce a
crowdsourcing step after the fission step in SpecForge. In this
new step (2.5) the crowd would further verify the properties
derived during the fission step.

We selected SpecForge for two reasons. First, to our
knowledge, it is one of the best performing FSA spec mining
algorithms in the literature. Second, SpecForge uses simple
and concise temporal properties – instantiations of exactly the
six property types listed previously. These short property types
are a good match to microtask crowdsourcing.

Crowdsourcing. In this work, we use microtask crowdsourc-
ing to obtain human insights on API properties. Crowdsourcing
obtains human intelligence on tasks by publishing those
tasks to an unknown crowd of qualified workers, and it has
been used extensively in software engineering [25]. Microtask
crowdsourcing involves giving small tasks to the crowd, which
can be accomplished in minutes rather than hours. In this work,
we decompose the larger problem of obtaining insights on all
properties in an API into smaller tasks. In our studies each task
contains questions concerning six property instances, one per
property type; all six instances relate the same two methods
from an API under study.

Achieving high accuracy with MTurk participants requires
quality-control mechanisms. Our CrowdSpec infrastructure uses
best practices in crowd control to encourage high response
quality (see Section IV-E). CrowdSpec uses gold standard
questions [26], redundant question formats [27], notices about
the value of their work [28], instructional tutors [29], conflict
detection [30], and random click detection [31]. In concert
these techniques train the crowd to deliver highly accurate
results on the temporal spec mining task.

III. RESEARCH QUESTIONS

To determine whether crowd intelligence can improve (or
replace) machine-generated specs, we designed and ran several
studies. Our studies were designed to answer the following
three research questions:

RQ 1. Can a crowd use documentation to improve machine-
generated specs?

To answer RQ1 we ran experiments in which we used the
crowd to improve specs mined by state-of-the-art temporal spec
miner SpecForge [8]. Since SpecForge identifies true specs for
pairs of methods it observes in the traces, we posit that there is
an opportunity to improve SpecForge-mined specs, particularly
the recall (on its own SpecForge has a recall of 46.43%8 on
the HashSet library).

We answer this question with two studies on HashSet
(HashSet A and a full replication, HashSet B), one study
on StringTokenizer (StringToken), and one study on

8This is different from the 55.44% reported in SpecForge [8], which is due
to what is considered to be the ground truth; see Section IV-A.

StackAr (StackAr). In each study, the crowd was presented
with tasks. In each task, two methods from the API were
selected and the crowd was asked questions about six property
instances considering those two methods, one for each of the
six LTL property types. The answer from SpecForge (whether
the property instance is true or false) was provided and the
crowd was given the opportunity to agree or disagree; properties
that SpecForge does not observe, it assumes to be false. We
measured improvement in terms of overall accuracy, precision,
and recall as compared to the original SpecForge answers and
the ground truth.

SpecForge uses program traces while the crowd uses docu-
mentation, and both information sources are imperfect. When
the crowd makes a mistake, it could be because of imperfect
documentation, imperfect study infrastructure, an imperfect
understanding of LTL properties, fatigue, or other reasons.
Thus, we pose a second research question:

RQ 2. Why does the crowd make mistakes when identifying
LTL specs based on JavaDoc documentation?

Using humans to specify library APIs can be expensive,
and if these property instances need to be later re-checked
by experts, perhaps it is best to use experts in the first place.
However, when the errors are due to imperfect documentation,
it might not matter whether we use the crowd or the experts.
Our crowd studies asked each participant to provide a free-
text rationale for their responses. We study these qualitative
responses to determine when (and why) the crowd selects the
wrong answer (see Section IV-D).

Provided the crowd can improve automated specification
miner’s inferred specifications, our third RQ is about comparing
SpecForge+CrowdSpec against a group of experts:

RQ 3. Can SpecForge+CrowdSpec perform as well as a
group of experts when formulating LTL specs for an API?

To form the ground truth, a group of three experts indepen-
dently derived ground truth based on documentation and then
discussed discrepancies to reach a consensus (see Section IV-A).
In this research question, we remove the discussion component
and compare SpecForge+CrowdSpec against each of the experts
individually as well as against the three experts when voting on
each property (instead of discussing). The goal is to highlight
performance differences between using a crowd and using a
single expert in isolation, or using three experts and combining
their opinions by voting.

IV. STUDY

To run our studies, we need to collect a ground truth, design
tasks that collect quantitative and qualitative feedback to answer
the RQs, and define metrics for the analysis.

A. Obtaining ground truth

SpecForge computed precision/recall metrics using model
checking over ground truth models. However, not all methods
appear in these models: e.g., the model for HashSet is missing
clear() and clone() methods, which are, for example, part of ten

TABLE I
API GROUND TRUTH DETAILS. INSTANCES REFER TO PROPERTY

INSTANCES, EXPERT AGREEMENT IS INTER-RATER FLEISS’ KAPPA, AND %
TRUE LISTS THE FRACTION OF TRUE INSTANCES IN THE API.

API Instances Agreement % True
HashSet 1,014 0.82 6% (56)
StringTokenizer 384 0.76 9% (35)
StackAr 600 0.76 7% (43)

TABLE II
DISTRIBUTION OF TRUE PROPERTIES FOR EACH PROPERTY TYPE, PER API.

Property HashSet StringTokenizer StackAr
AF 0%(0) 0%(0) 0%(0)
NF 8%(13) 13%(8) 10%(10)
AP 8%(14) 11%(7) 11%(11)
AIP 0%(0) 0%(0) 0%(0)
AIF 0%(0) 0%(0) 0%(0)
NIF 17%(29) 31%(20) 22%(22)

true properties in our manually-derived ground truth. Further,
we sought a more complete picture of each API spec, one that
includes explicitly stated false properties. Thus, we created a
ground truth specification dataset for each of the three APIs
using the following process:

Three paper authors (hereafter referred to as experts9)
manually labeled property instances for six property types (AF,
AIF, NF, NIF, AP, AIP) across all possible pairs of methods in
each API. We treated methods with a boolean return type as
two entries, one for true and one for false return value. When
there was not unanimous agreement, the authors discussed each
property and came to a consensus. Typical disagreements were
either oversights or miscommunication on the requirements
of a true property, as defined in Section II. Table I lists the
total number of property instances per API, along with an
inter-expert agreement score (Fleiss’ kappa).

We observed that some property types, specifically AF, AIF,
and AIP, cannot be true for any pair of methods. This is because
the client of the API can exit at any time. These results are
presented in Table II. For liveness property types AF and AIF
and all pairs of methods (a, b), we can always end the program
right after calling a. Likewise, for a AIP b, it is always possible
to call a method between a and b for all pairs of methods.
Table I lists the fraction of true property instances per property
type in each API.

