
Scalable and Fault Tolerant Platform for
Distributed Learning on Private Medical Data

Alborz Amir-Khalili1, Soheil Kianzad2,
Rafeef Abugharbieh1, and Ivan Beschastnikh2

1 Biomedical Signal and Image Computing Lab, University of British Columbia
2 Computer Science, University of British Columbia

Abstract. Medical image data is naturally distributed among clinical
institutions. This partitioning, combined with security and privacy re-
strictions on medical data, imposes limitations on machine learning algo-
rithms in clinical applications, especially for small and newly established
institutions. We present InsuLearn: an intuitive and robust open-source†

platform designed to facilitate distributed learning (classification and
regression) on medical image data, while preserving data security and
privacy. InsuLearn is built on ensemble learning, in which statistical
models are developed at each institution independently and combined
at secure coordinator nodes. InsuLearn protocols are designed such that
the liveness of the system is guaranteed as institutions join and leave the
network. Coordination is implemented as a cluster of replicated state ma-
chines, making it tolerant to individual node failures. We demonstrate
that InsuLearn successfully integrates accurate models for horizontally
partitioned data while preserving privacy.

1 Introduction

State-of-the-art machine learning (ML) techniques have shown promise in medi-
cal image analysis. Performance of successful ML techniques, e.g., deep learning,
is directly tied to the amount of data available during the training phase as more
data allows the trained statistical model to account for rarely occurring patterns
and increases specificity to outliers. Compared to natural image datasets, medi-
cal image datasets typically contain fewer instances as they are subject to certain
restrictions, namely: (i) privacy: medical data are privacy-sensitive as access to
and transfer of patient data is restricted by privacy legislation; (ii) distribu-
tion: medical data are naturally distributed among different institutions; and
(iii) size: medical image data requires considerable per-instance storage space
and bandwidth for transfers between institutions. These restrictions limit medi-
cal data accessibility and constrain ML to data available at a single institution.
This hurts collaboration and newly established, small, and rural institutions that

This work is supported in part by the Institute for Computing, Information and
Cognitive Systems (ICICS) at UBC.

† Open-source code available at: https://github.com/DistributedML/InsuLearn.



do not have access to substantial datasets [1]. Unfortunately, most ML systems
used by the medical image analysis community are not designed to overcome
unique system requirements imposed by the restrictions above, which adds to
the reluctance of clinical institutions to contribute data to these systems. All of
the above points to a need for distributed ML systems that allow for multiple
clinical data sources to contribute data without compromising data privacy.

Supporting data collaboration in a privacy-preserving way is challenging [2].
One solution is to generate a centralized warehouse that aggregates anonymized
(sanitized) features extracted from different data sources. However, warehousing
complicates data management and is ineffective at preventing adversaries from
extracting sensitive information [3]. Furthermore, ethics review boards require a
thorough audit of the proposed research before the sanitized data can be shared.

Private multi-party ML (PMPML) is an emerging alternative to warehousing,
e.g., Google Inc. has recently revealed work in this space [4]. Among proposed
PMPML methods, popular trends include: (T1) aggregation of privately learned
models [1, 5–7] or (T2) using distributed privacy-preserving solvers to iteratively
train a global model [4, 8]. Many T1 methods [5–7] require auxiliary publicly-
available and annotated datasets, which limits their applicability. T2 methods,
on the other hand, impose a predetermined global model that is sensitive to ini-
tialization and is thus difficult to design and refine. In contrast with T1 methods,
T2 methods are designed for domains with more participants, i.e., smartphone
users around the world [4] versus a few participating clinical institutions, and are
thus ill-suited for the research and development of novel medical ML solutions.

To address the needs outlined above, we contribute InsuLearn: a scalable
open-source solution that supports distributed T1 approaches in which every
data source (node) privately trains local models that are then aggregated into
a shared global model using an ensemble technique. InsuLearn does not require
a publicly-available dataset and relies on other nodes to cross-validate locally
trained models. As long as local models can be cross-validated at other nodes,
InsuLearn does not impose any other requirements on the parameterization of
the locally trained models. To our knowledge InsuLearn is the first open-source
platform for the development of PMPML algorithms.

