
NetCheck: Network Diagnoses from Blackbox Traces

https://netcheck.poly.edu/

 Yanyan Zhuang†‡, Eleni Gessiou†, Steven Portzer∗, Fraida Fund†
Monzur Muhammad†, Ivan Beschastnikh‡, Justin Cappos†

† ‡ ∗

(1) Ordering host traces

§  Key to efficiency: reconstructs order based on
POSIX syscall dependencies.

²  Dependencies derived from POSIX spec.

(2) Model-based syscall simulation

§  Simulates syscalls to find a global order.
§  Treats network & application as a blackbox,

requires no app-specific info.

 (e) An example input traces

§  Simulates developer-expected network
semantics (i.e., the fallacies).
²  Network model state: connections, buffers,

datagrams, etc.
²  Simulating a syscall results in:

o  Accept;
o  Reject;
o  Permanent Reject.

 (f) A valid global ordering of (e)

(3) Fault diagnoses engine
§  Analyzes the model state and simulation

errors to derive a diagnosis:
²  9 high-level rules.
²  Make results more meaningful.

 (g) An example diagnoses of (e)

Networked application failures

§  Challenging to understand and to fix.
§  Fail for complex reasons

²  In-network state;
²  State at remote end-host, e.g., MTU, NAT,

firewalls, IPv6, etc.

Failure diagnoses
§  Problem: many popular apps are not

open source; network configuration is
not available.

§  Current solution: ping/traceroute for
reachability, but not app-level issues.

Our Solution: NetCheck
§  Diagnoses network issues from syscall

traces at multiple end-hosts.
§  Does not require clock sync, network or

app-specific info.

 Challenges

Accuracy: ambiguity in reconstruction.
²  Without clock sync, multiple orderings of end-

host syscalls possible. An example:

 (a) Two input host traces

 (b) A valid ordering (c) Another valid ordering!

 (d) An invalid ordering of (a)

Network complexity: diagnosing issues in
 real networks.

²  Host traces omit information about physical
network or environment.

Efficiency: must explore an exponential
 space of possible orderings.

 NetCheck Contributions
§  Derive a plausible global ordering as

an approximation for the ground truth.
§  Model expected simple network

behavior to identify the unexpected.
§  A best-case linear time algorithm to

find a plausible global ordering.

 Accuracy

§  Reproduced known bugs in multiple
open source projects
²  46 bugs from public bug trackers of 30

popular projects.
²  Reproduced issue from each report: 71

traces, 24 categories.
²  Correctly detected and diagnosed 95.7% of

bugs considered.

§  Diagnosed injected failures in a real
network
²  Admin replicated and injected network-

related bugs.
²  Diagnosed 90% of the injected bugs with a

false positive rate of 3%.

§  Diagnosed root causes of popular
apps
²  FTP client

•  Client behind NAT
•  High data loss

²  Pidgin
•  IP change
•  Message loss

²  Skype
•  Data loss due to delay
•  A different thread closes socket
•  Client behind NAT

²  VirtualBox (newly discovered bug)
•  Virtualization misbehavior

 Efficiency
§  Runtime performance overhead.

²  Between linear and quadratic

National Science Foundation Awards 1223588 &
1205415, NSF Graduate Research Fellowship
Award 1104522, the NYU WIRELESS research
center and the Center for Advanced Technology in
Telecommunications (CATT).

Acknowledgements

Motivation Challenges & Contributions Evaluation

NetCheck Design

Internet

Skype
Firefox

Telnet

SSH