We make the ground truth and all of our experimental data
available for other researchers to review and to use [32].

B. Tasks

Each task in our studies was designed such that a participant
explores the six property types between two methods in a
single API. Each task contains the JavaDoc information for
the two methods and the following materials for each of the
six property types: 1) the SpecForge answer (referred to in
the tasks as the “machine’s answer”), 2) a question about
whether the participant agrees or disagrees with the machine,
3) free-text space to provide an explanation, and 4) a 5-point

9Two of whom hold PhDs in CS and research program analysis.

TABLE III
MEASURES USED IN OUR EVALUATION.

Ground Truth
True False

Crowd True True Positive (tp) False Positive (fp)
Decision False False Negative (fn) True Negative (tn)

Likert scale question about confidence. Figure 1 shows the
question portion of the task for the clear() and clone()
methods in the HashSet API, and the AF property type.
Method descriptions from the API are provided, and an API
documentation link leads to the library Java 7 JavaDoc (and
to [17] for StackAr).

C. Metrics

We measure the crowd’s accuracy against the ground truth
to answer RQ1, and the crowd’s and experts’ accuracy to
answer RQ3. Most spec miners that use dynamic analysis,
such as SpecForge, only explicitly identify true properties [8],
[21]. For the false properties, these techniques do not typically
distinguish between a property that is not mined because a trace
violates it, and a property that was not observed or for which the
traces did not provide sufficient evidence. In the latter case, this
leads to incompleteness. Our experiments, on the other hand,
can identify properties explicitly as true or as false, allowing
an exhaustive evaluation of API property instances. For this
reason, we measure accuracy, which represents correctness
compared to the ground truth, in addition to precision and
recall. Table III summarizes our metrics notation.

In each experiment we assign multiple participants to each
property. To extract a crowd consensus, we assign an odd
number of participants to each property and use majority rule
to determine the crowd’s opinion.

Precision. (p) is the percentage of properties that are actually
true, of those that are reported to be true: p = tp

tp+fp . For our
experiments, precision is the percentage of the correctly labeled
true properties from the crowd.

Recall. (r) represents the percentage of the true properties
that are reported to be true: r = tp

tp+fn . For our experiments,
recall is the percentage of true properties in an API that were
identified as true by the crowd.

Accuracy. (a) is the percent of correctly mined properties,
true and false, in the ground truth: a = tp+tn

tp+fp+fn+tn . Unlike
precision and recall, accuracy includes tn properties since the
crowd explicitly defines properties as true or false.

D. Qualitative Analysis

We explore why the crowd makes mistakes when identifying
LTL specs with the three Java APIs for RQ2. To accomplish
this, we identify all responses where participants’ answers
disagreed with the ground truth. Then, two authors indepen-
dently coded user responses into categories that describe why
they made mistakes using an open card sort. In formulating
these categories the coders focused on capturing why each
participant made a mistake, using the participant’s response
and the free-text explanations of their response for guidance.

The two coders first independently analyzed the replies for
the HashSet API. Then, they discussed the initial groupings

Fig. 1. HIT Design for CrowdSpec studies, with one property type (AF) shown for methods clear() and clone(). We set the Machine’s Answer to
TRUE or FALSE according to the SpecForge answers.

TABLE IV
STUDY AND PARTICIPANT CHARACTERISTICS.

Study Features HashSet A HashSet B StringToken StackAr
People per task 5 5 3/4/5 3/4/5
Payment $0.40 $0.40 $0.40 $0.40
Total cost $473.75 $473.73 $138.68 $218.05
Valid responses 845 845 246 388
Duration 2 days 4 days 30 days 17 days

Quality Control HashSet A HashSet B StringToken StackAr
Qualification test yes yes yes yes
questions 7 7 7 7
Conflict detection yes yes yes yes
Gold standard yes yes yes yes
Random click yes yes yes yes

Participants HashSet A HashSet B StringToken StackAr
Total participants 39 38 66 55
Male/female/unk 30/9/0 28/8/2 51/15/0 32/23/0
Avg. age 30 31 33 34
% CS degree 74% 74% 68% 60%
Java familiarity 3.87 3.95 3.64 3.51

to distill 12 error categories. Next, they used these 12 categories
to classify the responses in the StringTokenizer and
StackAr API studies. The coders went through and compared
their codings based on the error category each response was
assigned. When there was disagreement, the coders discussed
and came to an agreement. Finally, high-level error classes
were identified to classify the participants’ mistakes.

E. Implementation

To gain access to a crowd of participants, we used MTurk’s
microtask crowdsourcing platform. We created Human Intel-
ligence Tasks (HITs) that are performed by MTurk workers,
where each task described in Section IV-B was a HIT. We
built CrowdSpec on our own server to afford us more control
over the study context. This server interfaces with Amazon’s
MTurk, which was used to manage recruitment, advertisement,
and payment. Our system is based on PHP and MySQL.

We ran four studies, HashSet A, HashSet B, StringToken
and StackAr across three different API libraries. Each study had
an independent sample of participants, including HashSet B,
which is a replication of HashSet A. Table IV summarizes
several features of each study: MTurk logistics (e.g., cost,
workers per task, study duration), quality control mechanisms
(e.g., conflict detection, random click detection), and partici-
pant characteristics (e.g., gender, age, experience). Next, we
elaborate on each category.

1) MTurk Study Logistics: For consistency in exposure
to potential participant populations, each study was deployed
at 10pm Eastern Standard Time on a Sunday evening. An
upper bound of five workers were assigned to each HIT. In the
StringToken and StackAr studies, we removed HITs if consensus
was reached on all six property types by three or four people
as a cost-saving technique. Participants were paid $0.40 per
HIT10 and the studies ran between two and 30 days. Submitted
HITs can be approved or rejected, and workers, or participants,
are only paid for approved HITs. Approval was granted if
all questions were answered, gold standard questions were
answered correctly, and no conflicts were detected (explained
next). Participants had 20 minutes to complete each HIT.

2) Quality Control: We used best practices from the
crowdsourcing literature to ensure high quality responses. Two
general active quality control strategies were employed. First,
we used a qualification test to screen the participants. Second,
we used within-study checks on their work, including conflict
detection and gold standard questions. All of our quality control
techniques were entirely automated and did not increase the
cost of our studies.

a) Qualification Pretest: The workers are qualified to
perform and submit our HITs if they pass a qualification
test. For workers unfamiliar with LTL properties, we incor-
porated training materials into the qualification test [29]. We
showed examples and explanations of each of the six LTL
property types using the Java HashMap API. Then, we used
the ArrayList library in the qualification test, where the
questions were identical to those in the HITs. Participants
passed if they answered at least 5 out of 7 questions correctly.

b) Within-study Controls: Despite being qualified to
perform the tasks, we ensured high quality results by employing
within-study quality checks, specifically conflict detection,
lightweight random click detection, gold standard questions,
redundant question formats, and indications that their responses
are important for research. In concert, these controls ensure
the crowd delivers highly accurate results on the temporal
specification mining tasks.