InsuLearn most closely resembles Li. et. al. [1] but, compared to InsuLearn,
the peer-to-peer system of Li. et. al. is idealistic as: (i) It lacks a secure coor-
dination node, implying that the local models trained at peers are known by
all peers. This violates privacy since a malicious peer A can forward a crafted
model to peer B and use B’s response to infer data at B. (ii) The system was
not implemented nor deployed on a real distributed system. (iii) The approach
does not handle node/network failures, and does not discuss guarantees such as
liveness, which is an ability of the system to make progress in spite of failures.

InsuLearn ensures data-security with built-in incentives to improve perfor-
mance, deter abuse, and guarantee liveness as institutions join and leave the sys-
tem. The key contributions of our work are: (i) We designed and implemented an
open-source privacy-preserving distributed ML system that can interface with
popular ML tools. (ii) We simultaneously improve privacy, fault tolerance, and

2



liveness guarantees of the system by using replicated coordinator nodes. (iii) We
propose a secure model aggregation scheme that is robust to noise and can be
applied to popular classification and regression methods. (iv) We deployed our
system prototype on Microsoft Azure cloud computing service to substantiate
our claims regarding scalability and fault tolerance.

2 Methodology

InsuLearn uses ensemble learning techniques and supports different regression
and classification tasks. Medical data is never transferred from one institution to
another; instead, locally trained models are collected, sanitized, cross-validated,
and aggregated into a global model with the help of coordinator nodes. InsuLearn
is developed in Go, uses TCP for all network communication, and interfaces
with the powerful ML toolboxes in MATLAB via MATLAB Engine C API†.
This integration enables InsuLearn to deploy a wide selection of advanced ML
algorithms and different ensemble strategies (e.g., boosting and bagging).

The basic representation of InsuLearn consists of a trusted secure coordi-
nator node s0 connected to H = {hi : i = 1, 2, ..., N} nodes representing N
different institutions. We start with the following assumptions: 1) s0 is secure,
fault tolerant, and non-malicious; 2) hi may be malicious, i.e., may try to infer
information about data at other nodes and may upload false results (noise) into
the system; and 3) malicious nodes do not collude and do not control the ma-
jority of the data across all the nodes. We first make the above assumptions and
present our aggregation technique for generating a global model G from a set of
locally trained models. We then present a more robust version of the system in
which we relax the fault tolerance assumption of s0 by replacing s0 with a set
S = {sr : r = 1, 2, ..., R} of R replicated coordinator nodes.

Model Aggregation: The goal is to generate a global predictor model
G(x;Θ) = ŷ by aggregating a set of trained local predictor models M =
{m(x; θi) = ŷ : i = 1, 2, ..., N} parametrized by Θ = {θi : i = 1, 2, ..., N},
where each θi is independently trained on a corresponding fraction of the data
X = {xi : i = 1, 2, ..., N} and labels Y = {yi : i = 1, 2, ..., N} in the system.
In this context, training entails finding parameters θi that minimize the error
ε(ŷi,yi) between label yi and prediction ŷi; this process may be expressed as

argmin
θi

ε(m(xi; θi),yi). (1)

The global modelG(x;Θ,W,D) =
∑
∀i wim(x; θi)/

∑
∀i wi, is defined as a weighted

average of independently trained local models, where the weights wi ∈W

wi = di
∑
∀j

e−Ri(ε(m(xj ;θi),yj)) (2)

are obtained from a combination representing the sample size di ∈ D of lo-
cal data xi on which θi was trained and an exponential loss computed by a

† Open-source code available at: https://github.com/DistributedML/InsuLearn.

3



ranking function Ri : ε(m(xj ; θi),yj) ⊂ R → N, which captures the predictive
performance of parameters θi on data xj of node hj using an error metric ε. To
eliminate the contribution of poor performing or potentially malicious models,
every weight wi that is below the median value of all weights W is set to zero.

General System Protocol: The proposed aggregation approach requires
all θi models to be cross-validated using the data xi from all N nodes, which can
be stored in a mapping of E(i, j) : RN×N → ε(m(xj ; θi),yj). E should not be
made available to hi as it may be malicious and use E(i, j) to make inferences
about the data xj at hj . We use the coordinator node s0 as an intermediary for
all interactions between H. This simplifies the burden and dependency between
H as they become stateless (i.e., are not required to record preceding events in
their interaction with the coordinator) by shifting all state information, aside
from the state of sensitive data stored at each node, to s0. Therefore, a node hi
in the system can only perform the following interactions with the coordinator:

1) generate a new model and send {di, θi} to s0;
2) request and receive global model G from s0; and
3) receive and test incoming model parameters θ∗ from s0 by computing the

error ε(m(xi; θ∗),yi)) and communicate the computed error back to s0.

