Making Sense of Multl-threaded
Application Performance at Scale
with NonSequitur

Augustine Wong,Paul Bucci,
Ivan Beschastnikh
Alexandra Fedorova

AW
=L

THE UNIVERSITY
OF BRITISH COLUMBIA 1

C
UJ
0

The Impact of Performance Bugs

Compromised but operational system

Degradation in:

Energy Latency

R. Krishna, M. S. Igbal, M. A. Javidian, B. Ray, and P. Jamshidi. Cadet: Debugging and fixing misconfigurations using
counterfactual reasoning.arXiv preprint arXiv:2010.06061, 2020.

C
v.]
0

|

€
X
if

The Cost of Fixing Performance Bugs

More difficult to fix than other types of bugs

[W]e found that performance bugs take more time to
fix, are fixed by more experienced developers and
require more changes to more lines than non-
performance bugs [1].

[1] S. Zaman, B. Adams, and A. E. Hassan. A qualitative study on performance bugs. In 2012 9th IEEE working
conference on mining software repositories (MSR), pages 199-208. |IEEE, 2012.

C
v.]
0

|

€
X
if

C
v.]
0

|

A Case Study of Performance
Comprehension

We performed an empirical case study to examine
the nature of performance comprehension [2]

@D

Information Tools Processes

I

[2] Alexandra Fedorova, Craig Mustard, lvan Beschastnikh, Julia Rubin, Augustine Wong, Svetozar Miucin, and Louis
Ye. 2018. Performance comprehension at WiredTiger. In Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering. 83-94. 4

Analyzing Performance Comprehension

Wi ‘ﬁ‘ Jiro

We analyzed 44 JIRA tickets that tracked
performance issues at WiredTiger

C
v.]
0

|

if

Key Findings on Performance
Comprehension

| WiredTiger developers spent the majority of
their performance debugging time
—— investigating latency spikes

Developers were interested in knowing
what threads did over time

Developers collected and analyzed
large amounts of information

C
v.]
0

|

€
X
if

Performance Analysis Tool Requirements

Requirements

Description

R_Latency
R_Time
R_Large

Find when latency spikes occur
Display thread behavior over time
Process large execution traces

C
v.]
0

|

Current State of Performance Debugging

Jol Sue Doe is a software developer tasked with
- iInvestigating latency spikes captured in a large
execution trace.

RocksDB trace
Thread Size
ID # Function Calls |# Different Functions
1 2,466,295 74
2 2,464,045 75
3 194,042 247

What can she do?

C
v.]
0

|

C
v.]
0

Option 1: Use FlameGraphs?

Reset Zoom Flame Graph

| _wt_evict_thread_run

Merges callstack samples together and sorts them

alphabetically

Does not show time ‘
10

=)

Option 1: Use FlameGraphs?

Flame Graph

-
== | JE .
i
5
_

Il-D- N -l
- l w__ e_w

l l--__
_
e e_
_m

Tool Requirements

ge

R _Lar

R Time

y

R_Latenc

11

v

Option 2: Chrome TraceViewer?

Process 0

l

E

[1.389 hr

> O N OO WN =

v 10

+ 1

v 12

v 13

MAathina calantad Tan ctuff

12

C
vr)
(@)

|

Option 2: Chrome TraceViewer?

v ‘@ Trace from catapult_traces jsc X L
X M @ File C:/Users/Asian/OneDrive/Desktop/ctv_example.html w = 3 Y 0O : = ;|) o Augustine
% Bookmarks & monetdbd uninstal 3 14.04 - How | can d E 1.13. Sorting a List. @ D3 Bar Chart @ Crossfilter Demo | ﬁ Dissecting Reinforc » [All Bookmarks
= (4 Clock - u] X
v 9
O O : O O i O O
.UU.UU.00
hr min sec

Q- -

13

Option 2: Chrome TraceViewer?

}

.9 — —n
. 10 e o
1 e g
. 12 g g
. 13 e _w_cond_wai_sinsi
Tool Requirements
R_Latency R _Time R _Large
v v X

Cc
v.]
(@)

|

if

Tries to visualize everything in an execution

trace!

14

Other Tools?