To ensure comprehension on each HIT submission we used
in vivo conflict checking [30] to determine when participants
submitted conflicting responses for related properties, such as
(AF and NF) or (AIF and NIF). A conflict happens when
a participant responds true on both properties in either pair

10Each HIT had 6 property instances; per-property instance cost was $0.07.

mentioned above. If a conflict is detected, the HIT is rejected.
For example, indicating that clone() AF clear() is true
and that clone() NF clear() is true, is a conflict. Workers
were alerted of conflicts at the time of submission and given
the opportunity to modify their response. If a conflict was still
submitted, the HIT was rejected.

To combat workers who were gaming the system, we
included lightweight random click detection [31]. If a worker
spent less than one minute on a HIT, a warning was given upon
clicking the submission button: “It seems you are randomly
clicking through, this may cause your submission to be rejected.”
Participants were able to revise their answer after getting
the warning. If a participant spent more time reviewing their
answer (beyond the one minute threshold), then the automatic
time check detection was canceled. However, if the participant
still submitted the HIT within the one minute threshold, they
were marked as a random clicker and gold standard questions
appeared on their next HIT. Workers marked as random clickers
were not blocked.

When a random clicker is detected, that participant’s next
HIT is augmented with two gold standard questions [26], in
addition to the six LTL questions. We directly choose the gold
questions from the set of questions the participant answered
correctly in the qualification test under the assumption that
participants understand the meaning of questions they have
correctly submitted in qualification test. Workers are required
to provide correct answers to both gold standard questions. If
either gold standard question is incorrect, this is logged on the
workers’ profile on our server and the HIT is rejected. If a
worker answers at least one gold standard question incorrectly
in two different HITs, the worker is blocked.

To combat listlessness, we used redundant question for-
mats [27] to make sure workers continued to pay attention
after the qualification test. This also facilitates the qualitative
analysis to support RQ2 (Section V-B). To combat worker
apathy, we indicated that their work is important [28], as
illustrated by the red text in Figure 1.

In our experience, these quality control mechanisms are
essential. We initially ran the same study with only the
qualification test for quality control, omitting the within-study
checks. Accuracy on the HashSet, StringTokenizer,
and StackAr APIs was 52%, 42%, and 50%, respectively,
with precision scores under 14% for all three APIs. These poor
results drove us to investigate best practices in eliciting quality
results from the crowd. As shown in Section V, accuracy rose
to above 93% for all the APIs; precision increased to 67% at
worst and 100% at best. For the rest of the paper, we refer
only to the studies that had all the quality control mechanisms.

3) Participants: To control for between-study learning
effects, each study had an independent group of participants.11

In total, 198 participants performed the tasks, with 60% - 74%
of them having a CS degree. Using a 5-point Likert scale with
1 being “not familiar at all” and 5 being ”very familiar”, most

11The initial study, not reported here, also had an independent group of 26.

TABLE V
COMPARISON OF THE CROWD AND SPECFORGE AGAINST GROUND TRUTH;

56 OF 1,014 PROPERTIES ARE TRUE IN HashSet LIBRARY, 35 OF 384
PROPERTIES ARE TRUE IN StringTokenizer LIBRARY, 43 OF 600 THE

PROPERTIES ARE TRUE IN StackAr

Study Accuracy fp fn p r
HashSet A 98.03% 0.00% 1.97% 100.00% 64.29%
HashSet B 98.03% 0.49% 1.48% 89.13% 73.21%
SpecForge HS 97.04% 0.00% 2.96% 100.00% 46.43%
StringToken 93.49% 2.34% 4.17% 67.86% 54.29%
SpecForge ST 91.15% 3.39% 5.47% 51.85% 40.00%
StackAr 98.50% 1.00% 0.50% 86.96% 93.02%
SpecForge SA 98.50% 0.00% 1.50% 100.00% 79.07%

participants were at least somewhat familiar with Java at the
start of the study.

V. RESULTS

A. RQ1: Can a crowd improve SpecForge?

The high-level results appear in Table V. The columns
represent the metrics from Section IV-C. The rows are split by
API: the first three rows are for HashSet; the next two for
StringTokenizer; the last two for StackAr. If the study
name has the prefix SpecForge, this means it is the results
from SpecForge compared to the ground truth. The remaining
rows are the results from the four SpecForge+CrowdSpec
studies.

Regarding HashSet, HashSet A and HashSet B both show
an improvement in accuracy over SpecForge by nearly 1%. We
note that a 1% improvement is substantial because 1) from a
statistical point of view, the difference between 97% and 98%
in our study shows a P-value of 0.002 (McNemar’s test), which
is significant; 2) the error rate (2%) of our studies reduces the
error rate (3%) of SpecForge by one-third.

Regarding StringTokenizer, StringToken shows an
improvement in accuracy over SpecForge by 2%. Regarding
StackAr, StackAr shows no improvement in accuracy over
SpecForge, but we note that SpecForge performs the best
on this API out of the three. For recall, the gains are 14%
(StringToken) to 27% (HashSet B). In concert, these results
demonstrate that the crowd is indeed capable of improving
machine-mined specs using documentation.

We also note that all the properties on which the crowd
incorrectly disagreed with SpecForge were of NF or NIF
property types. Table VI presents results comparing the
crowd’s accuracy on different property types, separated by
API (the HashSet A and HashSet B studies are combined
for HashSet). The crowd was the most accurate on the AF,
AIF, and AIP property types; the least accurate property type
is NIF. The crowd’s consistent accuracy for these property
types, whether it is high or low, indicates that these types are
particularly easier/harder to understand for participants. The
poor performance on NIF and NF property types may also
indicate that the documentation is not sufficiently detailed to
evaluate them.

One factor that could impact accuracy is Java familiarity.
To determine this we partitioned the participants into three
groups by their stated familiarity with Java on the qualification

TABLE VI
CROWD’S ACCURACY ON EACH PROPERTY TYPE AND EACH API.