Since, hi cannot associate θ∗ with any other node in H‡, it cannot compromise
the privacy of the other nodes. On the other hand, the stateful coordinator s0
must maintain all state information. Specifically, s0 must do the following:

1) maintain a database of participating nodes H and associated {Θ,D,E,W};
2) receive θi from hi, anonymize θi→∗ and forward θ∗ to hj ,∀hj ∈ H, j 6= i;
3) receive ε(m(xj ; θ∗),yj) from hj and update E(∗ → i, j);
4) commit changes to {Θ,D,W} after E is completed; and
5) receive global model G requests from hi, generate G, and send G to hi.

The singular s0 coordinator is impractical for real applications. If s0 fails,
all state information and progress by the system will be lost. Next, we detail
improvements to achieve stronger liveness guarantees in InsuLearn.

Fault Tolerance: We make the coordinator fault tolerant by replacing s0
with S, a cluster of R coordinators [9] that replicate copies of state {Θ,D,E,W}.
This replicated version of InsuLearn can survive up to dR/2e − 1 coordinator
failures (a necessary failures upper-bound for all majority-based consensus proto-
cols). InsuLearn coordinators use the Raft consensus algorithm [10] to guarantee
liveness and maintain strong consistency of replicated state. We use Raft because
it has several well-tested, industry-standard, and open-source implementations.

Raft is a leader-based consensus algorithm. A leader is elected from S whose
commands are confirmed and replicated by other replicas in S. In case a leader
fails, Raft will elect a new leader without compromising liveness and the consis-
tency of {Θ,D,E,W}, which are replicated by all of the nodes in S.

Nodes contact any of the replicated coordinators to join the system. In case
of a coordinator failure a node transparently switches to another coordinator.
New nodes can join the system at any time.

‡ In fact hi does not know the size of H nor the nodes in H.

4



Partial Model Update: The coordinators can process incoming local mod-
els {di, θi} and requests for G asynchronously as changes to {Θ,D,W} and ag-
gregation into G is performed only by the leader. The leader coordinator does
not commit changes to {Θ,D,W} until E is completed; meaning that θi in Θ
and associated {W,D} are not replaced or set to zero when a new θi is submitted
by hi until {di, θi} is tested by all other nodes in H.

InsuLearn incentivizes nodes to test the models of other nodes. It maintains
a testQueue in S that prevents hi from submitting new models until hi has
performed all of the pending tests. During operation, some of the test nodes may
go offline or be slow to test θ∗ (e.g., as a denial of service attack by a malicious
hi). In this situation, delaying the commit to {Θ,D,W} until all test node
results are available may indefinitely block the system. InsuLearn coordinators
overcome this problem by actively computing a running sum of test data size di
over all nodes responding to tests on θi→∗. A partial commit of a model update
may then be performed if the associated sum exceeds a predetermined fraction,
e.g., half of the total available distributed data

∑
∀i di, followed by additional

partial commits with subsequent updates to E(i, .).

3 Results and Discussions

To assess the validity of the learned global model G, we test InsuLearn on a
classification task using a skin segmentation dataset and a regression task using
real Parkinson’s telemonitoring data; both of which are publicly available from
the UCI ML repository [11]. The skin segmentation dataset consists of a large
binary classification problem containing 245,057 instances (50,000 of which were
randomly selected for our experiments) with 3 attributes, and the telemonitoring
data consists of 5,875 instances with 26 attributes. For both tasks 25% of the
instances are randomly selected for testing and the remainder is used for training.
Training set instances are randomly split across N = 20 nodes and then the
training data is augmented with an additional 25% of random noise instances,
which are distributed across the nodes.

