
University of British Columbia 1

Mining Specifications from
Documentation Using a Crowd

*Peng Sun *Chris Brown
^Ivan Beschastnikh *Kathryn Stolee

* NC State University
^ University of British Columbia

+ +

University of British Columbia 2

Mining Specifications from
Documentation Using a Crowd

*Peng Sun *Chris Brown
^Ivan Beschastnikh *Kathryn Stolee

* NC State University
^ University of British Columbia

University of British Columbia 3

Software systems and libraries usually
lack up-to-date formal specifications.

Rapid Software Evolution Formal specifications are
non-trivial to write down

Software Specifications

University of British Columbia 4

Lack of Formal Specifications

Maintainability & Reliability Challenges

o Reduced code comprehension
o Implicit assumptions may cause bugs
o Difficult to identify regressions

Software Specification Mining

Software Specifications

University of British Columbia 5

• Many existing specification mining algorithms
– Most automatically infer specs from execution traces

Finite State Automata (FSA)

Examples: k-tail, CONTRACTOR++, SEKT, TEMI, Synoptic,…

Software Specifications Mining

TSE 1972,
ICSE 2006,
ASE 2009,
FSE 2011,
FSE 2014,
ICSE 2014,
TSE 2015,
ASE 2015,

…

University of British Columbia 6

• Many existing specification mining algorithms
– Most automatically infer specs from execution traces

Finite State Automata (FSA)

Examples: k-tail, CONTRACTOR++, SEKT, TEMI, Synoptic,…

Software Specifications Mining

TSE 1972,
ICSE 2006,
ASE 2009,
FSE 2011,
FSE 2014,
ICSE 2014,
TSE 2015,
ASE 2015,

…

University of British Columbia 7

But, automation is a dimension

Entirely
Manual

Prior to 1990s

Formal methods experts

University of British Columbia 8

But, automation is a dimension

Completely
Automated

1990s - present

Entirely
Manual

Prior to 1990s

Formal methods experts

University of British Columbia 9

But, automation is a dimension

Completely
Automated

1990s - present

Entirely
Manual

Prior to 1990s

Formal methods experts

• Expensive
• Not scalable

• False positives
• Requires artifact diversity
• Requires accurate artifacts

University of British Columbia 10

Our contribution: crowd spec mining from docs

Completely
Automated

Entirely
Manual

SANER 2019 1990s - presentPrior to 1990s

Crowd
Mining

Formal methods experts

• Expensive
• Not scalable

• False positives
• Requires artifact diversity
• Requires accurate artifacts

University of British Columbia 11

Completely
Automated

Entirely
Manual

SANER 2019 1990s - presentPrior to 1990s

Crowd
Mining

Formal methods experts

RQ1: Can crowd do as well as experts?
RQ2: Can crowd improve, or replace, existing spec miners?

University of British Columbia 12

Crowd-sourcing in SE (not a new idea)

● Crowd is effective at a variety of SE tasks
● Testing [1]
● Evaluating code smells [2]
● Program synthesis [3]
● Building software [4]

[1] Dolstra et al. Crowdsourcing GUI tests. ICST 2013.
[2] Stolee et al. Exploring the use of crowdsourcing to support empirical studies in software engineering. ESEM 2010.
[3] Cochran et al. Program boosting: Program synthesis via crowd-sourcing. SIGPLAN Not. Vol. 50 No. 1. L2015
[4] LaToza et al. Microtask programming: Building software with a crowd. UIST 2014.

University of British Columbia 13

Crowd-sourcing in SE (not a new idea)

● Crowd is effective at a variety of SE tasks
● Testing [1]
● Evaluating code smells [2]
● Program synthesis [3]
● Building software [4]

[1] Dolstra et al. Crowdsourcing GUI tests. ICST 2013.
[2] Stolee et al. Exploring the use of crowdsourcing to support empirical studies in software engineering. ESEM 2010.
[3] Cochran et al. Program boosting: Program synthesis via crowd-sourcing. SIGPLAN Not. Vol. 50 No. 1. 2015
[4] LaToza et al. Microtask programming: Building software with a crowd. UIST 2014.

● Prior work on crowd mining HW specs [5]. We differ:
● Use docs instead of traces, SW specs not HW
● We use standard quality controls, not gamification
● We improve spec miners/compare to experts

[5] Li et al. Crowdmine: Towards crowdsourced human-assisted verification. DAC 2012.

University of British Columbia 14

Crowd-sourcing spec mining [CrowdSpec]

Design questions to answer:

- What kind of spec to mine?
- What resource to mine specs from?
- How to solicit contributions from the crowd?
- How to combine crowd responses?

University of British Columbia 15

Design question/answers:

- Type of spec? Temporal APIs
- What resource? Documentation
- How to solicit? MTurk microtasks
- Combining responses? Voting

Crowd-sourcing spec mining [CrowdSpec]

University of British Columbia 16

Design question/answers:

- Type of spec? Temporal APIs
- What resource? Documentation
- How to solicit? MTurk microtasks
- Combining responses? Voting

Good for humans, if simple

Aligns with prior work (can compare)

Notoriously difficult [1]; crowd could help?

[1] Legunsen et al. How good are the specs? a study of the bug-finding effectiveness of existing java api specifications. ASE 2016.

Crowd-sourcing spec mining [CrowdSpec]

University of British Columbia 17

Design question/answers:

- Type of spec? Temporal APIs
- What resource? Documentation
- How to solicit? MTurk microtasks
- Combining responses? Voting

Great for humans (beats traces!)

Very few existing spec miners [1]

Good temporal NLP is hard

Crowd-sourcing spec mining [CrowdSpec]

[1] Pandita et al. ICON: Inferring temporal constraints from natural language API descriptions. ICSME 2016.

University of British Columbia 18

Design question/answers:

- Type of spec? Temporal APIs
- What resource? Documentation
- How to solicit? MTurk microtasks
- Combining responses? Voting

Existing platform with critical mass

Well-defined econ model: pay per HIT
(Human Intelligence Task)

Crowd-sourcing spec mining [CrowdSpec]

University of British Columbia 19

Design question/answers:

- Type of spec? Temporal APIs
- What resource? Documentation
- How to solicit? MTurk microtasks
- Combining responses? Voting Lots of flexibility

Implements reliability

Crowd-sourcing spec mining [CrowdSpec]

University of British Columbia 20

CrowdSpec contributions

- CrowdSpec + SpecForge [1] can perform as well as
voting experts: powerful hybrid spec mining alternatives

- Qualitative analysis of where crowd made mistakes

[1] T-D. B. et al. Synergizing specification miners through model fissions and fusions. ASE 2015.

University of British Columbia 21

Approach overview

University of British Columbia 22

Approach overview

● 5 participants/task
● $0.40 for each task

Crowd Quality Control Strategies:
• Qualification test
• Appealing to Participants’ Integrity
• Random Click Detection
• Gold Standard Questions
• Conflict Detection
• JavaDoc Highlighting

University of British Columbia 23

The crowd must be controlled

Qualification test:
One question from the Qualification Test.

“Where there is power, there is resistance.” -- Foucault

University of British Columbia 24

Study Design

Task Design:

University of British Columbia 25

Study Design

Task Design:
HIT with one temporal property (Always Followed By) for clear() and clone():

SpecForge

University of British Columbia 26

Temporal Constraint Types
• AF(a,b): a is always followed by b

• NF(a,b): a is never followed by b

• AP(b,a): b always precedes a

a b a b
c b b b

a b b a
c a a a

b b a a
a c a a

a b b a
c b a b

b b a a
c b b b

a b b b
c a a b

University of British Columbia 27

• AF(a,b): a is always followed by b

• NF(a,b): a is never followed by b

• AP(b,a): b always precedes a

a b a b
c b b b

a b b a
c a a a

b b a a
a c a a

a b b a
c b a b

b b a a
c b b b

a b b b
c a a b

Temporal Constraint Types

University of British Columbia 28

• AF(a,b): a is always followed by b

• NF(a,b): a is never followed by b

• AP(b,a): b always precedes a

a b a b
c b b b

a b b a
c a a a

b b a a
a c a a

a b b a
c b a b

b b a a
c b b b

a b b b
c a a b

Temporal Constraint Types

University of British Columbia 29

The Immediate Temporal Constraints

• AIF(a,b): a is always immediately
followed by b

• NIF(a,b): a is never immediately
followed by b

• AIP(a,b): a always immediately
precedes b

AIF, NIF, and AIP are
extensions of AF, NF, and AP

[1] Dwyer et al. Patterns in Property
Specifications for Finite-state
Verification, ICSE 1999
[2] Yang et al. Perracotta:
Mining temporal API rules from
imperfect traces. ICSE 2006.

University of British Columbia 30

Temporal specification
True property:
A program that uses the API and does not follow the property may trigger a Java exception, or
a violation of the property is impossible in the Java language.

Examples: HashSet() always precedes size(); clear() is always followed by size().

University of British Columbia 31

Evaluation: ground truth specs
- Three paper authors manually labeled property instances
- Targeted 3 Java APIs

- HashSet
- StringTokenizer
- StackAr

TABLE I
API GROUND TRUTH DETAILS. INSTANCES REFER TO PROPERTY

INSTANCES, EXPERT AGREEMENT IS INTER-RATER FLEISS’ KAPPA, AND %
TRUE LISTS THE FRACTION OF TRUE INSTANCES IN THE API.

API Instances Agreement % True
HashSet 1,014 0.82 6% (56)
StringTokenizer 384 0.76 9% (35)
StackAr 600 0.76 7% (43)

TABLE II
DISTRIBUTION OF TRUE PROPERTIES FOR EACH PROPERTY TYPE, PER API.

Property HashSet StringTokenizer StackAr
AF 0%(0) 0%(0) 0%(0)
NF 8%(13) 13%(8) 10%(10)
AP 8%(14) 11%(7) 11%(11)
AIP 0%(0) 0%(0) 0%(0)
AIF 0%(0) 0%(0) 0%(0)
NIF 17%(29) 31%(20) 22%(22)

true properties in our manually-derived ground truth. Further,
we sought a more complete picture of each API spec, one that
includes explicitly stated false properties. Thus, we created a
ground truth specification dataset for each of the three APIs
using the following process:

Three paper authors (hereafter referred to as experts9)
manually labeled property instances for six property types (AF,
AIF, NF, NIF, AP, AIP) across all possible pairs of methods in
each API. We treated methods with a boolean return type as
two entries, one for true and one for false return value. When
there was not unanimous agreement, the authors discussed each
property and came to a consensus. Typical disagreements were
either oversights or miscommunication on the requirements
of a true property, as defined in Section II. Table I lists the
total number of property instances per API, along with an
inter-expert agreement score (Fleiss’ kappa).

We observed that some property types, specifically AF, AIF,
and AIP, cannot be true for any pair of methods. This is because
the client of the API can exit at any time. These results are
presented in Table II. For liveness property types AF and AIF
and all pairs of methods (a, b), we can always end the program
right after calling a. Likewise, for a AIP b, it is always possible
to call a method between a and b for all pairs of methods.
Table I lists the fraction of true property instances per property
type in each API.

We make the ground truth and all of our experimental data
available for other researchers to review and to use [32].

B. Tasks
Each task in our studies was designed such that a participant

explores the six property types between two methods in a
single API. Each task contains the JavaDoc information for
the two methods and the following materials for each of the
six property types: 1) the SpecForge answer (referred to in
the tasks as the “machine’s answer”), 2) a question about
whether the participant agrees or disagrees with the machine,
3) free-text space to provide an explanation, and 4) a 5-point

9Two of whom hold PhDs in CS and research program analysis.