HashSet StringTokenizer StackAr
Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

AF 100.00% 0.00% 0.00% 98.44% 0.00% 0.00% 100.00% 0.00% 0.00%
NF 97.63% 95.46% 73.08% 85.94% 44.44% 50.00% 98.00% 90.00% 90.00%
AP 98.82% 100.00% 85.71% 93.75% 80.00% 57.14% 98.00% 100.00% 81.82%
AIP 100.00% 0.00% 0.00% 100.00% 0.00% 0.00% 100.00% 0.00% 0.00%
AIF 100.00% 0.00% 0.00% 100.00% 0.00% 0.00% 100.00% 0.00% 0.00%
NIF 91.72% 91.30% 58.62% 82.81% 84.62% 55.00% 95.00% 81.48% 100.00%

test. Participants were categorized as Familiar if they stated
they were familiar or very familiar in the survey following
the qualification test. The Unfamiliar category represents
unfamiliar and very unfamiliar responses. Overall, participants’
accuracy across the familiar and unfamiliar groups did not
differ significantly across all the libraries (α = 0.05, Mann-
Whitney U test). One potential implication of this result is
that workers who were unfamiliar with Java were sufficiently
trained at the start of the study, such that they performed as
well as workers who were familiar with Java.

Summary: We answer RQ1 in the affirmative: the crowd
is able to improve machine-mined LTL-specifications, even
when that crowd is only somewhat familiar with Java at the
start. It also shows the value of combining trace-based analysis
(SpecForge) with documentation-based analysis (CrowdSpec).
Future work in this space should consider other types of
specifications, such as data specs [5].

B. RQ2: Why does the crowd make mistakes?

To gain a deeper understanding of why the crowd answers
incorrectly on LTL specification questions, we analyzed the
crowd’s explanations of their incorrect answers. We analyzed
a total of 582 mistakes made by participants in the study,
183 on HashSet, 180 on StringTokenizer, and 219 on
StackAr. As HashSet is a much larger API than the others,
we randomly sampled approximately 20% of the errors to
analyze a data set similar in size to the others.

As discussed in Section IV-D, two coders used the HashSet
dataset to distill common error categories. We calculated the
inter-rater agreement for StringTokenizer (κ = 0.26) and
StackAr (κ = 0.49) using Cohen’s Kappa. Using Landis’
measurement of observer agreement for categorical data,
our agreement for StackAr had a moderate strength of
agreement and StringTokenizer had a fair strength of
agreement [33]. Table VII details the 12 error categories,
grouped into four high-level error classes. Table VIII lists
the distribution of wrong responses across the error categories
for each API and in aggregate across the APIs.

a) API documentation errors: Approximately 22% of
the incorrect responses had a textual explanation that indicated a
misunderstanding of the libraries (API Error row in Table VIII);
43% of the participants had at least one wrong property
response in this category. This category includes misunder-
standing constructor usage (APIb) and method relationships
(APIa), confusion about parameters (APIe) and method return
values (APId), or overlooking other methods in the API (APIc).

The documentation for HashSet had the highest error
rate due to API issues (29%), while the StringTokenizer
documentation was the least confusing (18%). Method relation
errors were the most prevalent mistakes made in this category,
implying that the crowd was confused about the interactions
between methods. For example, in Table VII, the example for
APIa demonstrates that a worker indicated push(Object o)
and pop() are unrelated, when in fact both impact the program
state. The frequency of this category highlights the importance
of improving API documentation quality, with special attention
paid to method relations.

b) True spec errors: Approximately 22% of the error
responses indicated workers struggled with understanding the
definition of LTL specs; 36% of participants wrote responses in
this category. This includes misunderstanding LTL definitions
(TSa), overlooking the requirement for a single instance (TSc),
and making judgments based on bad practice (TSb).

Participants tend to have trouble with understanding the
definition of a true spec and LTL properties (15%). For example,
some participants reversed the method order when answering a
question, as was the case for TSa in Table VII. This suggests
that participants are confused about temporal API specifications.
Two approaches might reduce this type of error: better education
about LTL specs and the inclusion of temporal constraint
information in JavaDocs.

c) Study design errors: Approximately 19% of the error
responses indicated an issue with the study design or UI; this
was observed for 34% of the participants. Within this category,
the mistake most responses had was providing a correct
explanation but selecting the wrong choice (SDa). One possible
reason was that participants misunderstood the purpose of the
task, which asked them to agree/disagree with the SpecForge
answer instead of agree/disagree with the given statement.
Another potential reason was that they just clicked the wrong
button accidentally. The other category, incorrect knowledge
transfer (SDb), meant the workers used their incorrect answers
on some property instances to justify their answers on others.

That the dominant category demonstrated correct under-
standing but a wrong click implies the need for an improved
study design to make the tasks clearer to workers. It also
implies that the use of natural language processing to evaluate
the congruence between quantitative and qualitative responses
could serve as a useful quality control mechanism.

d) Unclear errors: The dominant error class includes
nonsense or confusion in the response; this represents 37%
of the error responses and 15% of the participants. Many of

TABLE VII
CROWD ERROR CATEGORIES FOR OUR STUDIES AND AN EXAMPLE ERROR FOR EACH CATEGORY.

Class Code Category Example
APIa Method relation “These are opposite, unrelated operations.”- Misunderstood relationship between StackAR

methods in property [push(Object o) AP pop()].
APIb Constructor usage “In HashSet libray, when using ADD, it is acceptable to use HASHSET IMMEDIATELY

afterward.”
API Doc.
Error

APIc Overlooked certain method “[A] stack cannot be full after its been made logically empty.”- For the property [makeEmpty()
AF isFull() = true], user overlooks that elements can be added between these calls.

APId Method return value “Returns the same value as the hasMoreTokens method.”- Confusion about return value in
the property [hasMoreTokens() = true NF countTokens()].

APIe Parameter “if remove(Object o) returns false it means that o is not contained into the set, and an
immediate call to remove(Object o) will return false not true.”

True
Spec
Error

TSa LTL/True spec definition “Once all elements are cleared [then] the set is empty.”- Misunderstood method order in
property [isEmpty() = true AIF clear()].

TSb Bad practice “Bad programming practice, but you can still do it.”
TSc Single instance requirement “Well if you wanted to create a second token for a different sting you might call it again.”-

Confused about task that specifies one object instance.
Study
Design
Error

SDa Misunderstanding what to agree/dis-
agree or wrong click

“I see no reason why you could not use counttokens right after setting up the tokens.”-
Machine’s answer for [StringTokenizer(String str) NIF countTokens()] is false. User correct
reasoning, but user’s property response indicates the opposite.

SDb Incorrect knowledge transfer “No, based on response on 1 and 2, it is not recommended to to so.” User explanation based
on previous questions.

Unclear

Ua Nonsense response “I THINK THIS IS THE CORRECT ANSWER.”
Ub Unsure “there may be changes made in between the two calls though I do not see a way to make

these changes within StringTokenizer so I am quite unsure but am guessing that this is not
[false] because a false measurement means there is nothing left to return a true.”