Tools

Tool Requirements

R _Latency| R Time R _Large
Zinsight [3 X v v
TraceViz [4] X v v
SyncTrace [5] v v X
ExtraVis [6] X v X
TraceDiff [7] X v X
Compress [8 X X v
Phase Finder [9]) 4 X v
Sabalan [10] X) ¢ v

[3] De Pauw et al. (2010)
[4] Dautriche et al. (2016)
[5] Karran et al. (2013)

[6] Cornelissen et al. (2008)

[7] Trumper et al. (2013)

[8] Hamou-Lhadj et al. (2002)
[9] Pirzadeh et al. (2010)
[10] Alimadadi et al. (2018)

Cc
(@)

j

))
<
é
1

Our Solution: Compress + Visualize

RegTime NonSequitur

C
v.]
0

|

16

Cc
v.]
(@)

|

if

Our Solution: Compression with RegTime

Y X Y
AP P A P

A Y

» Time

Function Sequence

$

RegTime Expression?

17

C
v.]
0

|

€
X
if

Our Solution: Compression with RegTime

Y X Y
P i /}A‘ P Y » Time
7

A
- N

N\
N\

A
I
MV ok
S2*
1) Merge same callstacks together

18

C
v.]
0

|

€
X
if

Our Solution: Compression with RegTime

SO*
/, K\

R g3* \ S1*
-l - S VN
I I I I I I
I ' I I I I
| Y | 1 X | Y !

| |
\\ T TTTTmomo
/
N OV ok

1) Merge same callstacks together

19

C
v.]
0

|

€
X
if

Our Solution: Compression with RegTime

.Sz S0 _S3' St
i VoY x|
| A ':' p P Y
! R R S

2) Arrange groups of merged callstacks
20

Visualizing RegTime Expressions

RegTime Expression

C
v.]
0

|

€
X
if

21

Visualizing RegTime Expressions

—> Time

» Time

x Precise ordering of function calls

C
v.]
0

|

23

C
v.]
0

|

Visualizing RegTime Expressions

» Time

Time

O ns 7 ns

A box encodes start and end time of the
function sequence 24

C
v.]
0

|

Visualizing RegTime Expressions

1ns 1 ns 1ns
/\ Y /\ X /\ Y
A P A P A P Y

» Time

» Time
O ns 7 ns

Cumulative durations of functions
25

C
v.]
0

|

Visualizing RegTime Expressions

Y X Y
A Bl Q<;£ A SR > Time
A->P

O ns A->P 7 ns

\/ Loose causal relationships
26

C
v.]
0

|

Let’s Visualize This Trace with NonSequitur

RocksDB
Thread Size
ID # Function Calls |# Different Functions
1 2,466,295 74
2 2,464,045 75
3 194,042 247

27

NonSequitur Version 1

UBC

read 1

read 2

read 3

One RegTime Expression Per Thread

28

UBC

F@:‘
NonSequitur Version 1
Thread 2 - - S me
Thread 3 Time
Time

29

UBC

NonSequitur Version 1

Functions assigned unique colors

""" — 'Functions assigned the color grey

30

NonSequitur Version 1

Thread 1

C
v.]
0

|

€
X
if

Thread 2

Thread 3

Tool Requirements

R_Latency

R Time

R_Large

31

Leave Long Events Alone

€y 2)

X Y

®,

L--1
| I

C
v.]
0

|

€
X
if

» Time

N/

> CallDurationThresh

N\

> CallGapThresh

32

Leave Long Events Alone

UBC

——
| ——
—iv|~ih

» Time

» Time

T

RegTime Expressions

33

Use Multiple RegTime Expressions

= TotalTimeFractionThresh

» Time

RegTime
Expressions

> Time

C
v.]
0

|

€
X
if

34

C
v.]
0

|

€
X
if

NonSequitur Version 2

Thread 1

=] P

Tt

CallDurationThresh = 1% of a thread’s execution time
CallGapThresh = 0.1% of a thread’s execution time
TotalTimeFractionThresh = 3.2% of a thread’s execution time

Thread 2

Thread 3

35

C
v.]
0

|

€
X
if

NonSequitur Version 2

Latency spike

Thread 1 l

Thread 2

3 'l =

Thread 3

Period of idle time

!