TABLE III
MEASURES USED IN OUR EVALUATION.

Ground Truth
True False

Crowd True True Positive (tp) False Positive (fp)
Decision False False Negative (fn) True Negative (tn)

Likert scale question about confidence. Figure 1 shows the
question portion of the task for the clear() and clone()
methods in the HashSet API, and the AF property type.
Method descriptions from the API are provided, and an API
documentation link leads to the library Java 7 JavaDoc (and
to [17] for StackAr).

C. Metrics
We measure the crowd’s accuracy against the ground truth

to answer RQ1, and the crowd’s and experts’ accuracy to
answer RQ3. Most spec miners that use dynamic analysis,
such as SpecForge, only explicitly identify true properties [8],
[21]. For the false properties, these techniques do not typically
distinguish between a property that is not mined because a trace
violates it, and a property that was not observed or for which the
traces did not provide sufficient evidence. In the latter case, this
leads to incompleteness. Our experiments, on the other hand,
can identify properties explicitly as true or as false, allowing
an exhaustive evaluation of API property instances. For this
reason, we measure accuracy, which represents correctness
compared to the ground truth, in addition to precision and
recall. Table III summarizes our metrics notation.

In each experiment we assign multiple participants to each
property. To extract a crowd consensus, we assign an odd
number of participants to each property and use majority rule
to determine the crowd’s opinion.

Precision. (p) is the percentage of properties that are actually
true, of those that are reported to be true: p = tp

tp+fp . For our
experiments, precision is the percentage of the correctly labeled
true properties from the crowd.

Recall. (r) represents the percentage of the true properties
that are reported to be true: r = tp

tp+fn . For our experiments,
recall is the percentage of true properties in an API that were
identified as true by the crowd.

Accuracy. (a) is the percent of correctly mined properties,
true and false, in the ground truth: a = tp+tn

tp+fp+fn+tn . Unlike
precision and recall, accuracy includes tn properties since the
crowd explicitly defines properties as true or false.

D. Qualitative Analysis
We explore why the crowd makes mistakes when identifying

LTL specs with the three Java APIs for RQ2. To accomplish
this, we identify all responses where participants’ answers
disagreed with the ground truth. Then, two authors indepen-
dently coded user responses into categories that describe why
they made mistakes using an open card sort. In formulating
these categories the coders focused on capturing why each
participant made a mistake, using the participant’s response
and the free-text explanations of their response for guidance.

The two coders first independently analyzed the replies for
the HashSet API. Then, they discussed the initial groupings

Inter-rater Kappa

University of British Columbia 32

CrowdSpec v. SpecForge
mentioned above. If a conflict is detected, the HIT is rejected.
For example, indicating that clone() AF clear() is true
and that clone() NF clear() is true, is a conflict. Workers
were alerted of conflicts at the time of submission and given
the opportunity to modify their response. If a conflict was still
submitted, the HIT was rejected.

To combat workers who were gaming the system, we
included lightweight random click detection [31]. If a worker
spent less than one minute on a HIT, a warning was given upon
clicking the submission button: “It seems you are randomly
clicking through, this may cause your submission to be rejected.”
Participants were able to revise their answer after getting
the warning. If a participant spent more time reviewing their
answer (beyond the one minute threshold), then the automatic
time check detection was canceled. However, if the participant
still submitted the HIT within the one minute threshold, they
were marked as a random clicker and gold standard questions
appeared on their next HIT. Workers marked as random clickers
were not blocked.

When a random clicker is detected, that participant’s next
HIT is augmented with two gold standard questions [26], in
addition to the six LTL questions. We directly choose the gold
questions from the set of questions the participant answered
correctly in the qualification test under the assumption that
participants understand the meaning of questions they have
correctly submitted in qualification test. Workers are required
to provide correct answers to both gold standard questions. If
either gold standard question is incorrect, this is logged on the
workers’ profile on our server and the HIT is rejected. If a
worker answers at least one gold standard question incorrectly
in two different HITs, the worker is blocked.

To combat listlessness, we used redundant question for-
mats [27] to make sure workers continued to pay attention
after the qualification test. This also facilitates the qualitative
analysis to support RQ2 (Section V-B). To combat worker
apathy, we indicated that their work is important [28], as
illustrated by the red text in Figure 1.

In our experience, these quality control mechanisms are
essential. We initially ran the same study with only the
qualification test for quality control, omitting the within-study
checks. Accuracy on the HashSet, StringTokenizer,
and StackAr APIs was 52%, 42%, and 50%, respectively,
with precision scores under 14% for all three APIs. These poor
results drove us to investigate best practices in eliciting quality
results from the crowd. As shown in Section V, accuracy rose
to above 93% for all the APIs; precision increased to 67% at
worst and 100% at best. For the rest of the paper, we refer
only to the studies that had all the quality control mechanisms.

3) Participants: To control for between-study learning
effects, each study had an independent group of participants.11

In total, 198 participants performed the tasks, with 60% - 74%
of them having a CS degree. Using a 5-point Likert scale with
1 being “not familiar at all” and 5 being ”very familiar”, most

11The initial study, not reported here, also had an independent group of 26.

TABLE V
COMPARISON OF THE CROWD AND SPECFORGE AGAINST GROUND TRUTH;

56 OF 1,014 PROPERTIES ARE TRUE IN HashSet LIBRARY, 35 OF 384
PROPERTIES ARE TRUE IN StringTokenizer LIBRARY, 43 OF 600 THE

PROPERTIES ARE TRUE IN StackAr

Study Accuracy fp fn p r
HashSet A 98.03% 0.00% 1.97% 100.00% 64.29%
HashSet B 98.03% 0.49% 1.48% 89.13% 73.21%
SpecForge HS 97.04% 0.00% 2.96% 100.00% 46.43%
StringToken 93.49% 2.34% 4.17% 67.86% 54.29%
SpecForge ST 91.15% 3.39% 5.47% 51.85% 40.00%
StackAr 98.50% 1.00% 0.50% 86.96% 93.02%
SpecForge SA 98.50% 0.00% 1.50% 100.00% 79.07%

participants were at least somewhat familiar with Java at the
start of the study.

V. RESULTS

A. RQ1: Can a crowd improve SpecForge?
The high-level results appear in Table V. The columns

represent the metrics from Section IV-C. The rows are split by
API: the first three rows are for HashSet; the next two for
StringTokenizer; the last two for StackAr. If the study
name has the prefix SpecForge, this means it is the results
from SpecForge compared to the ground truth. The remaining
rows are the results from the four SpecForge+CrowdSpec
studies.

Regarding HashSet, HashSet A and HashSet B both show
an improvement in accuracy over SpecForge by nearly 1%. We
note that a 1% improvement is substantial because 1) from a
statistical point of view, the difference between 97% and 98%
in our study shows a P-value of 0.002 (McNemar’s test), which
is significant; 2) the error rate (2%) of our studies reduces the
error rate (3%) of SpecForge by one-third.

Regarding StringTokenizer, StringToken shows an
improvement in accuracy over SpecForge by 2%. Regarding
StackAr, StackAr shows no improvement in accuracy over
SpecForge, but we note that SpecForge performs the best
on this API out of the three. For recall, the gains are 14%
(StringToken) to 27% (HashSet B). In concert, these results
demonstrate that the crowd is indeed capable of improving
machine-mined specs using documentation.

We also note that all the properties on which the crowd
incorrectly disagreed with SpecForge were of NF or NIF
property types. Table VI presents results comparing the
crowd’s accuracy on different property types, separated by
API (the HashSet A and HashSet B studies are combined
for HashSet). The crowd was the most accurate on the AF,
AIF, and AIP property types; the least accurate property type
is NIF. The crowd’s consistent accuracy for these property
types, whether it is high or low, indicates that these types are
particularly easier/harder to understand for participants. The
poor performance on NIF and NF property types may also
indicate that the documentation is not sufficiently detailed to
evaluate them.

One factor that could impact accuracy is Java familiarity.
To determine this we partitioned the participants into three
groups by their stated familiarity with Java on the qualification

University of British Columbia 33

mentioned above. If a conflict is detected, the HIT is rejected.
For example, indicating that clone() AF clear() is true
and that clone() NF clear() is true, is a conflict. Workers
were alerted of conflicts at the time of submission and given
the opportunity to modify their response. If a conflict was still
submitted, the HIT was rejected.

To combat workers who were gaming the system, we
included lightweight random click detection [31]. If a worker
spent less than one minute on a HIT, a warning was given upon
clicking the submission button: “It seems you are randomly
clicking through, this may cause your submission to be rejected.”
Participants were able to revise their answer after getting
the warning. If a participant spent more time reviewing their
answer (beyond the one minute threshold), then the automatic
time check detection was canceled. However, if the participant
still submitted the HIT within the one minute threshold, they
were marked as a random clicker and gold standard questions
appeared on their next HIT. Workers marked as random clickers
were not blocked.

When a random clicker is detected, that participant’s next
HIT is augmented with two gold standard questions [26], in
addition to the six LTL questions. We directly choose the gold
questions from the set of questions the participant answered
correctly in the qualification test under the assumption that
participants understand the meaning of questions they have
correctly submitted in qualification test. Workers are required
to provide correct answers to both gold standard questions. If
either gold standard question is incorrect, this is logged on the
workers’ profile on our server and the HIT is rejected. If a
worker answers at least one gold standard question incorrectly
in two different HITs, the worker is blocked.

To combat listlessness, we used redundant question for-
mats [27] to make sure workers continued to pay attention
after the qualification test. This also facilitates the qualitative
analysis to support RQ2 (Section V-B). To combat worker
apathy, we indicated that their work is important [28], as
illustrated by the red text in Figure 1.

In our experience, these quality control mechanisms are
essential. We initially ran the same study with only the
qualification test for quality control, omitting the within-study
checks. Accuracy on the HashSet, StringTokenizer,
and StackAr APIs was 52%, 42%, and 50%, respectively,
with precision scores under 14% for all three APIs. These poor
results drove us to investigate best practices in eliciting quality
results from the crowd. As shown in Section V, accuracy rose
to above 93% for all the APIs; precision increased to 67% at
worst and 100% at best. For the rest of the paper, we refer
only to the studies that had all the quality control mechanisms.

3) Participants: To control for between-study learning
effects, each study had an independent group of participants.11

In total, 198 participants performed the tasks, with 60% - 74%
of them having a CS degree. Using a 5-point Likert scale with
1 being “not familiar at all” and 5 being ”very familiar”, most

11The initial study, not reported here, also had an independent group of 26.

TABLE V
COMPARISON OF THE CROWD AND SPECFORGE AGAINST GROUND TRUTH;

56 OF 1,014 PROPERTIES ARE TRUE IN HashSet LIBRARY, 35 OF 384
PROPERTIES ARE TRUE IN StringTokenizer LIBRARY, 43 OF 600 THE

PROPERTIES ARE TRUE IN StackAr

Study Accuracy fp fn p r
HashSet A 98.03% 0.00% 1.97% 100.00% 64.29%
HashSet B 98.03% 0.49% 1.48% 89.13% 73.21%
SpecForge HS 97.04% 0.00% 2.96% 100.00% 46.43%
StringToken 93.49% 2.34% 4.17% 67.86% 54.29%
SpecForge ST 91.15% 3.39% 5.47% 51.85% 40.00%
StackAr 98.50% 1.00% 0.50% 86.96% 93.02%
SpecForge SA 98.50% 0.00% 1.50% 100.00% 79.07%

participants were at least somewhat familiar with Java at the
start of the study.