TABLE VIII
DISTRIBUTION OF PERCENT AND NUMBER OF INCORRECT RESPONSES

ACROSS THE ERROR CATEGORIES FROM TABLE VII.
Code HashSet StTokenizer StackAr Total
API
Error

29%(53) 18%(32) 19%(42) 22%(127)

APIa 13%(23) 3%(5) 10%(22) 9%(50)
APIb 3%(5) 9%(17) 3.00%(6) 5%(28)
APIc 3%(6) 4%(7) 5%(11) 4%(24)
APId 4%(8) 1%(2) 1%(3) 2%(13)
APIe 6%(11) 1%(1) 0%(0) 2%(12)
True
Spec

19%(35) 38%(68) 11%(24) 22%(127)

TSa 16%(29) 30%(54) 3%(7) 15%(90)
TSb 1%(2) 4%(8) 6%(14) 4%(24)
TSc 2%(4) 3%(6) 1%(3) 2%(13)
Design 29%(53) 22%(39) 10%(21) 19%(113)
SDa 28%(52) 19%(35) 9%(20) 18%(107)
SDb 1%(1) 2%(4) 0%(1) 1%(6)
Unclear 23%(42) 23%(41) 60%(132) 37%(215)
Ua 23%(42) 21%(38) 59%(129) 36%(209)
Ub 0%(0) 2%(3) 1%(3) 1%(6)
Total 100% (183) 100% (180) 100% (219) 100% (582)

these responses simply repeated the given temporal statement
or copied text from the API docs (Ua). Others explicitly stated
that they were not sure about their answer (Ub).

This result indicates a need for better quality control mecha-
nisms to improve the response quality, such as natural language
processing as previously mentioned. We also notice that these
responses are disproportionally present in the StackAr API,
which is also the API on which the experts had the most
disagreement, pointing to a possible documentation issue.

Summary: The dominant category for the crowd’s mis-
takes was unclear, indicating a need for more research and
improved quality control mechanisms. However, the fact that

ambiguities in API documentation were not the dominant source
of errors may suggest documentation can be a reliable source
for composing LTL specifications for Java APIs.

C. RQ3: Why not just use experts?
Section V-A (RQ1) has shown that the crowd can improve

machine-mined specs. To gain a deeper insight into the
crowd’s performance, we compared the accuracy of Spec-
Forge+CrowdSpec, to experts individually, experts who vote
using a majority rule, and experts who discuss the properties
(equivalent to the ground truth).

Table IX lists the results. For HashSet the SpecForge
accuracy is 97.04%. Adding the crowd (CrowdSpec), this
increases to 98.03%. Independently, the three experts achieve
accuracies better than SpecForge and SpecForge+CrowdSpec,
ranging from 98.22% - 99.61%. When using voting to
identify the winner, the expert accuracy is 98.42%. After
discussion, the experts’ accuracy is 100% (by definition). For
StringTokenizer, SpecForge and SpecForge+CrowdSpec
underperform compared to the experts individually and the
experts combined (by voting and by discussion). For StackAr,
SpecForge and SpecForge+CrowdSpec outperform Expert 1
and Expert 2 but not Expert 3, experts voting, or experts
discussing.

To determine if SpecForge+CrowdSpec can significantly
outperform experts, we performed a pairwise accuracy compar-
ison using McNemar’s test on SpecForge+CrowdSpec, experts
voting, and experts discussion. Table X presents the p-value
for each pair of techniques to infer specs. We find that the
accuracy of SpecForge+CrowdSpec and experts voting are
similar: there is no significant difference in two libraries,
HashSet and StackAr. Between SpecForge+CrowdSpec
and discussing experts, we found that discussing experts

TABLE IX
COMPARISON OF ACCURACY BETWEEN SPECFORGE, CROWDSPEC, AND EXPERTS FOR EACH LIBRARY

SF+ Experts Experts
API SpecForge CrowdSpec Expert1 Expert2 Expert3 Voting Discussing
HashSet 97.04% 98.03% 99.61% 98.32% 98.22% 98.42% 100%
StTokenizer 91.15% 93.49% 97.14% 97.92% 98.44% 100.00% 100%
StackAr 98.50% 98.50% 98.17% 96.50% 98.67% 98.67% 100%

TABLE X
ACCURACY COMPARISON OF CROWDSPEC, EXPERTSVOTING,

EXPERTSDISCUSSION FOR EACH LIBRARY

SpecForge+CrowdSpec versus
ExpertsVoting ExpertsDiscussion

HashSet 0.618 ***<0.001
StringTokenizer ***<0.001 ***<0.001
StackAr 1.000 **0.004

*α=0.1, **α=0.01, *** α=0.001

consistently outperformed CrowdSpec for all three libraries.
This implies that the value of using experts is realized during
discussion.

Summary: There is no substantial difference in accuracy
between experts voting and the SpecForge+CrowdSpec (which
is essentially the crowd voting). Instead of combining inde-
pendent expert opinions with voting, experts are much more
useful when they can discuss their disagreements. However,
if discussion is not an option, for two of the three APIs,
SpecForge+CrowdSpec performs statistically as well as three
voting experts.

VI. RELATED WORK

Crowd-sourcing for software engineering. Crowdsourcing,
and specifically microtask crowdsourcing [25], has been shown
to be effective for tasks related to software engineering, such
as building software [34], testing [35], [36], determining the
impact of code smells [37], evaluating website usability [38],
verifying software [39], and program synthesis [15]. In par-
ticular, Amazon’s Mechanical Turk has been used for several
software engineering tasks (e.g., [40], [38], [35]), with varied
success [39].

CrowdMine (proposed [41] and detailed in Chapter 6 of Li’s
thesis [40]) is a closely related work in the context of digital
design rather than software APIs. CrowdMine, like CrowdSpec,
uses MTurk to mine temporal specifications. There are three
key differences: (1) CrowdMine presents workers with traces
instead of documentation, which we believe is a poor match
for human workers, (2) it relies on gamification for quality
control, and (3) it does not use the crowd to augment existing
techniques as we do with SpecForge.

Maintaining quality in crowdsourcing. Quality control
is important in crowdsourcing as the crowd is an unknown
population and gaming can severely impact result quality. The
success of crowdsourcing on MTurk relies on finding qualified
participants. The Pew Research Center has found that MTurk
workers are well-educated [42], which echoes the characteristics
of our study participants, where 67% have a college degree.
Pastore et al. report experiments with MTurk where qualified

programmers were found to be six times better at spotting
bad program assertions than open call crowdsourcing with a
general population [43]. They also noted the complexity of
training the crowd to achieve useful results.