=
e .
i
|| e

CallDurationThresh = 1% of a thread’s execution time
CallGapThresh = 0.1% of a thread’s execution time
TotalTimeFractionThresh = 3.2% of a thread’s execution time

36

UBC

NonSequitur Design Drawbacks

@
a
[LLLLLL i

X-axis not linear
Each callstack has a minimum horizontal pixel width

38

—\vlv/ny

€

Navigating NonSequitur: Highlight
Functions

Thread ID Enter a function name:)
1 “
2
3
Function Color
39 rocksdb::WriteThread::ExitAsBatchGroupLeader(rocksdb::Write Thread::WriteGroup&,
. - , e . i
40}
T o et A N T
41 rocksdb..WnteThread..LlnkOne(rocksdb..VVnteThrsad..Wmts, .
42 rocksdb::log::Writer::AddRecord(rocksdb::Slice -
Thread 1
Thread 2
Thread 3
g I— —
—) E—
—
—
—
= § v

39

C
vr)
0

|

Navigating NonSequitur: Linked
Highlighting
F oo Oross WTvas s Ll ‘ (: 15
P [T F T FFIRF R T-1-1-

Thread 3

Linked highlighting to help users find
correlations in activities across threads.

40

C
v.]
0

|

€
X
if

NonSequitur Version 2

Thread 1

=] P

Tt

Tool Requirements

Thread 2

Thread 3

R_Latency R _Time R_Large
N o N

41

Cc

BC

NonSequitur Eval: The Research Questions

RQ1: Does NonSequitur help analyze large execution traces
to understand what threads are doing over time?

|

RQ2: Does NonSequitur help analyze large execution traces
to find when unusually long function latencies occur?

RQ3: Does NonSequitur help analyze large execution traces
to learn what one thread was doing during the time when
another thread was blocked or delayed?

RQ4: For small traces that can be visualized with other tools,
does NonSequitur lead to false conclusions in questions
regarding thread activity over time as compared to other tools
that do not drop information from the trace? 49

Cc

BC

NonSequitur Eval: The Research Questions

|

RQ1: Does it help explain what threads are doing over time?
RQ2: Does it help find unusually long function latencies?
RQ3: Does it help with correlating thread activities?

RQ4: Does it mislead on small traces?

43

NonSequitur Eval: The User Study

within-subjects
design

Normal

Trace

@
sis
ah

Trace

42 Participants

Large

Trace

|

NonSequitur
+

Alternative Tool

|

NonSequitur
+

Alternative Tool

|

NonSequitur
+

Alternative Tool

C
v.]
0

|

€
X
if

24

C
vr)
0

|

NonSequitur Eval: Trace Sizes

wi

[

Normal WiredTiger Trace
0.8M function calls across 24 threads

Large WiredTiger Trace
50M function calls across 28 threads

Large RocksDB Trace
39M function calls across 32 threads

45

C
v.]
0

|

NonSequitur Eval: The Alternative Tools

Chrome TraceViewer for the normal eredTlger Trace

‘OS\JO)O"I-b(JOI\)—‘

v Process 0

|0 hr

w

__wt_cond_wa...

__wt_cond_wa...

__wt_cond_wa...

__wt_cond_wait_signal

_wt . _wit . w

__ies

W

__wt_cond_wait_signal

__wt_cond_wait_signal

__wt_cond_wait_signal

46

NonSequitur Eval: The Alternative Tools

OpTrack for the large traces

< C A =

v @ Interval #0. 0 to 1,619,160,747

X A
people.ece.ubc.ca/~augustinew/wt_mmap_update_optrack/BUCKET-FILES/bucket-0.html)% g 4
@ 14.04 - How I can d.. E 1.13. Sorting a List. € D3 Bar Chart & Crossfilter Demo |.

% Bookmarks & monetdbd uninstal..

Interval #0. 0 to 1,619,160,747 nanoseconds. CLICK TO NAVIGATE

v B T RO

e Dissecting Reinforc

s @

__ckpt_process

__create_file

logmgr_config
. __posix_file_read
LJ rec_split_write

schema_drop

. __statlog_config

wt block extlist

. _ block_size_prealloc

. checkpoint_lock_dirty tree

curfile_search_near

write

__block_write_off

checkpoint_tree

__config_getraw

__curfile_create

evict_pass

metadata_load_bulk

__posix_file_truncate

reconcile

session_close

__statlog_server

wt block open

TRACKED FUNCTIONS

_btree_conf

ckpt_last

__config_merge_format_next

__curfile_insert

fstream_getline

open_session

__posix_file_write

recovery_file_scan

. __btree_page_sizes
ckpt_load
. __config_merge_scan
- __curfile_next
fstream_printf
. __page_read
__posix_open_file

recovery_setup_file

session_close_cached cursox. session_dhandle_sweep

__thread_group_resize

wt bt write

- __thread_run

wt btecur insert

_cache_config_local

ckpt_load_blk_mods

__config_next

__curfile_search

global_calibrate_ticks

__posix_directory_sync

__rec_row_leaf_insert

schema_create

session_open_cursor_int

__wt_backup_open

wt btcur next

47

NonSequitur Eval: The Tasks

Tasks

Description

T1
T2
T3

Understand what threads are doing over time
Find when outlier events occur

Understand what one thread was doing during
the time when another thread was blocked or

delayed.