V. RESULTS

A. RQ1: Can a crowd improve SpecForge?
The high-level results appear in Table V. The columns

represent the metrics from Section IV-C. The rows are split by
API: the first three rows are for HashSet; the next two for
StringTokenizer; the last two for StackAr. If the study
name has the prefix SpecForge, this means it is the results
from SpecForge compared to the ground truth. The remaining
rows are the results from the four SpecForge+CrowdSpec
studies.

Regarding HashSet, HashSet A and HashSet B both show
an improvement in accuracy over SpecForge by nearly 1%. We
note that a 1% improvement is substantial because 1) from a
statistical point of view, the difference between 97% and 98%
in our study shows a P-value of 0.002 (McNemar’s test), which
is significant; 2) the error rate (2%) of our studies reduces the
error rate (3%) of SpecForge by one-third.

Regarding StringTokenizer, StringToken shows an
improvement in accuracy over SpecForge by 2%. Regarding
StackAr, StackAr shows no improvement in accuracy over
SpecForge, but we note that SpecForge performs the best
on this API out of the three. For recall, the gains are 14%
(StringToken) to 27% (HashSet B). In concert, these results
demonstrate that the crowd is indeed capable of improving
machine-mined specs using documentation.

We also note that all the properties on which the crowd
incorrectly disagreed with SpecForge were of NF or NIF
property types. Table VI presents results comparing the
crowd’s accuracy on different property types, separated by
API (the HashSet A and HashSet B studies are combined
for HashSet). The crowd was the most accurate on the AF,
AIF, and AIP property types; the least accurate property type
is NIF. The crowd’s consistent accuracy for these property
types, whether it is high or low, indicates that these types are
particularly easier/harder to understand for participants. The
poor performance on NIF and NF property types may also
indicate that the documentation is not sufficiently detailed to
evaluate them.

One factor that could impact accuracy is Java familiarity.
To determine this we partitioned the participants into three
groups by their stated familiarity with Java on the qualification

CrowdSpec v. SpecForge

- Outperform SpecForge

University of British Columbia 34

Results for different property types

TABLE VI
CROWD’S ACCURACY ON EACH PROPERTY TYPE AND EACH API.

HashSet StringTokenizer StackAr
Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

AF 100.00% 0.00% 0.00% 98.44% 0.00% 0.00% 100.00% 0.00% 0.00%
NF 97.63% 95.46% 73.08% 85.94% 44.44% 50.00% 98.00% 90.00% 90.00%
AP 98.82% 100.00% 85.71% 93.75% 80.00% 57.14% 98.00% 100.00% 81.82%
AIP 100.00% 0.00% 0.00% 100.00% 0.00% 0.00% 100.00% 0.00% 0.00%
AIF 100.00% 0.00% 0.00% 100.00% 0.00% 0.00% 100.00% 0.00% 0.00%
NIF 91.72% 91.30% 58.62% 82.81% 84.62% 55.00% 95.00% 81.48% 100.00%

test. Participants were categorized as Familiar if they stated
they were familiar or very familiar in the survey following
the qualification test. The Unfamiliar category represents
unfamiliar and very unfamiliar responses. Overall, participants’
accuracy across the familiar and unfamiliar groups did not
differ significantly across all the libraries (↵ = 0.05, Mann-
Whitney U test). One potential implication of this result is
that workers who were unfamiliar with Java were sufficiently
trained at the start of the study, such that they performed as
well as workers who were familiar with Java.

Summary: We answer RQ1 in the affirmative: the crowd
is able to improve machine-mined LTL-specifications, even
when that crowd is only somewhat familiar with Java at the
start. It also shows the value of combining trace-based analysis
(SpecForge) with documentation-based analysis (CrowdSpec).
Future work in this space should consider other types of
specifications, such as data specs [5].

B. RQ2: Why does the crowd make mistakes?

To gain a deeper understanding of why the crowd answers
incorrectly on LTL specification questions, we analyzed the
crowd’s explanations of their incorrect answers. We analyzed
a total of 582 mistakes made by participants in the study,
183 on HashSet, 180 on StringTokenizer, and 219 on
StackAr. As HashSet is a much larger API than the others,
we randomly sampled approximately 20% of the errors to
analyze a data set similar in size to the others.

As discussed in Section IV-D, two coders used the HashSet
dataset to distill common error categories. We calculated the
inter-rater agreement for StringTokenizer (= 0.26) and
StackAr (= 0.49) using Cohen’s Kappa. Using Landis’
measurement of observer agreement for categorical data,
our agreement for StackAr had a moderate strength of
agreement and StringTokenizer had a fair strength of
agreement [33]. Table VII details the 12 error categories,
grouped into four high-level error classes. Table VIII lists
the distribution of wrong responses across the error categories
for each API and in aggregate across the APIs.

a) API documentation errors: Approximately 22% of
the incorrect responses had a textual explanation that indicated a
misunderstanding of the libraries (API Error row in Table VIII);
43% of the participants had at least one wrong property
response in this category. This category includes misunder-
standing constructor usage (APIb) and method relationships
(APIa), confusion about parameters (APIe) and method return
values (APId), or overlooking other methods in the API (APIc).

The documentation for HashSet had the highest error
rate due to API issues (29%), while the StringTokenizer
documentation was the least confusing (18%). Method relation
errors were the most prevalent mistakes made in this category,
implying that the crowd was confused about the interactions
between methods. For example, in Table VII, the example for
APIa demonstrates that a worker indicated push(Object o)
and pop() are unrelated, when in fact both impact the program
state. The frequency of this category highlights the importance
of improving API documentation quality, with special attention
paid to method relations.

b) True spec errors: Approximately 22% of the error
responses indicated workers struggled with understanding the
definition of LTL specs; 36% of participants wrote responses in
this category. This includes misunderstanding LTL definitions
(TSa), overlooking the requirement for a single instance (TSc),
and making judgments based on bad practice (TSb).

Participants tend to have trouble with understanding the
definition of a true spec and LTL properties (15%). For example,
some participants reversed the method order when answering a
question, as was the case for TSa in Table VII. This suggests
that participants are confused about temporal API specifications.
Two approaches might reduce this type of error: better education
about LTL specs and the inclusion of temporal constraint
information in JavaDocs.

c) Study design errors: Approximately 19% of the error
responses indicated an issue with the study design or UI; this
was observed for 34% of the participants. Within this category,
the mistake most responses had was providing a correct
explanation but selecting the wrong choice (SDa). One possible
reason was that participants misunderstood the purpose of the
task, which asked them to agree/disagree with the SpecForge
answer instead of agree/disagree with the given statement.
Another potential reason was that they just clicked the wrong
button accidentally. The other category, incorrect knowledge
transfer (SDb), meant the workers used their incorrect answers
on some property instances to justify their answers on others.

That the dominant category demonstrated correct under-
standing but a wrong click implies the need for an improved
study design to make the tasks clearer to workers. It also
implies that the use of natural language processing to evaluate
the congruence between quantitative and qualitative responses
could serve as a useful quality control mechanism.

d) Unclear errors: The dominant error class includes
nonsense or confusion in the response; this represents 37%
of the error responses and 15% of the participants. Many of

University of British Columbia 35

Results for different property types

TABLE VI
CROWD’S ACCURACY ON EACH PROPERTY TYPE AND EACH API.

HashSet StringTokenizer StackAr
Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

AF 100.00% 0.00% 0.00% 98.44% 0.00% 0.00% 100.00% 0.00% 0.00%
NF 97.63% 95.46% 73.08% 85.94% 44.44% 50.00% 98.00% 90.00% 90.00%
AP 98.82% 100.00% 85.71% 93.75% 80.00% 57.14% 98.00% 100.00% 81.82%
AIP 100.00% 0.00% 0.00% 100.00% 0.00% 0.00% 100.00% 0.00% 0.00%
AIF 100.00% 0.00% 0.00% 100.00% 0.00% 0.00% 100.00% 0.00% 0.00%
NIF 91.72% 91.30% 58.62% 82.81% 84.62% 55.00% 95.00% 81.48% 100.00%

test. Participants were categorized as Familiar if they stated
they were familiar or very familiar in the survey following
the qualification test. The Unfamiliar category represents
unfamiliar and very unfamiliar responses. Overall, participants’
accuracy across the familiar and unfamiliar groups did not
differ significantly across all the libraries (↵ = 0.05, Mann-
Whitney U test). One potential implication of this result is
that workers who were unfamiliar with Java were sufficiently
trained at the start of the study, such that they performed as
well as workers who were familiar with Java.

Summary: We answer RQ1 in the affirmative: the crowd
is able to improve machine-mined LTL-specifications, even
when that crowd is only somewhat familiar with Java at the
start. It also shows the value of combining trace-based analysis
(SpecForge) with documentation-based analysis (CrowdSpec).
Future work in this space should consider other types of
specifications, such as data specs [5].

B. RQ2: Why does the crowd make mistakes?

To gain a deeper understanding of why the crowd answers
incorrectly on LTL specification questions, we analyzed the
crowd’s explanations of their incorrect answers. We analyzed
a total of 582 mistakes made by participants in the study,
183 on HashSet, 180 on StringTokenizer, and 219 on
StackAr. As HashSet is a much larger API than the others,
we randomly sampled approximately 20% of the errors to
analyze a data set similar in size to the others.

As discussed in Section IV-D, two coders used the HashSet
dataset to distill common error categories. We calculated the
inter-rater agreement for StringTokenizer (= 0.26) and
StackAr (= 0.49) using Cohen’s Kappa. Using Landis’
measurement of observer agreement for categorical data,
our agreement for StackAr had a moderate strength of
agreement and StringTokenizer had a fair strength of
agreement [33]. Table VII details the 12 error categories,
grouped into four high-level error classes. Table VIII lists
the distribution of wrong responses across the error categories
for each API and in aggregate across the APIs.

a) API documentation errors: Approximately 22% of
the incorrect responses had a textual explanation that indicated a
misunderstanding of the libraries (API Error row in Table VIII);
43% of the participants had at least one wrong property
response in this category. This category includes misunder-
standing constructor usage (APIb) and method relationships
(APIa), confusion about parameters (APIe) and method return
values (APId), or overlooking other methods in the API (APIc).

The documentation for HashSet had the highest error
rate due to API issues (29%), while the StringTokenizer
documentation was the least confusing (18%). Method relation
errors were the most prevalent mistakes made in this category,
implying that the crowd was confused about the interactions
between methods. For example, in Table VII, the example for
APIa demonstrates that a worker indicated push(Object o)
and pop() are unrelated, when in fact both impact the program
state. The frequency of this category highlights the importance
of improving API documentation quality, with special attention
paid to method relations.

b) True spec errors: Approximately 22% of the error
responses indicated workers struggled with understanding the
definition of LTL specs; 36% of participants wrote responses in
this category. This includes misunderstanding LTL definitions
(TSa), overlooking the requirement for a single instance (TSc),
and making judgments based on bad practice (TSb).

Participants tend to have trouble with understanding the
definition of a true spec and LTL properties (15%). For example,
some participants reversed the method order when answering a
question, as was the case for TSa in Table VII. This suggests
that participants are confused about temporal API specifications.
Two approaches might reduce this type of error: better education
about LTL specs and the inclusion of temporal constraint
information in JavaDocs.

c) Study design errors: Approximately 19% of the error
responses indicated an issue with the study design or UI; this
was observed for 34% of the participants. Within this category,
the mistake most responses had was providing a correct
explanation but selecting the wrong choice (SDa). One possible
reason was that participants misunderstood the purpose of the
task, which asked them to agree/disagree with the SpecForge
answer instead of agree/disagree with the given statement.
Another potential reason was that they just clicked the wrong
button accidentally. The other category, incorrect knowledge
transfer (SDb), meant the workers used their incorrect answers
on some property instances to justify their answers on others.

