
Augustine Wong,Paul Bucci,
Ivan Beschastnikh
Alexandra Fedorova

Making Sense of Multi-threaded
Application Performance at Scale

with NonSequitur

1

- Spatial dimension:
Geographical location

Day and hour

Compromised but operational system

Energy Latency

Degradation in:

R. Krishna, M. S. Iqbal, M. A. Javidian, B. Ray, and P. Jamshidi. Cadet: Debugging and fixing misconfigurations using
counterfactual reasoning.arXiv preprint arXiv:2010.06061, 2020.

The Impact of Performance Bugs

2

- Spatial dimension:
Geographical location

More difficult to fix than other types of bugs

The Cost of Fixing Performance Bugs

[W]e found that performance bugs take more time to
fix, are fixed by more experienced developers and
require more changes to more lines than non-
performance bugs [1].

[1] S. Zaman, B. Adams, and A. E. Hassan. A qualitative study on performance bugs. In 2012 9th IEEE working
conference on mining software repositories (MSR), pages 199–208. IEEE, 2012. 3

A Case Study of Performance
Comprehension

We performed an empirical case study to examine
the nature of performance comprehension [2]

Information Tools Processes

4
[2] Alexandra Fedorova, Craig Mustard, Ivan Beschastnikh, Julia Rubin, Augustine Wong, Svetozar Miucin, and Louis
Ye. 2018. Performance comprehension at WiredTiger. In Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering. 83–94.

Analyzing Performance Comprehension

We analyzed 44 JIRA tickets that tracked
performance issues at WiredTiger

5

Key Findings on Performance
Comprehension

WiredTiger developers spent the majority of
their performance debugging time
investigating latency spikes

Developers were interested in knowing
what threads did over time

Developers collected and analyzed
large amounts of information

6

7

Performance Analysis Tool Requirements

Requirements Description
R_Latency Find when latency spikes occur

R_Time Display thread behavior over time
R_Large Process large execution traces

8

Current State of Performance Debugging

Sue Doe is a software developer tasked with
investigating latency spikes captured in a large
execution trace.

What can she do?

Thread
ID

Size
Function Calls # Different Functions

1 2,466,295 74
2 2,464,045 75
3 194,042 247

RocksDB trace

10

Option 1: Use FlameGraphs?

Merges callstack samples together and sorts them
alphabetically

Does not show time

11

Option 1: Use FlameGraphs?

Tool Requirements
R_Latency R_Time R_Large

12

Option 2: Chrome TraceViewer?

13

Option 2: Chrome TraceViewer?

14

Option 2: Chrome TraceViewer?

Tool Requirements
R_Latency R_Time R_Large

Tries to visualize everything in an execution
trace!

15

Other Tools?

Tools
Tool Requirements

R_Latency R_Time R_Large
Zinsight [3]

TraceViz [4]
SyncTrace [5]

ExtraVis [6]
TraceDiff [7]

Compress [8]
Phase Finder [9]

Sabalan [10]
[3] De Pauw et al. (2010)
[4] Dautriche et al. (2016)
[5] Karran et al. (2013)
[6] Cornelissen et al. (2008)

[7] Trumper et al. (2013)
[8] Hamou-Lhadj et al. (2002)
[9] Pirzadeh et al. (2010)
[10] Alimadadi et al. (2018)

16

Our Solution: Compress + Visualize

RegTime NonSequitur

Our Solution: Compression with RegTime

A TimeP A P
X YY

AA P Y

Function Sequence

17

RegTime Expression?

Our Solution: Compression with RegTime

A TimeP A P
X YY

AA P Y

1) Merge same callstacks together

S2*

18

Our Solution: Compression with RegTime

A TimeP A P
X YY

AA P Y

1) Merge same callstacks together

S2*

S1*

S0*

S3*

19

Our Solution: Compression with RegTime

A TimeP A P
X YY

AA P Y

2) Arrange groups of merged callstacks

S2* S0* S3* S1*

First Occurrences of each unique callstack

A P
Y X

Y

1 2 3 4

P

20

Visualizing RegTime Expressions

A TimeP A P
X YY

AA P Y

A P
Y X

Y
Time

21

RegTime Expression

Visualizing RegTime Expressions

A TimeP A P
X YY

AA P Y

A P
Y X

Y
Time

Precise ordering of function calls

23

Visualizing RegTime Expressions

A TimeP A P
X YY

AA P Y

A P
Y X

Y
0 ns

Time
7 ns

A box encodes start and end time of the
function sequence 24

Visualizing RegTime Expressions

A TimeP A P
X YY

AA P Y

A P
Y X

Y
0 ns

Time
7 ns

Cumulative durations of functions

1 ns 1 ns 1 ns

3 ns

25

Visualizing RegTime Expressions

A TimeP A P
X YY

AA P Y

A P
Y X

Y

0 ns
Time

7 ns

Loose causal relationships

A -> P

A -> P

26

27

Let’s Visualize This Trace with NonSequitur

Thread
ID

Size
Function Calls # Different Functions

1 2,466,295 74
2 2,464,045 75
3 194,042 247

RocksDB

NonSequitur Version 1

28

One RegTime Expression Per Thread

NonSequitur Version 1

29

Time

Time

Time

NonSequitur Version 1

30

Functions assigned unique colors

Functions assigned the color grey

NonSequitur Version 1

31

Tool Requirements
R_Latency R_Time R_Large

Leave Long Events Alone

TimeX Y

1 2 3

32

> CallGapThresh
> CallDurationThresh

Leave Long Events Alone

TimeX Y

33

TimeX Y

RegTime Expressions

Use Multiple RegTime Expressions

Time

34

Time

= TotalTimeFractionThresh

RegTime
Expressions

NonSequitur Version 2

35

CallDurationThresh = 1% of a thread’s execution time
CallGapThresh = 0.1% of a thread’s execution time
TotalTimeFractionThresh = 3.2% of a thread’s execution time