C
v.]
0

|

48

NonSequitur Eval: Difference Scores

Difference Score <0

Difference Score > 0 ‘

Difference Score =0 :

C
v.]
0

|

49

C
v.]
0

|

NonSequitur Eval: RQ1 Finding

Does it help explain what threads are doing over time?

Large WiredTiger Trace Large RocksDB Trace
50M function calls across : 39M function calls across
28 threads I 32 threads
A |
!
|
NonSequitur o e e
vs WIRCEUECEL
OpTrack ® :
|
! !
T1 Task

50

C
v.]
0

|

NonSequitur Eval: RQ2 Finding

Does it help find unusually long function latencies?

Large WiredTiger Trace | Large RocksDB Trace
50M function calls across | 39M function calls across
28 threads l 32 threads
|
4 - N ___,
NonSequitur ° | i :i i
VS Lv_*‘_l I_i;..
OpTrack =T l
1
® |
|

& I

T2 Task 51

NonSequitur Eval: RQ3 Finding

Does it help with correlating thread activities?

Large WiredTiger Trace : Large RocksDB Trace
50M function calls across | 39M function calls across
28 threads l 32 threads
o
| | 1
NonSequitur 0 B R
Vs 1 T
OpTrack) l
~ |
|
I

v

T3 Task

Cc
(@)

j

))
<
g
1

C
v.]
0

|

€
X
if

NonSequitur Eval: RQ4 Finding

Does it mislead on small traces?

Normal WiredTiger Trace
0.8M function calls across 24 R
threads D | T e e e |

NonSequitur

Us i
: = Tasks
Chrome TraceViewer v T1 T2 T3 T3

©) (1) s

Eval: Three case studies

Study 1: Reproduce slow LSM Performance in WiredTiger
Study 2: Slow Performance with the mmap Option in WiredTiger
Study 3: RocksDB memtable Concurency

C
vr)
0

|

54

C
v.]
0

|

Eval: Three case studies
Study 1: Reproduce slow LSM Performance in WiredTiger
Study 2: Slow Performance with the mmap Option in WiredTiger
Study 3: RocksDB memtable Concurency
Thread 18
Good run: \ I I I \ Function: __curfile_search
Duration: 922.39 milliseconds
Thread 18 wt_cache_eviction_worker
. Function: __wt_cond_wait_signal
Bad run: \ I I I “ ”I' ' | “ Ill ,II Il '“: I Duration: 1.08 seconds \I
Thread 9
Background H ‘ “ 1‘ “ | ‘ u ﬂ ‘ H H H Blocking eviction
threads is the root cause in the
during the Thread 10 background threads
bad run: ‘ | I ‘) < Function: __wt_cond_wait_signal H H ‘
Duration: 692.31 milliseconds 55

Eval: compression ratio

High compression ratios with RegTime!

C
v.]
0

|

System Thread # unique Npefore Nafter Compression
events Ratio
RocksDB 0 74 2,466,295 323 7,635
RocksDB 1 316 2,762,774 2,485 1,111
WiredTiger 0 115 7,784,936 546 14,258
WiredTiger 1 81 6,935,791 209 33,185
Chrome 0 34 274,361 96 2,857
Chrome 1 8 46,464 56 829

56

UBC

C [0 ntri b Utl ons Making Sense of Multi-threaded Application

Performance with NonSequitur

The lossy compression performed by RegTime does
not negatively impact a developer’s ability to
understand what threads are doing over time.

NonSequitur can help developers perform
performance analysis tasks on large execution
traces more accurately.

I EmEEEPEEEEE R

TTTTTTT FEPrEEPEEERTTIIY

H el e

https://github.com/auggywonger/nonsequitur vis/ o7

€

https://github.com/auggywonger/nonsequitur_vis/