We assess trade-offs associated with secured distributed learning by com-
paring regression and classification errors of our proposed approach to a näıve
secure aggregation approach (where the weights are equal wi = 1/N) and an
unsecure warehouse approach (where we simply pool all data prior to training).
Ten different built-in MATLAB classification and regression methods are used
in our evaluation and the test errors are computed on 100 randomly distributed
datasets, averaged, and presented Fig. 1. To test the effects of a deliberate attack
on the system, we perform our experiments on (i) a case where noise is randomly
distributed across all nodes (results shown in Fig. 1), and on (ii) a case where
noise is injected into a single malicious node (results in supplementary material).

Model Aggregation Performance: The test results clearly demonstrate
a reduction in test error with InsuLearn’s aggregation scheme over the näıve
approach for all learning models except for decision tree (DT) regression (C1 in
Fig. 1). In each experiment we also computed the total number of nodes whose

5



0 2 4 6 8

kNN

RF

SVM

DT

LS

(C1) Classification test error (error rate %)

 

 

InsuLearn Aggregation
Naive Aggregation
Unsecure Warehouse

0 5 10 15 20

kNN

RF

SVM

DT

LS

(C2) Number of nodes improved (classification)

60 80 100 120 140

GP

RF

SVR

DT

LS

(R1) Regression test error (mean squared error)
0 5 10 15 20

GP

RF

SVR

DT

LS

(R2) Number of nodes improved (regression)

Fig. 1: Performance of three global model aggregation methods. Each method is tested
using (C1) five different MATLAB classification and (R1) five regression functions on
real data (randomly redistributed over 20 nodes and averaged over 100 trials). At each
trial, the total number of nodes whose local model was improved upon by the global
(C2) classification and (R2) regression model is also computed and presented. Results
indicate that our proposed aggregation outperforms the näıve method.

local model was improved upon by the global model (C2 and R2 in Fig. 1) and
observed that, compared to the näıve global model, more nodes benefited from
the global model learned by InsuLearn. InsuLearn outperforms the warehouse
approach on simpler models, i.e., least squares (LS) and DT, but this is due to the
fact that LS and DT are weak learners that are improved by ensembling. Com-
pared to more advanced methods that already incorporate ensembling like ran-
dom forests (RF), kernel transformations like support vector regression (SVR),
and Gaussian process (GP) optimization, the performance with InsuLearn is no
better than warehousing. This is expected because of an unavoidable trade-off
between data privacy and accuracy of the estimated model. In case of bagging,
for example, the trade-off manifests in a loss of the ability to train on bootstrap
samples from data that spans across multiple nodes. It is important to note that
an improvement over locally trained models are not guaranteed, even with ad-
vanced methods implemented on the unsecure warehousing approach (e.g., RF
classification on unsecure warehouse, Fig. 1 C2).

It is also important to note that our proposed approach is generic and can be
applied to all classification and regression methods. Tailoring the aggregation
scheme to each method may improve performance but our generic approach is
sufficient to aggregate the different local models into one.

As expected, the distribution of noise did not effect the warehouse approach.
On the other hand, while our proposed method performs marginally better in LS

6



0 50 100 150
0

10

20

30

40

50

Number of nodes (N)

R
un

tim
e 

(m
in

ut
es

)

 

 

Mean Runtime (5 runs)
LS fit (y=0.41x+0.58)

(a) Scalability

0 5 10 15 20
0

20

40

60

80

100

Runtime (minutes)

P
er

ce
nt

ag
e 

of
 M

od
el

 A
gg

re
ga

te
d

 

 

Gamma
H

 = 0

Gamma
H

 = 0, w/ partial commit

Gamma
H

 = 0.2

Gamma
H

 = 0.2, w/ partial commit

Gamma
H

 = 1

Gamma
H

 = 1, w/ partial commit

(b) Fault tolerance and partial commits

Fig. 2: (a) Scalability of InsuLearn with number of nodes, and (b) the advantage
of partial commits during node failures.

tests when noise is injected at a single node, performance drops for more compli-
cated models when noise is not randomly distributed. However, the performance
of our proposed method is still better than the näıve approach.