Researchers performing web studies have explored different
ways to improve response quality. One effective strategy to filter
out random clickers is to identify when responses are uniformly
distributed and likely to be made by bots [31]. Other work uses
clickstream data to cluster similar users and identify fraudulent
users as outliers [44]. CrowdSpec uses a timer to identify
random clickers, which is more rudimentary, but does identify
workers who answer HITs haphazardly. CrowdSpec also uses
gold standard questions, which have been shown to identify
workers who may not be paying attention [45], [26]. Finally,
research on survey design has found that participants are more
likely to be careful when they perceive they are contributing
to research [28]; CrowdSpec also uses this strategy.

Mining specifications from documentation. Text mining
and NLP techniques have been applied to API documentation
for the purpose of supporting migration between APIs [46],
inferring parameter constraints from method descriptions [47],
and to infer resource specifications [48]. The most related
approach to our work is ICON [49].

ICON is a machine learning and NLP technique that infers
temporal constraints from API documentation with precision
and recall of 79% and 60%, respectively, using three APIs
different from the ones we studied. ICON considers four tem-
poral properties: followed by, preceded by and their negations.
In contrast, we consider a super-set of these properties. The
precision and recall of SpecForge+CrowdSpec is higher than
that of ICON, but it is not immediately clear why. We offer
three possible explanations: (1) the crowd is more accurate than
NLP techniques, (2) the API libraries we use are easier than
those used in the ICON evaluation, or (3) starting the crowd
with a preconception of true specs based on SpecForge leads
to better results and ICON would see similar improvements if
it also used this information.

Characterizing Software APIs. Our work assumes that the
API documentation is of high quality. However, Uddin and
Robillard found that ambiguity, incompleteness, and inaccuracy
are typical issues in API documentation [50]. One way to
cope with these issues is to use prior techniques to improve
the API documentation first, before applying CrowdSpec. For
example, we can use work by Treude et al. [51] who used
Stack Overflow as a source of crowd knowledge about an
API to improve API documentation. Alternatively, we could

generates code examples to enhances API documentation [52],
or enrich documentations with API patterns [53].

API documentation contains several knowledge types, as
captured in the work of Maalej and Robillard [54]. The
directives type is the one that we believe to be the most valuable
in our work, as it is more complementary to the types used by
SpecForge (control-flow and patterns).

VII. DISCUSSION

Scalability is an important consideration in this work. For
each pair of methods in an API we created one task. Thus,
the number of tasks grows quadratically with the size of the
API. The experiments in this paper consider all six property
types and all pairs of methods for three APIs. Moving forward,
techniques will be needed to improve the scalability and we
have evidence that this is possible. For example, since the AF,
AIP, and AIF properties will always be false, we could reduce
the size of the tasks or the number of tasks by 50%.

a) Cost effectiveness: Although a crowd has a higher
availability and a lower hourly rate than experts, our exper-
iments do not address the cost comparison between the two
groups. For example, in our study the experts were unpaid,
and unlike the crowd workers, were not recruited for the study.
Future work should explore the cost trade-off directly.

b) Implications for Spec Mining: Specification mining
based on traces is inexpensive, but is ultimately an incomplete
approach. Using other sources of information, such as doc-
umentation, can help with this. We showed that CrowdSpec
successfully elicits highly accurate specs from the crowd by
presenting workers with information from JavaDoc pages.

Our RQ1 results show that there is no significant difference in
accuracy between familiar and unfamiliar crowd groups. This
result decreases the participant qualifications bar for the design
of effective crowd-based spec miners, and thereby indicates that
such miners can be highly scalable. Moreover, the impact of
Java familiarity on accuracy shows that a crowd’s performance
is not affected by their prior knowledge of the API. This hints
that if crowd is properly trained before the study, they are
likely to be competent for an API they do not know.

Some participant responses (4%) noted “bad programming
practice” as a rationale for incorrectly labeled property instance.
Access to knowledge about best practice is a unique advantage
of a crowd-based approach. We think that spec miners can
take advantage of this by using the crowd to mine not just
true/false, or hard, specs; but, also soft specs, such as specs
indicative of good/bad programming practice.

RQ3 indicates that experts gain significant value from discus-
sion. This raises the question of whether a crowd’s performance
would likewise improve through discussion. In our future work
we plan to answer this question by experiments with different
approaches to stimulate effective crowd discussion.

c) Implications for Crowdsourcing Software Engineering:
Our success at getting the crowd to create accurate specs is
in contrast with prior work that found MTurk unsuitable for
verification tasks [39]. This perhaps emphasizes the need of
crowd control strategies, like those employed by CrowdSpec,

and appropriate qualification tests, to get access to a crowd
qualified to perform complex software engineering tasks. We
posit that such a crowd exists on the MTurk marketplace, so
the challenges are participant screening and quality control.

d) Applicability to other APIs: We chose well-known
Java APIs so we can compare CrowdSpec to prior mining
approaches and because they are real. As designed, our study
presents a greater challenge to the crowd: improving more
accurate specifications. The three APIs considered in this paper
are all well-documented APIs used in thousands of real Java
projects. Beyond these APIs, our approach is applicable as
long as the API is accompanied by documentation. The process
of decomposing an API into tasks would be the same.

e) Applicability to other properties: Would crowdsourcing
other property types yield the same results? We think the results
will differ. For example, in our studies the crowd did poorly on
the never-immediately-followed-by (NIF) property instances as
compared to the other properties. We think the difference lies
in the essential complexity of properties because even experts
found NIF to be the most difficult property type.

VIII. THREATS TO VALIDITY

Conclusion. For each study, we collected at most five
responses and used a majority rule method for selecting the
crowd opinion. This approach may have low statistical power.
The impact may be low crowd accuracy; future work will
include statistical tests to determine when the crowd has reached
consensus, as is done with Automan [55].

Internal. The results are subject to self-selection bias. The
participants chose which, and in what order, to complete the
tasks. The study results may be subject to history effects due
to the study context on MTurk. The studies were deployed
sequentially with at least one week in between each study, so
the study circumstances were different.

External. We evaluated CrowdSpec using three Java APIs,
HashSet, StringTokenizer, and StackAr. Our results
may not generalize to other APIs. Although there is some
structural overlap with other Java APIs in that all APIs have a
constructor that must precede all other API methods.

IX. CONCLUSION

This paper proposes that human intelligence can play a role
in specification mining, and that humans can be brought back
into the spec creation loop in the form of a crowd that performs
specification mining micro-tasks based on API documentation.

We show that the crowd achieves an accuracy of 93.5% –
98.5% when composed with SpecForge, with substantial gains
in recall. We consider why the crowd makes mistakes and
explore the potential of the crowd to correct experts, noting
that the value of the experts over crowds is only realized when
they are allowed to discuss specs.