That the dominant category demonstrated correct under-
standing but a wrong click implies the need for an improved
study design to make the tasks clearer to workers. It also
implies that the use of natural language processing to evaluate
the congruence between quantitative and qualitative responses
could serve as a useful quality control mechanism.

d) Unclear errors: The dominant error class includes
nonsense or confusion in the response; this represents 37%
of the error responses and 15% of the participants. Many of

- Crowd isn’t great at “never” property types

University of British Columbia 36

Accuracy comparison

TABLE IX
COMPARISON OF ACCURACY BETWEEN SPECFORGE, CROWDSPEC, AND EXPERTS FOR EACH LIBRARY

SF+ Experts Experts
API SpecForge CrowdSpec Expert1 Expert2 Expert3 Voting Discussing
HashSet 97.04% 98.03% 99.61% 98.32% 98.22% 98.42% 100%
StTokenizer 91.15% 93.49% 97.14% 97.92% 98.44% 100.00% 100%
StackAr 98.50% 98.50% 98.17% 96.50% 98.67% 98.67% 100%

TABLE X
ACCURACY COMPARISON OF CROWDSPEC, EXPERTSVOTING,

EXPERTSDISCUSSION FOR EACH LIBRARY

SpecForge+CrowdSpec versus
ExpertsVoting ExpertsDiscussion

HashSet 0.618 ***<0.001
StringTokenizer ***<0.001 ***<0.001
StackAr 1.000 **0.004

*↵=0.1, **↵=0.01, *** ↵=0.001

consistently outperformed CrowdSpec for all three libraries.
This implies that the value of using experts is realized during
discussion.

Summary: There is no substantial difference in accuracy
between experts voting and the SpecForge+CrowdSpec (which
is essentially the crowd voting). Instead of combining inde-
pendent expert opinions with voting, experts are much more
useful when they can discuss their disagreements. However,
if discussion is not an option, for two of the three APIs,
SpecForge+CrowdSpec performs statistically as well as three
voting experts.

VI. RELATED WORK

Crowd-sourcing for software engineering. Crowdsourcing,
and specifically microtask crowdsourcing [25], has been shown
to be effective for tasks related to software engineering, such
as building software [34], testing [35], [36], determining the
impact of code smells [37], evaluating website usability [38],
verifying software [39], and program synthesis [15]. In par-
ticular, Amazon’s Mechanical Turk has been used for several
software engineering tasks (e.g., [40], [38], [35]), with varied
success [39].

CrowdMine (proposed [41] and detailed in Chapter 6 of Li’s
thesis [40]) is a closely related work in the context of digital
design rather than software APIs. CrowdMine, like CrowdSpec,
uses MTurk to mine temporal specifications. There are three
key differences: (1) CrowdMine presents workers with traces
instead of documentation, which we believe is a poor match
for human workers, (2) it relies on gamification for quality
control, and (3) it does not use the crowd to augment existing
techniques as we do with SpecForge.

Maintaining quality in crowdsourcing. Quality control
is important in crowdsourcing as the crowd is an unknown
population and gaming can severely impact result quality. The
success of crowdsourcing on MTurk relies on finding qualified
participants. The Pew Research Center has found that MTurk
workers are well-educated [42], which echoes the characteristics
of our study participants, where 67% have a college degree.
Pastore et al. report experiments with MTurk where qualified

programmers were found to be six times better at spotting
bad program assertions than open call crowdsourcing with a
general population [43]. They also noted the complexity of
training the crowd to achieve useful results.

Researchers performing web studies have explored different
ways to improve response quality. One effective strategy to filter
out random clickers is to identify when responses are uniformly
distributed and likely to be made by bots [31]. Other work uses
clickstream data to cluster similar users and identify fraudulent
users as outliers [44]. CrowdSpec uses a timer to identify
random clickers, which is more rudimentary, but does identify
workers who answer HITs haphazardly. CrowdSpec also uses
gold standard questions, which have been shown to identify
workers who may not be paying attention [45], [26]. Finally,
research on survey design has found that participants are more
likely to be careful when they perceive they are contributing
to research [28]; CrowdSpec also uses this strategy.

Mining specifications from documentation. Text mining
and NLP techniques have been applied to API documentation
for the purpose of supporting migration between APIs [46],
inferring parameter constraints from method descriptions [47],
and to infer resource specifications [48]. The most related
approach to our work is ICON [49].

ICON is a machine learning and NLP technique that infers
temporal constraints from API documentation with precision
and recall of 79% and 60%, respectively, using three APIs
different from the ones we studied. ICON considers four tem-
poral properties: followed by, preceded by and their negations.
In contrast, we consider a super-set of these properties. The
precision and recall of SpecForge+CrowdSpec is higher than
that of ICON, but it is not immediately clear why. We offer
three possible explanations: (1) the crowd is more accurate than
NLP techniques, (2) the API libraries we use are easier than
those used in the ICON evaluation, or (3) starting the crowd
with a preconception of true specs based on SpecForge leads
to better results and ICON would see similar improvements if
it also used this information.

Characterizing Software APIs. Our work assumes that the
API documentation is of high quality. However, Uddin and
Robillard found that ambiguity, incompleteness, and inaccuracy
are typical issues in API documentation [50]. One way to
cope with these issues is to use prior techniques to improve
the API documentation first, before applying CrowdSpec. For
example, we can use work by Treude et al. [51] who used
Stack Overflow as a source of crowd knowledge about an
API to improve API documentation. Alternatively, we could

+

University of British Columbia 37

Accuracy comparison

TABLE IX
COMPARISON OF ACCURACY BETWEEN SPECFORGE, CROWDSPEC, AND EXPERTS FOR EACH LIBRARY

SF+ Experts Experts
API SpecForge CrowdSpec Expert1 Expert2 Expert3 Voting Discussing
HashSet 97.04% 98.03% 99.61% 98.32% 98.22% 98.42% 100%
StTokenizer 91.15% 93.49% 97.14% 97.92% 98.44% 100.00% 100%
StackAr 98.50% 98.50% 98.17% 96.50% 98.67% 98.67% 100%

TABLE X
ACCURACY COMPARISON OF CROWDSPEC, EXPERTSVOTING,

EXPERTSDISCUSSION FOR EACH LIBRARY

SpecForge+CrowdSpec versus
ExpertsVoting ExpertsDiscussion

HashSet 0.618 ***<0.001
StringTokenizer ***<0.001 ***<0.001
StackAr 1.000 **0.004

*↵=0.1, **↵=0.01, *** ↵=0.001

consistently outperformed CrowdSpec for all three libraries.
This implies that the value of using experts is realized during
discussion.

Summary: There is no substantial difference in accuracy
between experts voting and the SpecForge+CrowdSpec (which
is essentially the crowd voting). Instead of combining inde-
pendent expert opinions with voting, experts are much more
useful when they can discuss their disagreements. However,
if discussion is not an option, for two of the three APIs,
SpecForge+CrowdSpec performs statistically as well as three
voting experts.

VI. RELATED WORK

Crowd-sourcing for software engineering. Crowdsourcing,
and specifically microtask crowdsourcing [25], has been shown
to be effective for tasks related to software engineering, such
as building software [34], testing [35], [36], determining the
impact of code smells [37], evaluating website usability [38],
verifying software [39], and program synthesis [15]. In par-
ticular, Amazon’s Mechanical Turk has been used for several
software engineering tasks (e.g., [40], [38], [35]), with varied
success [39].

CrowdMine (proposed [41] and detailed in Chapter 6 of Li’s
thesis [40]) is a closely related work in the context of digital
design rather than software APIs. CrowdMine, like CrowdSpec,
uses MTurk to mine temporal specifications. There are three
key differences: (1) CrowdMine presents workers with traces
instead of documentation, which we believe is a poor match
for human workers, (2) it relies on gamification for quality
control, and (3) it does not use the crowd to augment existing
techniques as we do with SpecForge.

Maintaining quality in crowdsourcing. Quality control
is important in crowdsourcing as the crowd is an unknown
population and gaming can severely impact result quality. The
success of crowdsourcing on MTurk relies on finding qualified
participants. The Pew Research Center has found that MTurk
workers are well-educated [42], which echoes the characteristics
of our study participants, where 67% have a college degree.
Pastore et al. report experiments with MTurk where qualified

programmers were found to be six times better at spotting
bad program assertions than open call crowdsourcing with a
general population [43]. They also noted the complexity of
training the crowd to achieve useful results.

Researchers performing web studies have explored different
ways to improve response quality. One effective strategy to filter
out random clickers is to identify when responses are uniformly
distributed and likely to be made by bots [31]. Other work uses
clickstream data to cluster similar users and identify fraudulent
users as outliers [44]. CrowdSpec uses a timer to identify
random clickers, which is more rudimentary, but does identify
workers who answer HITs haphazardly. CrowdSpec also uses
gold standard questions, which have been shown to identify
workers who may not be paying attention [45], [26]. Finally,
research on survey design has found that participants are more
likely to be careful when they perceive they are contributing
to research [28]; CrowdSpec also uses this strategy.

Mining specifications from documentation. Text mining
and NLP techniques have been applied to API documentation
for the purpose of supporting migration between APIs [46],
inferring parameter constraints from method descriptions [47],
and to infer resource specifications [48]. The most related
approach to our work is ICON [49].

ICON is a machine learning and NLP technique that infers
temporal constraints from API documentation with precision
and recall of 79% and 60%, respectively, using three APIs
different from the ones we studied. ICON considers four tem-
poral properties: followed by, preceded by and their negations.
In contrast, we consider a super-set of these properties. The
precision and recall of SpecForge+CrowdSpec is higher than
that of ICON, but it is not immediately clear why. We offer
three possible explanations: (1) the crowd is more accurate than
NLP techniques, (2) the API libraries we use are easier than
those used in the ICON evaluation, or (3) starting the crowd
with a preconception of true specs based on SpecForge leads
to better results and ICON would see similar improvements if
it also used this information.

Characterizing Software APIs. Our work assumes that the
API documentation is of high quality. However, Uddin and
Robillard found that ambiguity, incompleteness, and inaccuracy
are typical issues in API documentation [50]. One way to
cope with these issues is to use prior techniques to improve
the API documentation first, before applying CrowdSpec. For
example, we can use work by Treude et al. [51] who used
Stack Overflow as a source of crowd knowledge about an
API to improve API documentation. Alternatively, we could

+

- CrowdSpec improves SpecForge

University of British Columbia 38

Accuracy comparison

TABLE IX
COMPARISON OF ACCURACY BETWEEN SPECFORGE, CROWDSPEC, AND EXPERTS FOR EACH LIBRARY

SF+ Experts Experts
API SpecForge CrowdSpec Expert1 Expert2 Expert3 Voting Discussing
HashSet 97.04% 98.03% 99.61% 98.32% 98.22% 98.42% 100%
StTokenizer 91.15% 93.49% 97.14% 97.92% 98.44% 100.00% 100%
StackAr 98.50% 98.50% 98.17% 96.50% 98.67% 98.67% 100%

TABLE X
ACCURACY COMPARISON OF CROWDSPEC, EXPERTSVOTING,

EXPERTSDISCUSSION FOR EACH LIBRARY

SpecForge+CrowdSpec versus
ExpertsVoting ExpertsDiscussion

HashSet 0.618 ***<0.001
StringTokenizer ***<0.001 ***<0.001
StackAr 1.000 **0.004

*↵=0.1, **↵=0.01, *** ↵=0.001

consistently outperformed CrowdSpec for all three libraries.
This implies that the value of using experts is realized during
discussion.

