NetCheck: Network Diagnoses from Blackbox Traces
https://netcheck.poly.edu/

Yanyan Zhuang'*, Elen1 Gessiouf, Steven Portzer*, Fraida Fund'
Monzur Muhammad?, Ivan Beschastnikh#, Justin Cappos’

’”

NYU

Motivation

Networked application failures

= Challenging to understand and to fix.

= Fail for complex reasons
< In-network state;

< State at remote end-host, e.g., MTU, NAT,
firewalls, IPv6, etc.

Failure diagnoses
= Problem: many popular apps are not
open source; network configuration is
not available.
= Current solution: ping/traceroute for
reachability, but not app-level issues.

Our Solution: NetCheck

= Diagnoses network issues from syscall
traces at multiple end-hosts.

* Does not require clock sync, network or
app-specific info.

NetCheck Design

Challenges & Contributions

Challenges

Accuracy: ambiguity in reconstruction.
< Without clock sync, multiple orderings of end-
host syscalls possible. An example:

Host B trace:
Bl. send("hi") =2
B2. recv() = -1, EWOULDBLOCK

Host A trace:
Al. send("hello") =5
A2. recv("hi") 2

(a) Two input host traces

Valid ordering 1: Valid ordering 2:
. send("hi") = . send("hello")=5

. recv() = -1, EWOULDBLOCK . send("hi")

. send("hello")= . recv("hi")

. recv("hi") = . recv() = -1, EWOULDBLOCK

(b) A valid ordering (c) Another valid ordering!

. send("hello") =5
. recv("hi") =2

. send("hi") =2
. recv() = -1, EWOULDBLOCK

(d) An invalid ordering of (a)

Network complexity: diagnosing issues in

real networks.
< Host traces omit information about physical
network or environment.

Efficiency: must explore an exponential
space of possible orderings.

NetCheck Contributions

Derive a plausible global ordering as
an approximation for the ground truth.
» Model expected simple network
behavior to identify the unexpected.
= Abest-case linear time algorithm to
find a plausible global ordering.

Host Traces— Ordering Algorithm Diagnoses Engine —® Diagnosis

Input | A A Output

syscall simulation simulation state
result errors

v . \
Network Model

NetCheck

(1) Ordering host traces

= Key to efficiency: reconstructs order based on
POSIX syscall dependencies.

<> Dependencies derived from POSIX spec.

(2) Model-based syscall simulation

» Simulates syscalls to find a global order.
= Treats network & application as a blackbox,
requires no app-specific info.

Host B trace:
Bli. socket(...)
B2. connect(3, ...)
B3. send(3, "Hello", ...

Host A trace:
. socket(...)
. bind(4, ...)

~
o 1O W

. listen(4, 1)
. accept(4, ...)
. recv(6, "Hola!", ...

| I | I | O | B |
o O 1O W

p —

(e) An example input traces

= Simulates developer-expected network

semantics (i.e., the fallacies).
< Network model state: connections, buffers,
datagrams, etc.
< Simulating a syscall results in:
o Accept;
o Reject;
o Permanent Reject.

. socket(...)
. socket(...)
. bind(4, ...)
. listen(4, 1)

. connect(3,...)
. accept(4, ...)
. send(3, "Hello",...)
. recv(6,"Hola!",...)

i jon o O 1O O |G |

(f) A valid global ordering of (e)

(3) Fault diagnoses engine
= Analyzes the model state and simulation

errors to derive a diagnosis:

< 9 high-level rules.
< Make results more meaningful.

[Warning] trace A: (‘recv_syscall’, (1, ‘Hola!’, 1024, 0))
=> : [Possible Network Misbehavior]

Message received by
the socket.

(g) An example diagnoses of (e)

Evaluation

Accuracy

* Reproduced known bugs in multiple

open source projects

< 46 bugs from public bug trackers of 30
popular projects.

<> Reproduced issue from each report: 71
traces, 24 cateqgories.

< Correctly detected and diagnosed 95.7% of
bugs considered.

= Diagnosed injected failures in a real

network

< Admin replicated and injected network-
related bugs.

<> Diagnosed 90% of the injected bugs with a
false positive rate of 3%.

= Diagnosed root causes of popular

apps
<> FTP client
 C(Client behind NAT

 High data loss

< Pidgin
* |P change N

 Message loss I

< Skype
« Data loss due to delay
 Adifferent thread closes socket

skype’

* Client behind NAT

< VirtualBox (newly discovered bug)
* Virtualization misbehavior

@ VirtualBox

Efficiency
* Runtime performance overhead.
<~ Between linear and quadratic

10min

4min +

fSkyT)r

- Firefox
i

16sec

dsec

MB 4MB 32MB 256MB 1G 43

Acknowledgements

National Science Foundation Awards 1223588 &
1205415, NSF Graduate Research Fellowship
Award 1104522, the NYU WIRELESS research
center and the Center for Advanced Technology in
Telecommunications (CATT).