Scalability: We simulated a real deployment of InsuLearn by deploying it on
the Microsoft Azure cloud to measure scalability and fault tolerance. Coordina-
tors and nodes were deployed, each in an independent, identical DS1 V2 virtual
machine with 1 core and 3.5 GB of memory and connected over a virtual network.
To test the scalability of the system, we set the number of coordinators R = 7
and scaled the total number of emulated institutions N = {10, 30, 50, 70, 100}.
The behavior at each node was automated with a state machine that restricts
the node to only submit its local model once to the system. Nodes were added
to the system with a randomized δ ∈ (0, 2) minute delay from the start of the
coordinators. We measured the time it took to generate a complete global model,
encapsulating models from all N nodes, over 5 independent runs and observed
linear performance scaling with N (Fig. 2a). Model testing at nodes is inde-
pendent and nodes can perform training in parallel. Idempotent communication
and commutative update operations protect the system from a large number of
highly concurrent nodes and improves InsuLearn’s scalability.

Fault Tolerance To assess fault tolerance, we fixed R = 7 and N = 30,
updated the state machines to emulate random intermittent fail-and-restart with
frequency γH for nodes that have pushed their models to the coordinators, and
measured progress in terms of percentage of global model G committed over the
run of the system (Fig. 2b). We tested the system for cases where γH = {0, 0.2, 1}
failures per minutes and with/without the partial commit feature to see how
partial commits affect the global model update rate. We observed that once the
fail-and-start frequency surpasses a certain rate, progress in the system halts as
nodes leave as soon as they submit their local models while there is not sufficient
time to train on new models before the next failure. However, with the partial
commit feature, a significant portion of the change to G is preserved.

Security: InsuLearn assumes that coordinators in S are secure. Although
coordinators only know the results of the tests and sources of committed model,
they can obtain more knowledge by manipulating test requests. For example, a

7



rogue coordinator can ask a node hi to test a number of malicious models and
thereby infer information about data at hi. Solving this problem requires nodes
to detect and reject suspicious requests. One solution is to use a Byzantine fault
tolerance algorithm such as PBFT [12]. In this approach a node checks that a
consensus among coordinators has been reached prior to testing the model. A
PBFT-based system with 3t coordinators can withstand t malicious coordina-
tors. However, the extra rounds of communication would impose a substantial
performance penalty.

4 Conclusions

We presented a fault tolerant distributed PMPML system called InsuLearn in
which, with the exception of the anonymized local model, no information from
one node is shared with other nodes. We compared InsuLearn against an unsecure
warehousing and näıve model averaging approaches and showed that InsuLearn
is fault tolerant and has reliable performance, surpassing a näıve aggregation ap-
proach. Our work shows the feasibility of ML on highly sensitive distributed med-
ical image data. We hope that our open-source GitHub project will be adopted
by others and encourage the development of an accessible and secure distributed
ML toolkit that can facilitate medical research that is otherwise impractical.

References

1. Li, Y., Bai, C., Reddy, C.K.: A distributed ensemble approach for mining health-
care data under privacy constraints. Information Sciences 330 (2016) 245–259

2. Ohno-Machado, L.: To share or not to share: that is not the question. Science
Translational Medicine 4(165) (2012) 165cm15

3. Fabian, B., Göthling, T.: Privacy-preserving data warehousing. Int. J. Bus. Intell.
Data Min. 10(4) (October 2015) 297–336

4. McMahan, H.B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.:
Communication-efficient learning of deep networks from decentralized data. In:
Artificial Intelligence and Statistics. (2016)

5. Hamm, J., Cao, P., Belkin, M.: Learning privately from multiparty data. In:
International Conference on Machine Learning. (2016) 555–563

6. Xie, L., Plis, S., Sarwate, A.D.: Data-weighted ensemble learning for privacy-
preserving distributed learning. In: ICASSP, IEEE (2016) 2309–2313

7. Wu, Y., Jiang, X., Kim, J., Ohno-Machado, L.: Grid Binary LOgistic REgression
(GLORE): building shared models without sharing data. Journal of the American
Medical Informatics Association 19(5) (2012) 758–764

8. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Computer and
Communications Security, ACM (2015) 1310–1321

9. Schneider, F.B.: Implementing fault-tolerant services using the state machine ap-
proach: A tutorial. ACM Computing Surveys 22(4) (1990) 299–319

10. Ongaro, D., Ousterhout, J.K.: In search of an understandable consensus algorithm.
In: USENIX Annual Technical Conference. (2014) 305–319

11. Lichman, M.: UCI machine learning repository (2013)
12. Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recovery.

ACM Transactions on Computer Systems 20(4) (November 2002) 398–461

8