Summary: There is no substantial difference in accuracy
between experts voting and the SpecForge+CrowdSpec (which
is essentially the crowd voting). Instead of combining inde-
pendent expert opinions with voting, experts are much more
useful when they can discuss their disagreements. However,
if discussion is not an option, for two of the three APIs,
SpecForge+CrowdSpec performs statistically as well as three
voting experts.

VI. RELATED WORK

Crowd-sourcing for software engineering. Crowdsourcing,
and specifically microtask crowdsourcing [25], has been shown
to be effective for tasks related to software engineering, such
as building software [34], testing [35], [36], determining the
impact of code smells [37], evaluating website usability [38],
verifying software [39], and program synthesis [15]. In par-
ticular, Amazon’s Mechanical Turk has been used for several
software engineering tasks (e.g., [40], [38], [35]), with varied
success [39].

CrowdMine (proposed [41] and detailed in Chapter 6 of Li’s
thesis [40]) is a closely related work in the context of digital
design rather than software APIs. CrowdMine, like CrowdSpec,
uses MTurk to mine temporal specifications. There are three
key differences: (1) CrowdMine presents workers with traces
instead of documentation, which we believe is a poor match
for human workers, (2) it relies on gamification for quality
control, and (3) it does not use the crowd to augment existing
techniques as we do with SpecForge.

Maintaining quality in crowdsourcing. Quality control
is important in crowdsourcing as the crowd is an unknown
population and gaming can severely impact result quality. The
success of crowdsourcing on MTurk relies on finding qualified
participants. The Pew Research Center has found that MTurk
workers are well-educated [42], which echoes the characteristics
of our study participants, where 67% have a college degree.
Pastore et al. report experiments with MTurk where qualified

programmers were found to be six times better at spotting
bad program assertions than open call crowdsourcing with a
general population [43]. They also noted the complexity of
training the crowd to achieve useful results.

Researchers performing web studies have explored different
ways to improve response quality. One effective strategy to filter
out random clickers is to identify when responses are uniformly
distributed and likely to be made by bots [31]. Other work uses
clickstream data to cluster similar users and identify fraudulent
users as outliers [44]. CrowdSpec uses a timer to identify
random clickers, which is more rudimentary, but does identify
workers who answer HITs haphazardly. CrowdSpec also uses
gold standard questions, which have been shown to identify
workers who may not be paying attention [45], [26]. Finally,
research on survey design has found that participants are more
likely to be careful when they perceive they are contributing
to research [28]; CrowdSpec also uses this strategy.

Mining specifications from documentation. Text mining
and NLP techniques have been applied to API documentation
for the purpose of supporting migration between APIs [46],
inferring parameter constraints from method descriptions [47],
and to infer resource specifications [48]. The most related
approach to our work is ICON [49].

ICON is a machine learning and NLP technique that infers
temporal constraints from API documentation with precision
and recall of 79% and 60%, respectively, using three APIs
different from the ones we studied. ICON considers four tem-
poral properties: followed by, preceded by and their negations.
In contrast, we consider a super-set of these properties. The
precision and recall of SpecForge+CrowdSpec is higher than
that of ICON, but it is not immediately clear why. We offer
three possible explanations: (1) the crowd is more accurate than
NLP techniques, (2) the API libraries we use are easier than
those used in the ICON evaluation, or (3) starting the crowd
with a preconception of true specs based on SpecForge leads
to better results and ICON would see similar improvements if
it also used this information.

Characterizing Software APIs. Our work assumes that the
API documentation is of high quality. However, Uddin and
Robillard found that ambiguity, incompleteness, and inaccuracy
are typical issues in API documentation [50]. One way to
cope with these issues is to use prior techniques to improve
the API documentation first, before applying CrowdSpec. For
example, we can use work by Treude et al. [51] who used
Stack Overflow as a source of crowd knowledge about an
API to improve API documentation. Alternatively, we could

+

- Combo gets close to voting experts

University of British Columbia 39

Accuracy comparison

TABLE IX
COMPARISON OF ACCURACY BETWEEN SPECFORGE, CROWDSPEC, AND EXPERTS FOR EACH LIBRARY

SF+ Experts Experts
API SpecForge CrowdSpec Expert1 Expert2 Expert3 Voting Discussing
HashSet 97.04% 98.03% 99.61% 98.32% 98.22% 98.42% 100%
StTokenizer 91.15% 93.49% 97.14% 97.92% 98.44% 100.00% 100%
StackAr 98.50% 98.50% 98.17% 96.50% 98.67% 98.67% 100%

TABLE X
ACCURACY COMPARISON OF CROWDSPEC, EXPERTSVOTING,

EXPERTSDISCUSSION FOR EACH LIBRARY

SpecForge+CrowdSpec versus
ExpertsVoting ExpertsDiscussion

HashSet 0.618 ***<0.001
StringTokenizer ***<0.001 ***<0.001
StackAr 1.000 **0.004

*↵=0.1, **↵=0.01, *** ↵=0.001

consistently outperformed CrowdSpec for all three libraries.
This implies that the value of using experts is realized during
discussion.

Summary: There is no substantial difference in accuracy
between experts voting and the SpecForge+CrowdSpec (which
is essentially the crowd voting). Instead of combining inde-
pendent expert opinions with voting, experts are much more
useful when they can discuss their disagreements. However,
if discussion is not an option, for two of the three APIs,
SpecForge+CrowdSpec performs statistically as well as three
voting experts.

VI. RELATED WORK

Crowd-sourcing for software engineering. Crowdsourcing,
and specifically microtask crowdsourcing [25], has been shown
to be effective for tasks related to software engineering, such
as building software [34], testing [35], [36], determining the
impact of code smells [37], evaluating website usability [38],
verifying software [39], and program synthesis [15]. In par-
ticular, Amazon’s Mechanical Turk has been used for several
software engineering tasks (e.g., [40], [38], [35]), with varied
success [39].

CrowdMine (proposed [41] and detailed in Chapter 6 of Li’s
thesis [40]) is a closely related work in the context of digital
design rather than software APIs. CrowdMine, like CrowdSpec,
uses MTurk to mine temporal specifications. There are three
key differences: (1) CrowdMine presents workers with traces
instead of documentation, which we believe is a poor match
for human workers, (2) it relies on gamification for quality
control, and (3) it does not use the crowd to augment existing
techniques as we do with SpecForge.

Maintaining quality in crowdsourcing. Quality control
is important in crowdsourcing as the crowd is an unknown
population and gaming can severely impact result quality. The
success of crowdsourcing on MTurk relies on finding qualified
participants. The Pew Research Center has found that MTurk
workers are well-educated [42], which echoes the characteristics
of our study participants, where 67% have a college degree.
Pastore et al. report experiments with MTurk where qualified

programmers were found to be six times better at spotting
bad program assertions than open call crowdsourcing with a
general population [43]. They also noted the complexity of
training the crowd to achieve useful results.

Researchers performing web studies have explored different
ways to improve response quality. One effective strategy to filter
out random clickers is to identify when responses are uniformly
distributed and likely to be made by bots [31]. Other work uses
clickstream data to cluster similar users and identify fraudulent
users as outliers [44]. CrowdSpec uses a timer to identify
random clickers, which is more rudimentary, but does identify
workers who answer HITs haphazardly. CrowdSpec also uses
gold standard questions, which have been shown to identify
workers who may not be paying attention [45], [26]. Finally,
research on survey design has found that participants are more
likely to be careful when they perceive they are contributing
to research [28]; CrowdSpec also uses this strategy.

Mining specifications from documentation. Text mining
and NLP techniques have been applied to API documentation
for the purpose of supporting migration between APIs [46],
inferring parameter constraints from method descriptions [47],
and to infer resource specifications [48]. The most related
approach to our work is ICON [49].

ICON is a machine learning and NLP technique that infers
temporal constraints from API documentation with precision
and recall of 79% and 60%, respectively, using three APIs
different from the ones we studied. ICON considers four tem-
poral properties: followed by, preceded by and their negations.
In contrast, we consider a super-set of these properties. The
precision and recall of SpecForge+CrowdSpec is higher than
that of ICON, but it is not immediately clear why. We offer
three possible explanations: (1) the crowd is more accurate than
NLP techniques, (2) the API libraries we use are easier than
those used in the ICON evaluation, or (3) starting the crowd
with a preconception of true specs based on SpecForge leads
to better results and ICON would see similar improvements if
it also used this information.

Characterizing Software APIs. Our work assumes that the
API documentation is of high quality. However, Uddin and
Robillard found that ambiguity, incompleteness, and inaccuracy
are typical issues in API documentation [50]. One way to
cope with these issues is to use prior techniques to improve
the API documentation first, before applying CrowdSpec. For
example, we can use work by Treude et al. [51] who used
Stack Overflow as a source of crowd knowledge about an
API to improve API documentation. Alternatively, we could

+

- But, discussing experts.. unbeatable

University of British Columbia 40

Crowd errors TABLE VII
CROWD ERROR CATEGORIES FOR OUR STUDIES AND AN EXAMPLE ERROR FOR EACH CATEGORY.

Class Code Category Example
APIa Method relation “These are opposite, unrelated operations.”- Misunderstood relationship between StackAR

methods in property [push(Object o) AP pop()].
APIb Constructor usage “In HashSet libray, when using ADD, it is acceptable to use HASHSET IMMEDIATELY

afterward.”
API Doc.
Error

APIc Overlooked certain method “[A] stack cannot be full after its been made logically empty.”- For the property [makeEmpty()
AF isFull() = true], user overlooks that elements can be added between these calls.

APId Method return value “Returns the same value as the hasMoreTokens method.”- Confusion about return value in
the property [hasMoreTokens() = true NF countTokens()].

APIe Parameter “if remove(Object o) returns false it means that o is not contained into the set, and an
immediate call to remove(Object o) will return false not true.”

True
Spec
Error

TSa LTL/True spec definition “Once all elements are cleared [then] the set is empty.”- Misunderstood method order in
property [isEmpty() = true AIF clear()].

TSb Bad practice “Bad programming practice, but you can still do it.”
TSc Single instance requirement “Well if you wanted to create a second token for a different sting you might call it again.”-

Confused about task that specifies one object instance.
Study
Design
Error

SDa Misunderstanding what to agree/dis-
agree or wrong click

“I see no reason why you could not use counttokens right after setting up the tokens.”-
Machine’s answer for [StringTokenizer(String str) NIF countTokens()] is false. User correct
reasoning, but user’s property response indicates the opposite.

SDb Incorrect knowledge transfer “No, based on response on 1 and 2, it is not recommended to to so.” User explanation based
on previous questions.

Unclear

Ua Nonsense response “I THINK THIS IS THE CORRECT ANSWER.”
Ub Unsure “there may be changes made in between the two calls though I do not see a way to make

these changes within StringTokenizer so I am quite unsure but am guessing that this is not
[false] because a false measurement means there is nothing left to return a true.”

TABLE VIII
DISTRIBUTION OF PERCENT AND NUMBER OF INCORRECT RESPONSES

ACROSS THE ERROR CATEGORIES FROM TABLE VII.
Code HashSet StTokenizer StackAr Total
API
Error

29%(53) 18%(32) 19%(42) 22%(127)

APIa 13%(23) 3%(5) 10%(22) 9%(50)
APIb 3%(5) 9%(17) 3.00%(6) 5%(28)
APIc 3%(6) 4%(7) 5%(11) 4%(24)
APId 4%(8) 1%(2) 1%(3) 2%(13)
APIe 6%(11) 1%(1) 0%(0) 2%(12)
True
Spec

19%(35) 38%(68) 11%(24) 22%(127)

TSa 16%(29) 30%(54) 3%(7) 15%(90)
TSb 1%(2) 4%(8) 6%(14) 4%(24)
TSc 2%(4) 3%(6) 1%(3) 2%(13)
Design 29%(53) 22%(39) 10%(21) 19%(113)
SDa 28%(52) 19%(35) 9%(20) 18%(107)
SDb 1%(1) 2%(4) 0%(1) 1%(6)
Unclear 23%(42) 23%(41) 60%(132) 37%(215)
Ua 23%(42) 21%(38) 59%(129) 36%(209)
Ub 0%(0) 2%(3) 1%(3) 1%(6)
Total 100% (183) 100% (180) 100% (219) 100% (582)

these responses simply repeated the given temporal statement
or copied text from the API docs (Ua). Others explicitly stated
that they were not sure about their answer (Ub).