ACKNOWLEDGMENTS

This work is supported in part by NSF #1446932 and
#1645136, and the Harpole-Pentair endowment to Iowa State
University.

REFERENCES

[1] F. Song and T. Touili, “Model-checking software library api usage rules,”
in International Conference on Integrated Formal Methods. Springer,
2013, pp. 192–207.

[2] T. Fertig and P. Braun, “Model-driven testing of restful apis,” in
Proceedings of the 24th International Conference on World Wide Web.
ACM, 2015, pp. 1497–1502.

[3] D. Gopinath, M. Z. Malik, and S. Khurshid, “Specification-based program
repair using sat,” in International Conference on Tools and Algorithms for
the Construction and Analysis of Systems. Springer, 2011, pp. 173–188.

[4] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and T. Ratchford,
“Automated api property inference techniques,” IEEE Trans. Softw. Eng.,
vol. 39, no. 5, pp. 613–637, May 2013.

[5] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao, “The daikon system for dynamic detection of
likely invariants,” Sci. Comput. Program., vol. 69, no. 1-3, pp. 35–45,
2007.

[6] T.-D. B. Le and D. Lo, “Deep Specification Mining,” in ISSTA, 2018.
[7] S. S. Emam and J. Miller, “Inferring Extended Probabilistic Finite-State

Automaton Models from Software Executions,” ACM Trans. Softw. Eng.
Methodol. (TOSEM), vol. 27, no. 1, pp. 4:1–4:39, Jun. 2018.

[8] T.-D. B. Le, X.-B. D. Le, D. Lo, and I. Beschastnikh, “Synergizing
specification miners through model fissions and fusions (t),” in ASE,
2015.

[9] C. Lemieux, D. Park, and I. Beschastnikh, “General LTL Specification
Mining,” in ASE, 2015.

[10] D. Lo, L. Mariani, and M. Pezzè, “Automatic steering of behavioral
model inference,” in ESEC/FSE, 2009.

[11] D. Lo and S. Maoz, “Scenario-based and Value-based Specification
Mining: Better Together,” in ASE, 2010.

[12] I. Beschastnikh, Y. Brun, M. D. Ernst, and A. Krishnamurthy, “Inferring
models of concurrent systems from logs of their behavior with csight,”
in ICSE, 2014.

[13] O. Legunsen, W. U. Hassan, X. Xu, G. Rosu, and D. Marinov, “How
good are the specs? a study of the bug-finding effectiveness of existing
java api specifications,” in ASE, 2016.

[14] M. Pradel and T. R. Gross, “Automatic generation of object usage
specifications from large method traces,” in ASE, 2009.

[15] R. A. Cochran, L. D’Antoni, B. Livshits, D. Molnar, and M. Veanes,
“Program boosting: Program synthesis via crowd-sourcing,” SIGPLAN
Not., vol. 50, no. 1, pp. 677–688, Jan. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2775051.2676973

[16] P. Sun and K. T. Stolee, “Exploring crowd consistency in a mechanical
turk survey,” in Proceedings of the 3rd International Workshop on
CrowdSourcing in Software Engineering. ACM, 2016, pp. 8–14.

[17] “Class StackAr,” http://www.cs.umd.edu/class/fall2004/cmsc433/projects/
p2/javadoc/StackAr.html, accessed: February 24, 2017.

[18] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in Property
Specifications for Finite-state Verification,” in ICSE, 1999.

[19] I. Beschastnikh, Y. Brun, J. Abrahamson, M. D. Ernst, and A. Krishna-
murthy, “Using declarative specification to improve the understanding,
extensibility, and comparison of model-inference algorithms,” IEEE
Transactions on Software Engineering (TSE), vol. 41, no. 4, pp. 408–428,
April 2015.

[20] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan, and M. D. Ernst,
“Leveraging existing instrumentation to automatically infer invariant-
constrained models,” in FSE, 2011.

[21] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das, “Perracotta:
Mining temporal API rules from imperfect traces,” in ICSE, 2006.

[22] M. Pradel, C. Jaspan, J. Aldrich, and T. R. Gross, “Statically checking
api protocol conformance with mined multi-object specifications,” in
ICSE, 2012.

[23] A. W. Biermann and J. A. Feldman, “On the synthesis of finite-
state machines from samples of their behavior,” IEEE Transactions
on Computers, vol. 100, no. 6, pp. 592–597, 1972.

[24] I. Krka, Y. Brun, and N. Medvidovic, “Automatic mining of specifications
from invocation traces and method invariants,” in FSE, 2014.

[25] K. Mao, L. Capra, M. Harman, and Y. Jia, “A survey of the use of
crowdsourcing in software engineering,” RN, vol. 15, no. 01, 2015.

[26] R. Snow, B. O’Connor, D. Jurafsky, and A. Y. Ng, “Cheap and fast—
but is it good?: evaluating non-expert annotations for natural language
tasks,” in Proceedings of the conference on empirical methods in natural

language processing. Association for Computational Linguistics, 2008,
pp. 254–263.

[27] K. T. Stolee, J. Saylor, and T. Lund, “Exploring the benefits of using
redundant responses in crowdsourced evaluations,” in Proceedings of
the Second International Workshop on CrowdSourcing in Software
Engineering. IEEE Press, 2015, pp. 38–44.

[28] J. A. Krosnick, “Response strategies for coping with the cognitive
demands of attitude measures in surveys,” Applied cognitive psychology,
vol. 5, no. 3, pp. 213–236, 1991.

[29] M. Chi, K. VanLehn, D. Litman, and P. Jordan, “An evaluation of
pedagogical tutorial tactics for a natural language tutoring system: A
reinforcement learning approach,” International Journal of Artificial
Intelligence in Education, vol. 21, no. 1-2, pp. 83–113, 2011.

[30] A. Shiel, “Conflict crowdsourcing: Harnessing the power of crowdsourc-
ing for organizations working in conflict,” 2013.

[31] S.-H. Kim, H. Yun, and J. S. Yi, “How to filter out random
clickers in a crowdsourcing-based study?” in Proceedings of
the 2012 BELIV Workshop: Beyond Time and Errors - Novel
Evaluation Methods for Visualization, ser. BELIV ’12. New
York, NY, USA: ACM, 2012, pp. 15:1–15:7. [Online]. Available:
http://doi.acm.org/10.1145/2442576.2442591

[32] “CrowdSpecMine: Supporting materials for submission,”
https://bestchai.bitbucket.io/crowdspecmine-eval/.