NonSequitur Version 2

36

CallDurationThresh = 1% of a thread’s execution time
CallGapThresh = 0.1% of a thread’s execution time
TotalTimeFractionThresh = 3.2% of a thread’s execution time

Latency spike

Period of idle time

Periods of idle time

NonSequitur Design Drawbacks

38

X-axis not linear
Each callstack has a minimum horizontal pixel width

Navigating NonSequitur: Highlight
Functions

39

Navigating NonSequitur: Linked
Highlighting

40

Linked highlighting to help users find
correlations in activities across threads.

NonSequitur Version 2

41

Tool Requirements
R_Latency R_Time R_Large

NonSequitur Eval: The Research Questions

42

RQ1: Does NonSequitur help analyze large execution traces
to understand what threads are doing over time?

RQ2: Does NonSequitur help analyze large execution traces
to find when unusually long function latencies occur?

RQ3: Does NonSequitur help analyze large execution traces
to learn what one thread was doing during the time when
another thread was blocked or delayed?

RQ4: For small traces that can be visualized with other tools,
does NonSequitur lead to false conclusions in questions
regarding thread activity over time as compared to other tools
that do not drop information from the trace?

NonSequitur Eval: The Research Questions

43

RQ1: Does it help explain what threads are doing over time?

RQ2: Does it help find unusually long function latencies?

RQ3: Does it help with correlating thread activities?

RQ4: Does it mislead on small traces?

NonSequitur Eval: The User Study

44

Trace Trace Trace

NonSequitur
+

Alternative Tool

NonSequitur
+

Alternative Tool

NonSequitur
+

Alternative Tool

42 Participants

Normal

LargeLarge

within-subjects
design

NonSequitur Eval: Trace Sizes

45

Normal WiredTiger Trace
0.8M function calls across 24 threads

Large WiredTiger Trace
50M function calls across 28 threads

Large RocksDB Trace
39M function calls across 32 threads

46

NonSequitur Eval: The Alternative Tools

Chrome TraceViewer for the normal WiredTiger Trace

47

NonSequitur Eval: The Alternative Tools

OpTrack for the large traces

48

NonSequitur Eval: The Tasks

Tasks Description
T1 Understand what threads are doing over time
T2 Find when outlier events occur
T3 Understand what one thread was doing during

the time when another thread was blocked or
delayed.

49

NonSequitur Eval: Difference Scores

Difference Score > 0

Difference Score < 0

Difference Score = 0

50

NonSequitur Eval: RQ1 Finding

NonSequitur
vs

OpTrack

Large WiredTiger Trace
50M function calls across

28 threads

Large RocksDB Trace
39M function calls across

32 threads

Does it help explain what threads are doing over time?

T1 Task

51

NonSequitur Eval: RQ2 Finding

NonSequitur
vs

OpTrack

Large WiredTiger Trace
50M function calls across

28 threads

Large RocksDB Trace
39M function calls across

32 threads

Does it help find unusually long function latencies?

T2 Task

52

NonSequitur Eval: RQ3 Finding

NonSequitur
vs

OpTrack

Large WiredTiger Trace
50M function calls across

28 threads

Large RocksDB Trace
39M function calls across

32 threads

Does it help with correlating thread activities?

T3 Task

53

NonSequitur Eval: RQ4 Finding

T1 T2 T3
(0)

T3
(1)

NonSequitur
vs

Chrome TraceViewer

Normal WiredTiger Trace
0.8M function calls across 24

threads

Tasks

Does it mislead on small traces?

54

Eval: Three case studies
Study 1: Reproduce slow LSM Performance in WiredTiger
Study 2: Slow Performance with the mmap Option in WiredTiger
Study 3: RocksDB memtable Concurency

55

Eval: Three case studies
Study 1: Reproduce slow LSM Performance in WiredTiger
Study 2: Slow Performance with the mmap Option in WiredTiger
Study 3: RocksDB memtable Concurency

Good run:

Bad run:

Background
threads
during the
bad run:

Blocking eviction
is the root cause in the
 background threads

56

Eval: compression ratio

High compression ratios with RegTime!

57

Contributions

The lossy compression performed by RegTime does
not negatively impact a developer’s ability to
understand what threads are doing over time.

NonSequitur can help developers perform
performance analysis tasks on large execution
traces more accurately.

Making Sense of Multi-threaded Application
Performance with NonSequitur

https://github.com/auggywonger/nonsequitur_vis/

https://github.com/auggywonger/nonsequitur_vis/