This result indicates a need for better quality control mecha-
nisms to improve the response quality, such as natural language
processing as previously mentioned. We also notice that these
responses are disproportionally present in the StackAr API,
which is also the API on which the experts had the most
disagreement, pointing to a possible documentation issue.

Summary: The dominant category for the crowd’s mis-
takes was unclear, indicating a need for more research and
improved quality control mechanisms. However, the fact that

ambiguities in API documentation were not the dominant source
of errors may suggest documentation can be a reliable source
for composing LTL specifications for Java APIs.

C. RQ3: Why not just use experts?
Section V-A (RQ1) has shown that the crowd can improve

machine-mined specs. To gain a deeper insight into the
crowd’s performance, we compared the accuracy of Spec-
Forge+CrowdSpec, to experts individually, experts who vote
using a majority rule, and experts who discuss the properties
(equivalent to the ground truth).

Table IX lists the results. For HashSet the SpecForge
accuracy is 97.04%. Adding the crowd (CrowdSpec), this
increases to 98.03%. Independently, the three experts achieve
accuracies better than SpecForge and SpecForge+CrowdSpec,
ranging from 98.22% - 99.61%. When using voting to
identify the winner, the expert accuracy is 98.42%. After
discussion, the experts’ accuracy is 100% (by definition). For
StringTokenizer, SpecForge and SpecForge+CrowdSpec
underperform compared to the experts individually and the
experts combined (by voting and by discussion). For StackAr,
SpecForge and SpecForge+CrowdSpec outperform Expert 1
and Expert 2 but not Expert 3, experts voting, or experts
discussing.

To determine if SpecForge+CrowdSpec can significantly
outperform experts, we performed a pairwise accuracy compar-
ison using McNemar’s test on SpecForge+CrowdSpec, experts
voting, and experts discussion. Table X presents the p-value
for each pair of techniques to infer specs. We find that the
accuracy of SpecForge+CrowdSpec and experts voting are
similar: there is no significant difference in two libraries,
HashSet and StackAr. Between SpecForge+CrowdSpec
and discussing experts, we found that discussing experts

University of British Columbia 41

Crowd errors TABLE VII
CROWD ERROR CATEGORIES FOR OUR STUDIES AND AN EXAMPLE ERROR FOR EACH CATEGORY.

Class Code Category Example
APIa Method relation “These are opposite, unrelated operations.”- Misunderstood relationship between StackAR

methods in property [push(Object o) AP pop()].
APIb Constructor usage “In HashSet libray, when using ADD, it is acceptable to use HASHSET IMMEDIATELY

afterward.”
API Doc.
Error

APIc Overlooked certain method “[A] stack cannot be full after its been made logically empty.”- For the property [makeEmpty()
AF isFull() = true], user overlooks that elements can be added between these calls.

APId Method return value “Returns the same value as the hasMoreTokens method.”- Confusion about return value in
the property [hasMoreTokens() = true NF countTokens()].

APIe Parameter “if remove(Object o) returns false it means that o is not contained into the set, and an
immediate call to remove(Object o) will return false not true.”

True
Spec
Error

TSa LTL/True spec definition “Once all elements are cleared [then] the set is empty.”- Misunderstood method order in
property [isEmpty() = true AIF clear()].

TSb Bad practice “Bad programming practice, but you can still do it.”
TSc Single instance requirement “Well if you wanted to create a second token for a different sting you might call it again.”-

Confused about task that specifies one object instance.
Study
Design
Error

SDa Misunderstanding what to agree/dis-
agree or wrong click

“I see no reason why you could not use counttokens right after setting up the tokens.”-
Machine’s answer for [StringTokenizer(String str) NIF countTokens()] is false. User correct
reasoning, but user’s property response indicates the opposite.

SDb Incorrect knowledge transfer “No, based on response on 1 and 2, it is not recommended to to so.” User explanation based
on previous questions.

Unclear

Ua Nonsense response “I THINK THIS IS THE CORRECT ANSWER.”
Ub Unsure “there may be changes made in between the two calls though I do not see a way to make

these changes within StringTokenizer so I am quite unsure but am guessing that this is not
[false] because a false measurement means there is nothing left to return a true.”

TABLE VIII
DISTRIBUTION OF PERCENT AND NUMBER OF INCORRECT RESPONSES

ACROSS THE ERROR CATEGORIES FROM TABLE VII.
Code HashSet StTokenizer StackAr Total
API
Error

29%(53) 18%(32) 19%(42) 22%(127)

APIa 13%(23) 3%(5) 10%(22) 9%(50)
APIb 3%(5) 9%(17) 3.00%(6) 5%(28)
APIc 3%(6) 4%(7) 5%(11) 4%(24)
APId 4%(8) 1%(2) 1%(3) 2%(13)
APIe 6%(11) 1%(1) 0%(0) 2%(12)
True
Spec

19%(35) 38%(68) 11%(24) 22%(127)

TSa 16%(29) 30%(54) 3%(7) 15%(90)
TSb 1%(2) 4%(8) 6%(14) 4%(24)
TSc 2%(4) 3%(6) 1%(3) 2%(13)
Design 29%(53) 22%(39) 10%(21) 19%(113)
SDa 28%(52) 19%(35) 9%(20) 18%(107)
SDb 1%(1) 2%(4) 0%(1) 1%(6)
Unclear 23%(42) 23%(41) 60%(132) 37%(215)
Ua 23%(42) 21%(38) 59%(129) 36%(209)
Ub 0%(0) 2%(3) 1%(3) 1%(6)
Total 100% (183) 100% (180) 100% (219) 100% (582)

these responses simply repeated the given temporal statement
or copied text from the API docs (Ua). Others explicitly stated
that they were not sure about their answer (Ub).

This result indicates a need for better quality control mecha-
nisms to improve the response quality, such as natural language
processing as previously mentioned. We also notice that these
responses are disproportionally present in the StackAr API,
which is also the API on which the experts had the most
disagreement, pointing to a possible documentation issue.

Summary: The dominant category for the crowd’s mis-
takes was unclear, indicating a need for more research and
improved quality control mechanisms. However, the fact that

ambiguities in API documentation were not the dominant source
of errors may suggest documentation can be a reliable source
for composing LTL specifications for Java APIs.

C. RQ3: Why not just use experts?
Section V-A (RQ1) has shown that the crowd can improve

machine-mined specs. To gain a deeper insight into the
crowd’s performance, we compared the accuracy of Spec-
Forge+CrowdSpec, to experts individually, experts who vote
using a majority rule, and experts who discuss the properties
(equivalent to the ground truth).

Table IX lists the results. For HashSet the SpecForge
accuracy is 97.04%. Adding the crowd (CrowdSpec), this
increases to 98.03%. Independently, the three experts achieve
accuracies better than SpecForge and SpecForge+CrowdSpec,
ranging from 98.22% - 99.61%. When using voting to
identify the winner, the expert accuracy is 98.42%. After
discussion, the experts’ accuracy is 100% (by definition). For
StringTokenizer, SpecForge and SpecForge+CrowdSpec
underperform compared to the experts individually and the
experts combined (by voting and by discussion). For StackAr,
SpecForge and SpecForge+CrowdSpec outperform Expert 1
and Expert 2 but not Expert 3, experts voting, or experts
discussing.

To determine if SpecForge+CrowdSpec can significantly
outperform experts, we performed a pairwise accuracy compar-
ison using McNemar’s test on SpecForge+CrowdSpec, experts
voting, and experts discussion. Table X presents the p-value
for each pair of techniques to infer specs. We find that the
accuracy of SpecForge+CrowdSpec and experts voting are
similar: there is no significant difference in two libraries,
HashSet and StackAr. Between SpecForge+CrowdSpec
and discussing experts, we found that discussing experts

TABLE VII
CROWD ERROR CATEGORIES FOR OUR STUDIES AND AN EXAMPLE ERROR FOR EACH CATEGORY.

Class Code Category Example
APIa Method relation “These are opposite, unrelated operations.”- Misunderstood relationship between StackAR

methods in property [push(Object o) AP pop()].
APIb Constructor usage “In HashSet libray, when using ADD, it is acceptable to use HASHSET IMMEDIATELY

afterward.”
API Doc.
Error

APIc Overlooked certain method “[A] stack cannot be full after its been made logically empty.”- For the property [makeEmpty()
AF isFull() = true], user overlooks that elements can be added between these calls.

APId Method return value “Returns the same value as the hasMoreTokens method.”- Confusion about return value in
the property [hasMoreTokens() = true NF countTokens()].

APIe Parameter “if remove(Object o) returns false it means that o is not contained into the set, and an
immediate call to remove(Object o) will return false not true.”

True
Spec
Error

TSa LTL/True spec definition “Once all elements are cleared [then] the set is empty.”- Misunderstood method order in
property [isEmpty() = true AIF clear()].

TSb Bad practice “Bad programming practice, but you can still do it.”
TSc Single instance requirement “Well if you wanted to create a second token for a different sting you might call it again.”-

Confused about task that specifies one object instance.
Study
Design
Error

SDa Misunderstanding what to agree/dis-
agree or wrong click

“I see no reason why you could not use counttokens right after setting up the tokens.”-
Machine’s answer for [StringTokenizer(String str) NIF countTokens()] is false. User correct
reasoning, but user’s property response indicates the opposite.

SDb Incorrect knowledge transfer “No, based on response on 1 and 2, it is not recommended to to so.” User explanation based
on previous questions.

Unclear

Ua Nonsense response “I THINK THIS IS THE CORRECT ANSWER.”
Ub Unsure “there may be changes made in between the two calls though I do not see a way to make

these changes within StringTokenizer so I am quite unsure but am guessing that this is not
[false] because a false measurement means there is nothing left to return a true.”

TABLE VIII
DISTRIBUTION OF PERCENT AND NUMBER OF INCORRECT RESPONSES

ACROSS THE ERROR CATEGORIES FROM TABLE VII.
Code HashSet StTokenizer StackAr Total
API
Error

29%(53) 18%(32) 19%(42) 22%(127)

APIa 13%(23) 3%(5) 10%(22) 9%(50)
APIb 3%(5) 9%(17) 3.00%(6) 5%(28)
APIc 3%(6) 4%(7) 5%(11) 4%(24)
APId 4%(8) 1%(2) 1%(3) 2%(13)
APIe 6%(11) 1%(1) 0%(0) 2%(12)
True
Spec

19%(35) 38%(68) 11%(24) 22%(127)

TSa 16%(29) 30%(54) 3%(7) 15%(90)
TSb 1%(2) 4%(8) 6%(14) 4%(24)
TSc 2%(4) 3%(6) 1%(3) 2%(13)
Design 29%(53) 22%(39) 10%(21) 19%(113)
SDa 28%(52) 19%(35) 9%(20) 18%(107)
SDb 1%(1) 2%(4) 0%(1) 1%(6)
Unclear 23%(42) 23%(41) 60%(132) 37%(215)
Ua 23%(42) 21%(38) 59%(129) 36%(209)
Ub 0%(0) 2%(3) 1%(3) 1%(6)
Total 100% (183) 100% (180) 100% (219) 100% (582)

these responses simply repeated the given temporal statement
or copied text from the API docs (Ua). Others explicitly stated
that they were not sure about their answer (Ub).