[33] J. R. Landis and G. G. Koch, “The measurement of observer agreement
for categorical data,” Biometrics, vol. 33, no. 1, pp. 159–174, 1977.
[Online]. Available: http://www.jstor.org/stable/2529310

[34] T. D. LaToza, W. B. Towne, C. M. Adriano, and A. van der
Hoek, “Microtask programming: Building software with a crowd,”
in Proceedings of the 27th Annual ACM Symposium on User
Interface Software and Technology, ser. UIST ’14. New York,
NY, USA: ACM, 2014, pp. 43–54. [Online]. Available: http:
//doi.acm.org/10.1145/2642918.2647349

[35] E. Dolstra, R. Vliegendhart, and J. Pouwelse, “Crowdsourcing gui tests,”
in Software Testing, Verification and Validation (ICST), 2013 IEEE Sixth
International Conference on, March 2013, pp. 332–341.

[36] M. Nebeling, M. Speicher, and M. C. Norrie, “Crowdstudy: General
toolkit for crowdsourced evaluation of web interfaces,” in Proceedings of
the 5th ACM SIGCHI Symposium on Engineering Interactive Computing
Systems, ser. EICS ’13. New York, NY, USA: ACM, 2013, pp. 255–264.
[Online]. Available: http://doi.acm.org/10.1145/2494603.2480303

[37] K. T. Stolee and S. Elbaum, “Exploring the use of crowdsourcing to
support empirical studies in software engineering,” in International
Symposium on Empirical Software Engineering and Measurement, 2010.

[38] D. Liu, R. G. Bias, M. Lease, and R. Kuipers, “Crowdsourcing for
usability testing,” Proceedings of the American Society for Information
Science and Technology, vol. 49, no. 1, pp. 1–10, 2012.

[39] T. W. Schiller and M. D. Ernst, “Reducing the barriers to writing
verified specifications,” SIGPLAN Not., vol. 47, no. 10, pp. 95–112, Oct.
2012. [Online]. Available: http://doi.acm.org/10.1145/2398857.2384624

[40] W. Li, “Specification mining: New formalisms, algorithms and
applications,” Ph.D. dissertation, EECS Department, University
of California, Berkeley, Mar 2014. [Online]. Available: http:
//www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-20.html

[41] W. Li, S. A. Seshia, and S. Jha, “Crowdmine: Towards crowdsourced
human-assisted verification,” in DAC, 2012.

[42] P. Hitlin, “Research in the crowdsourcing age, a
case study,” http://www.pewinternet.org/2016/07/11/
research-in-the-crowdsourcing-age-a-case-study/, 7 2016.

[43] F. Pastore, L. Mariani, and G. Fraser, “Crowdoracles: Can the crowd solve
the oracle problem?” in Software Testing, Verification and Validation
(ICST), 2013 IEEE Sixth International Conference on, March 2013, pp.
342–351.

[44] G. Wang, T. Konolige, C. Wilson, X. Wang, H. Zheng, and B. Y. Zhao,
“You are how you click: Clickstream analysis for sybil detection,” in
Proceedings of the 22Nd USENIX Conference on Security, ser. SEC’13.
Berkeley, CA, USA: USENIX Association, 2013, pp. 241–256. [Online].
Available: http://dl.acm.org/citation.cfm?id=2534766.2534788

[45] C. Callison-Burch, “Fast, cheap, and creative: evaluating translation
quality using amazon’s mechanical turk,” in Proceedings of the 2009
Conference on Empirical Methods in Natural Language Processing:
Volume 1-Volume 1. Association for Computational Linguistics, 2009,
pp. 286–295.

[46] R. Pandita, R. P. Jetley, S. D. Sudarsan, and L. Williams, “Discovering
likely mappings between apis using text mining,” in Source Code Analysis

http://doi.acm.org/10.1145/2775051.2676973
http://www.cs.umd.edu/class/fall2004/cmsc433/projects/p2/javadoc/StackAr.html
http://www.cs.umd.edu/class/fall2004/cmsc433/projects/p2/javadoc/StackAr.html
http://doi.acm.org/10.1145/2442576.2442591
http://www.jstor.org/stable/2529310
http://doi.acm.org/10.1145/2642918.2647349
http://doi.acm.org/10.1145/2642918.2647349
http://doi.acm.org/10.1145/2494603.2480303
http://doi.acm.org/10.1145/2398857.2384624
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-20.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-20.html
http://www.pewinternet.org/2016/07/11/research-in-the-crowdsourcing-age-a-case-study/
http://www.pewinternet.org/2016/07/11/research-in-the-crowdsourcing-age-a-case-study/
http://dl.acm.org/citation.cfm?id=2534766.2534788

and Manipulation (SCAM), 2015 IEEE 15th International Working
Conference on. IEEE, 2015, pp. 231–240.

[47] R. Pandita, X. Xiao, H. Zhong, T. Xie, S. Oney, and A. Paradkar,
“Inferring method specifications from natural language API descriptions,”
in ICSE, 2012.

[48] H. Zhong, L. Zhang, T. Xie, and H. Mei, “Inferring resource specifications
from natural language API documentation,” in ASE, 2009.

[49] R. Pandita, K. Taneja, L. Williams, and T. Tung, “ICON: Inferring
temporal constraints from natural language api descriptions,” in Proc.
32nd ICSME, 2016.

[50] G. Uddin and M. P. Robillard, “How api documentation fails,” IEEE
Software, vol. 32, no. 4, pp. 68–75, July 2015.

[51] C. Treude and M. P. Robillard, “Augmenting API Documentation with
Insights from Stack Overflow,” in ICSE, 2016.

[52] R. P. L. Buse and W. Weimer, “Synthesizing api usage examples,” in
ICSE, 2012.

[53] J. Fowkes and C. Sutton, “Parameter-free probabilistic api mining across
github,” in FSE, 2016.

[54] W. Maalej and M. P. Robillard, “Patterns of Knowledge in API Reference
Documentation,” IEEE Transactions on Software Engineering, vol. 39,
no. 9, pp. 1264–1282, Sept 2013.

[55] D. W. Barowy, C. Curtsinger, E. D. Berger, and A. McGregor, “Automan:
A platform for integrating human-based and digital computation,” ACM
SIGPLAN Notices, vol. 47, no. 10, pp. 639–654, 2012.

	Introduction
	Background
	Research Questions
	Study
	Obtaining ground truth
	Tasks
	Metrics
	Qualitative Analysis
	Implementation
	MTurk Study Logistics
	Quality Control
	Participants

	Results
	RQ1: Can a crowd improve SpecForge?
	RQ2: Why does the crowd make mistakes?
	RQ3: Why not just use experts?

	Related work
	Discussion
	Threats to validity
	Conclusion
	References