This result indicates a need for better quality control mecha-
nisms to improve the response quality, such as natural language
processing as previously mentioned. We also notice that these
responses are disproportionally present in the StackAr API,
which is also the API on which the experts had the most
disagreement, pointing to a possible documentation issue.

Summary: The dominant category for the crowd’s mis-
takes was unclear, indicating a need for more research and
improved quality control mechanisms. However, the fact that

ambiguities in API documentation were not the dominant source
of errors may suggest documentation can be a reliable source
for composing LTL specifications for Java APIs.

C. RQ3: Why not just use experts?
Section V-A (RQ1) has shown that the crowd can improve

machine-mined specs. To gain a deeper insight into the
crowd’s performance, we compared the accuracy of Spec-
Forge+CrowdSpec, to experts individually, experts who vote
using a majority rule, and experts who discuss the properties
(equivalent to the ground truth).

Table IX lists the results. For HashSet the SpecForge
accuracy is 97.04%. Adding the crowd (CrowdSpec), this
increases to 98.03%. Independently, the three experts achieve
accuracies better than SpecForge and SpecForge+CrowdSpec,
ranging from 98.22% - 99.61%. When using voting to
identify the winner, the expert accuracy is 98.42%. After
discussion, the experts’ accuracy is 100% (by definition). For
StringTokenizer, SpecForge and SpecForge+CrowdSpec
underperform compared to the experts individually and the
experts combined (by voting and by discussion). For StackAr,
SpecForge and SpecForge+CrowdSpec outperform Expert 1
and Expert 2 but not Expert 3, experts voting, or experts
discussing.

To determine if SpecForge+CrowdSpec can significantly
outperform experts, we performed a pairwise accuracy compar-
ison using McNemar’s test on SpecForge+CrowdSpec, experts
voting, and experts discussion. Table X presents the p-value
for each pair of techniques to infer specs. We find that the
accuracy of SpecForge+CrowdSpec and experts voting are
similar: there is no significant difference in two libraries,
HashSet and StackAr. Between SpecForge+CrowdSpec
and discussing experts, we found that discussing experts

TABLE VII
CROWD ERROR CATEGORIES FOR OUR STUDIES AND AN EXAMPLE ERROR FOR EACH CATEGORY.

Class Code Category Example
APIa Method relation “These are opposite, unrelated operations.”- Misunderstood relationship between StackAR

methods in property [push(Object o) AP pop()].
APIb Constructor usage “In HashSet libray, when using ADD, it is acceptable to use HASHSET IMMEDIATELY

afterward.”
API Doc.
Error

APIc Overlooked certain method “[A] stack cannot be full after its been made logically empty.”- For the property [makeEmpty()
AF isFull() = true], user overlooks that elements can be added between these calls.

APId Method return value “Returns the same value as the hasMoreTokens method.”- Confusion about return value in
the property [hasMoreTokens() = true NF countTokens()].

APIe Parameter “if remove(Object o) returns false it means that o is not contained into the set, and an
immediate call to remove(Object o) will return false not true.”

True
Spec
Error

TSa LTL/True spec definition “Once all elements are cleared [then] the set is empty.”- Misunderstood method order in
property [isEmpty() = true AIF clear()].

TSb Bad practice “Bad programming practice, but you can still do it.”
TSc Single instance requirement “Well if you wanted to create a second token for a different sting you might call it again.”-

Confused about task that specifies one object instance.
Study
Design
Error

SDa Misunderstanding what to agree/dis-
agree or wrong click

“I see no reason why you could not use counttokens right after setting up the tokens.”-
Machine’s answer for [StringTokenizer(String str) NIF countTokens()] is false. User correct
reasoning, but user’s property response indicates the opposite.

SDb Incorrect knowledge transfer “No, based on response on 1 and 2, it is not recommended to to so.” User explanation based
on previous questions.

Unclear

Ua Nonsense response “I THINK THIS IS THE CORRECT ANSWER.”
Ub Unsure “there may be changes made in between the two calls though I do not see a way to make

these changes within StringTokenizer so I am quite unsure but am guessing that this is not
[false] because a false measurement means there is nothing left to return a true.”

TABLE VIII
DISTRIBUTION OF PERCENT AND NUMBER OF INCORRECT RESPONSES

ACROSS THE ERROR CATEGORIES FROM TABLE VII.
Code HashSet StTokenizer StackAr Total
API
Error

29%(53) 18%(32) 19%(42) 22%(127)

APIa 13%(23) 3%(5) 10%(22) 9%(50)
APIb 3%(5) 9%(17) 3.00%(6) 5%(28)
APIc 3%(6) 4%(7) 5%(11) 4%(24)
APId 4%(8) 1%(2) 1%(3) 2%(13)
APIe 6%(11) 1%(1) 0%(0) 2%(12)
True
Spec

19%(35) 38%(68) 11%(24) 22%(127)

TSa 16%(29) 30%(54) 3%(7) 15%(90)
TSb 1%(2) 4%(8) 6%(14) 4%(24)
TSc 2%(4) 3%(6) 1%(3) 2%(13)
Design 29%(53) 22%(39) 10%(21) 19%(113)
SDa 28%(52) 19%(35) 9%(20) 18%(107)
SDb 1%(1) 2%(4) 0%(1) 1%(6)
Unclear 23%(42) 23%(41) 60%(132) 37%(215)
Ua 23%(42) 21%(38) 59%(129) 36%(209)
Ub 0%(0) 2%(3) 1%(3) 1%(6)
Total 100% (183) 100% (180) 100% (219) 100% (582)

these responses simply repeated the given temporal statement
or copied text from the API docs (Ua). Others explicitly stated
that they were not sure about their answer (Ub).

This result indicates a need for better quality control mecha-
nisms to improve the response quality, such as natural language
processing as previously mentioned. We also notice that these
responses are disproportionally present in the StackAr API,
which is also the API on which the experts had the most
disagreement, pointing to a possible documentation issue.

Summary: The dominant category for the crowd’s mis-
takes was unclear, indicating a need for more research and
improved quality control mechanisms. However, the fact that

ambiguities in API documentation were not the dominant source
of errors may suggest documentation can be a reliable source
for composing LTL specifications for Java APIs.

C. RQ3: Why not just use experts?
Section V-A (RQ1) has shown that the crowd can improve

machine-mined specs. To gain a deeper insight into the
crowd’s performance, we compared the accuracy of Spec-
Forge+CrowdSpec, to experts individually, experts who vote
using a majority rule, and experts who discuss the properties
(equivalent to the ground truth).

Table IX lists the results. For HashSet the SpecForge
accuracy is 97.04%. Adding the crowd (CrowdSpec), this
increases to 98.03%. Independently, the three experts achieve
accuracies better than SpecForge and SpecForge+CrowdSpec,
ranging from 98.22% - 99.61%. When using voting to
identify the winner, the expert accuracy is 98.42%. After
discussion, the experts’ accuracy is 100% (by definition). For
StringTokenizer, SpecForge and SpecForge+CrowdSpec
underperform compared to the experts individually and the
experts combined (by voting and by discussion). For StackAr,
SpecForge and SpecForge+CrowdSpec outperform Expert 1
and Expert 2 but not Expert 3, experts voting, or experts
discussing.

To determine if SpecForge+CrowdSpec can significantly
outperform experts, we performed a pairwise accuracy compar-
ison using McNemar’s test on SpecForge+CrowdSpec, experts
voting, and experts discussion. Table X presents the p-value
for each pair of techniques to infer specs. We find that the
accuracy of SpecForge+CrowdSpec and experts voting are
similar: there is no significant difference in two libraries,
HashSet and StackAr. Between SpecForge+CrowdSpec
and discussing experts, we found that discussing experts

University of British Columbia 42

CrowdSpec take-aways

Lightweight and scalable approach to mine
temporal specs from JavaDoc with a Crowd
• Improves existing spec-miners
• Approaches expert-level spec quality

More generally, re-consider:
• The automation dimension in your work
• SE research assumptions you can disrupt!

Our evaluation results are online: https://bestchai.bitbucket.io/crowdspecmine-eval/

University of British Columbia 43

Metrics

Majority rule to determine the crowd’s opinion.

We measure:
● Precision: the percentage of properties that are actually true, of those that are reported to

be true.
● Recall: the percentage of the true properties that are reported to be true.
● Accuracy: the percent of correct mined properties, true and false, in the ground truth.

43

TABLE I
API GROUND TRUTH DETAILS. INSTANCES REFER TO PROPERTY

INSTANCES, EXPERT AGREEMENT IS INTER-RATER FLEISS’ KAPPA, AND %
TRUE LISTS THE FRACTION OF TRUE INSTANCES IN THE API.

API Instances Agreement % True
HashSet 1,014 0.82 6% (56)
StringTokenizer 384 0.76 9% (35)
StackAr 600 0.76 7% (43)

TABLE II
DISTRIBUTION OF TRUE PROPERTIES FOR EACH PROPERTY TYPE, PER API.

Property HashSet StringTokenizer StackAr
AF 0%(0) 0%(0) 0%(0)
NF 8%(13) 13%(8) 10%(10)
AP 8%(14) 11%(7) 11%(11)
AIP 0%(0) 0%(0) 0%(0)
AIF 0%(0) 0%(0) 0%(0)
NIF 17%(29) 31%(20) 22%(22)

true properties in our manually-derived ground truth. Further,
we sought a more complete picture of each API spec, one that
includes explicitly stated false properties. Thus, we created a
ground truth specification dataset for each of the three APIs
using the following process:

Three paper authors (hereafter referred to as experts9)
manually labeled property instances for six property types (AF,
AIF, NF, NIF, AP, AIP) across all possible pairs of methods in
each API. We treated methods with a boolean return type as
two entries, one for true and one for false return value. When
there was not unanimous agreement, the authors discussed each
property and came to a consensus. Typical disagreements were
either oversights or miscommunication on the requirements
of a true property, as defined in Section II. Table I lists the
total number of property instances per API, along with an
inter-expert agreement score (Fleiss’ kappa).

We observed that some property types, specifically AF, AIF,
and AIP, cannot be true for any pair of methods. This is because
the client of the API can exit at any time. These results are
presented in Table II. For liveness property types AF and AIF
and all pairs of methods (a, b), we can always end the program
right after calling a. Likewise, for a AIP b, it is always possible
to call a method between a and b for all pairs of methods.
Table I lists the fraction of true property instances per property
type in each API.

We make the ground truth and all of our experimental data
available for other researchers to review and to use [32].

B. Tasks
Each task in our studies was designed such that a participant

explores the six property types between two methods in a
single API. Each task contains the JavaDoc information for
the two methods and the following materials for each of the
six property types: 1) the SpecForge answer (referred to in
the tasks as the “machine’s answer”), 2) a question about
whether the participant agrees or disagrees with the machine,
3) free-text space to provide an explanation, and 4) a 5-point

9Two of whom hold PhDs in CS and research program analysis.

TABLE III
MEASURES USED IN OUR EVALUATION.

Ground Truth
True False

Crowd True True Positive (tp) False Positive (fp)
Decision False False Negative (fn) True Negative (tn)

Likert scale question about confidence. Figure 1 shows the
question portion of the task for the clear() and clone()
methods in the HashSet API, and the AF property type.
Method descriptions from the API are provided, and an API
documentation link leads to the library Java 7 JavaDoc (and
to [17] for StackAr).

C. Metrics
We measure the crowd’s accuracy against the ground truth

to answer RQ1, and the crowd’s and experts’ accuracy to
answer RQ3. Most spec miners that use dynamic analysis,
such as SpecForge, only explicitly identify true properties [8],
[21]. For the false properties, these techniques do not typically
distinguish between a property that is not mined because a trace
violates it, and a property that was not observed or for which the
traces did not provide sufficient evidence. In the latter case, this
leads to incompleteness. Our experiments, on the other hand,
can identify properties explicitly as true or as false, allowing
an exhaustive evaluation of API property instances. For this
reason, we measure accuracy, which represents correctness
compared to the ground truth, in addition to precision and
recall. Table III summarizes our metrics notation.

In each experiment we assign multiple participants to each
property. To extract a crowd consensus, we assign an odd
number of participants to each property and use majority rule
to determine the crowd’s opinion.

Precision. (p) is the percentage of properties that are actually
true, of those that are reported to be true: p = tp

tp+fp . For our
experiments, precision is the percentage of the correctly labeled
true properties from the crowd.

Recall. (r) represents the percentage of the true properties
that are reported to be true: r = tp

tp+fn . For our experiments,
recall is the percentage of true properties in an API that were
identified as true by the crowd.

Accuracy. (a) is the percent of correctly mined properties,
true and false, in the ground truth: a = tp+tn

tp+fp+fn+tn . Unlike
precision and recall, accuracy includes tn properties since the
crowd explicitly defines properties as true or false.

D. Qualitative Analysis
We explore why the crowd makes mistakes when identifying

LTL specs with the three Java APIs for RQ2. To accomplish
this, we identify all responses where participants’ answers
disagreed with the ground truth. Then, two authors indepen-
dently coded user responses into categories that describe why
they made mistakes using an open card sort. In formulating
these categories the coders focused on capturing why each
participant made a mistake, using the participant’s response
and the free-text explanations of their response for guidance.

The two coders first independently analyzed the replies for
the HashSet API. Then, they discussed the initial groupings

University of British Columbia 44

Distribution of true instances

TABLE I
API GROUND TRUTH DETAILS. INSTANCES REFER TO PROPERTY

INSTANCES, EXPERT AGREEMENT IS INTER-RATER FLEISS’ KAPPA, AND %
TRUE LISTS THE FRACTION OF TRUE INSTANCES IN THE API.

API Instances Agreement % True
HashSet 1,014 0.82 6% (56)
StringTokenizer 384 0.76 9% (35)
StackAr 600 0.76 7% (43)

TABLE II
DISTRIBUTION OF TRUE PROPERTIES FOR EACH PROPERTY TYPE, PER API.

Property HashSet StringTokenizer StackAr
AF 0%(0) 0%(0) 0%(0)
NF 8%(13) 13%(8) 10%(10)
AP 8%(14) 11%(7) 11%(11)
AIP 0%(0) 0%(0) 0%(0)
AIF 0%(0) 0%(0) 0%(0)
NIF 17%(29) 31%(20) 22%(22)

true properties in our manually-derived ground truth. Further,
we sought a more complete picture of each API spec, one that
includes explicitly stated false properties. Thus, we created a
ground truth specification dataset for each of the three APIs
using the following process:

Three paper authors (hereafter referred to as experts9)
manually labeled property instances for six property types (AF,
AIF, NF, NIF, AP, AIP) across all possible pairs of methods in
each API. We treated methods with a boolean return type as
two entries, one for true and one for false return value. When
there was not unanimous agreement, the authors discussed each
property and came to a consensus. Typical disagreements were
either oversights or miscommunication on the requirements
of a true property, as defined in Section II. Table I lists the
total number of property instances per API, along with an
inter-expert agreement score (Fleiss’ kappa).

We observed that some property types, specifically AF, AIF,
and AIP, cannot be true for any pair of methods. This is because
the client of the API can exit at any time. These results are
presented in Table II. For liveness property types AF and AIF
and all pairs of methods (a, b), we can always end the program
right after calling a. Likewise, for a AIP b, it is always possible
to call a method between a and b for all pairs of methods.
Table I lists the fraction of true property instances per property
type in each API.

We make the ground truth and all of our experimental data
available for other researchers to review and to use [32].

B. Tasks
Each task in our studies was designed such that a participant

explores the six property types between two methods in a
single API. Each task contains the JavaDoc information for
the two methods and the following materials for each of the
six property types: 1) the SpecForge answer (referred to in
the tasks as the “machine’s answer”), 2) a question about
whether the participant agrees or disagrees with the machine,
3) free-text space to provide an explanation, and 4) a 5-point

9Two of whom hold PhDs in CS and research program analysis.

TABLE III
MEASURES USED IN OUR EVALUATION.

Ground Truth
True False

Crowd True True Positive (tp) False Positive (fp)
Decision False False Negative (fn) True Negative (tn)

Likert scale question about confidence. Figure 1 shows the
question portion of the task for the clear() and clone()
methods in the HashSet API, and the AF property type.
Method descriptions from the API are provided, and an API
documentation link leads to the library Java 7 JavaDoc (and
to [17] for StackAr).

C. Metrics
We measure the crowd’s accuracy against the ground truth

to answer RQ1, and the crowd’s and experts’ accuracy to
answer RQ3. Most spec miners that use dynamic analysis,
such as SpecForge, only explicitly identify true properties [8],
[21]. For the false properties, these techniques do not typically
distinguish between a property that is not mined because a trace
violates it, and a property that was not observed or for which the
traces did not provide sufficient evidence. In the latter case, this
leads to incompleteness. Our experiments, on the other hand,
can identify properties explicitly as true or as false, allowing
an exhaustive evaluation of API property instances. For this
reason, we measure accuracy, which represents correctness
compared to the ground truth, in addition to precision and
recall. Table III summarizes our metrics notation.

In each experiment we assign multiple participants to each
property. To extract a crowd consensus, we assign an odd
number of participants to each property and use majority rule
to determine the crowd’s opinion.

Precision. (p) is the percentage of properties that are actually
true, of those that are reported to be true: p = tp

tp+fp . For our
experiments, precision is the percentage of the correctly labeled
true properties from the crowd.

Recall. (r) represents the percentage of the true properties
that are reported to be true: r = tp

tp+fn . For our experiments,
recall is the percentage of true properties in an API that were
identified as true by the crowd.

Accuracy. (a) is the percent of correctly mined properties,
true and false, in the ground truth: a = tp+tn

tp+fp+fn+tn . Unlike
precision and recall, accuracy includes tn properties since the
crowd explicitly defines properties as true or false.

D. Qualitative Analysis
We explore why the crowd makes mistakes when identifying

LTL specs with the three Java APIs for RQ2. To accomplish
this, we identify all responses where participants’ answers
disagreed with the ground truth. Then, two authors indepen-
dently coded user responses into categories that describe why
they made mistakes using an open card sort. In formulating
these categories the coders focused on capturing why each
participant made a mistake, using the participant’s response
and the free-text explanations of their response for guidance.

The two coders first independently analyzed the replies for
the HashSet API. Then, they discussed the initial groupings

University of British Columbia 45

Study characteristics

45

Study HashSet_A HashSet_B StToken StAr

Total cost $473.75 $473.73 $138.68 $218.05

Duration 2 days 4 days 30 days 17 days

University of British Columbia 46

Study specifics

Fig. 1. HIT Design for CrowdSpec studies, with one property type (AF) shown for methods clear() and clone(). We set the Machine’s Answer to
TRUE or FALSE according to the SpecForge answers.

TABLE IV
STUDY AND PARTICIPANT CHARACTERISTICS.

Study Features HashSet A HashSet B StringToken StackAr
People per task 5 5 3/4/5 3/4/5
Payment $0.40 $0.40 $0.40 $0.40
Total cost $473.75 $473.73 $138.68 $218.05
Valid responses 845 845 246 388
Duration 2 days 4 days 30 days 17 days

Quality Control HashSet A HashSet B StringToken StackAr
Qualification test yes yes yes yes
questions 7 7 7 7
Conflict detection yes yes yes yes
Gold standard yes yes yes yes
Random click yes yes yes yes

Participants HashSet A HashSet B StringToken StackAr
Total participants 39 38 66 55
Male/female/unk 30/9/0 28/8/2 51/15/0 32/23/0
Avg. age 30 31 33 34
% CS degree 74% 74% 68% 60%
Java familiarity 3.87 3.95 3.64 3.51

to distill 12 error categories. Next, they used these 12 categories
to classify the responses in the StringTokenizer and
StackAr API studies. The coders went through and compared
their codings based on the error category each response was
assigned. When there was disagreement, the coders discussed
and came to an agreement. Finally, high-level error classes
were identified to classify the participants’ mistakes.

E. Implementation

To gain access to a crowd of participants, we used MTurk’s
microtask crowdsourcing platform. We created Human Intel-
ligence Tasks (HITs) that are performed by MTurk workers,
where each task described in Section IV-B was a HIT. We
built CrowdSpec on our own server to afford us more control
over the study context. This server interfaces with Amazon’s
MTurk, which was used to manage recruitment, advertisement,
and payment. Our system is based on PHP and MySQL.

We ran four studies, HashSet A, HashSet B, StringToken
and StackAr across three different API libraries. Each study had
an independent sample of participants, including HashSet B,
which is a replication of HashSet A. Table IV summarizes
several features of each study: MTurk logistics (e.g., cost,
workers per task, study duration), quality control mechanisms
(e.g., conflict detection, random click detection), and partici-
pant characteristics (e.g., gender, age, experience). Next, we
elaborate on each category.

1) MTurk Study Logistics: For consistency in exposure
to potential participant populations, each study was deployed
at 10pm Eastern Standard Time on a Sunday evening. An
upper bound of five workers were assigned to each HIT. In the
StringToken and StackAr studies, we removed HITs if consensus
was reached on all six property types by three or four people
as a cost-saving technique. Participants were paid $0.40 per
HIT10 and the studies ran between two and 30 days. Submitted
HITs can be approved or rejected, and workers, or participants,
are only paid for approved HITs. Approval was granted if
all questions were answered, gold standard questions were
answered correctly, and no conflicts were detected (explained
next). Participants had 20 minutes to complete each HIT.

2) Quality Control: We used best practices from the
crowdsourcing literature to ensure high quality responses. Two
general active quality control strategies were employed. First,
we used a qualification test to screen the participants. Second,
we used within-study checks on their work, including conflict
detection and gold standard questions. All of our quality control
techniques were entirely automated and did not increase the
cost of our studies.

a) Qualification Pretest: The workers are qualified to
perform and submit our HITs if they pass a qualification
test. For workers unfamiliar with LTL properties, we incor-
porated training materials into the qualification test [29]. We
showed examples and explanations of each of the six LTL
property types using the Java HashMap API. Then, we used
the ArrayList library in the qualification test, where the
questions were identical to those in the HITs. Participants
passed if they answered at least 5 out of 7 questions correctly.

b) Within-study Controls: Despite being qualified to
perform the tasks, we ensured high quality results by employing
within-study quality checks, specifically conflict detection,
lightweight random click detection, gold standard questions,
redundant question formats, and indications that their responses
are important for research. In concert, these controls ensure
the crowd delivers highly accurate results on the temporal
specification mining tasks.

To ensure comprehension on each HIT submission we used
in vivo conflict checking [30] to determine when participants
submitted conflicting responses for related properties, such as
(AF and NF) or (AIF and NIF). A conflict happens when
a participant responds true on both properties in either pair

10Each HIT had 6 property instances; per-property instance cost was $0.07.

