
Supporting
Microservice

Evolution

University of
British Columbia

Canada

IBM
USA/Canada

UFPE

Federal University
of Pernambuco

Brazil

Adalberto R. Sampaio Jr, Harshavardhan Kadiyala, Bo Hu,
John Steinbacher, Tony Erwin,

Nelson Rosa, Ivan Beschastnikh, Julia Rubin

B

A

B

B

C

B B

BA’

)
NIER

 Supporting microservice evolution

From monoliths to microservices

2

µ(App)
App

• Microservices ()

• Fast and easy to deploy

• Can be scaled independently

• Multilingual and multi-technology

• Loose dependencies (REST)

µServices

…https://martinfowler.com/articles/microservices.html

Microservices-based App

https://martinfowler.com/articles/microservices.html

Constant
evolution

• Microservices ()

• Fast and easy to deploy

• Can be scaled independently

• Multilingual and multi-technology

• Loose dependencies (REST)

 Supporting microservice evolution

From monoliths to microservices

3

µAppApp

)
µServices

 Supporting microservice evolution

Evolution-related challenges

4

• Upgrades break inter-services compatibility

• Different teams work on different services

• Tracking down failure root causes complicated

• Many moving parts that keep changing

• Deployment configuration must also evolve

• Changes to performance/dependencies impact config

B

A

C

Existing tool support

 Supporting microservice evolution 5

• Academia: app-bisect [1], GRU [2], Gremlin [3], Formal methods [4]

• OpenSource (Industry): Istio [5] (IBM/Google), Zipkin [6] (Twitter),
Kubernetes [7] (Google), ELK stack [8]

[1] Rajagopalan and Jamjoom, App–Bisect: Autonomous Healing for Microservice-Based Aps, HotCloud 2015
[2] Florio et al., Gru : an Approach to Introduce Decentralized Autonomic Behavior in Microservices Architectures, ICAC 2016
[3] Heorhiadi et al., Gremlin: Systematic Resilience Testing of Microservices, ICDCS 2016
[4] Panda et al., Verification in the Age of Microservices, HotOS 2017
[5] https://istio.io/
[6] http://zipkin.io/
[7] https://kubernetes.io/
[8] https://logz.io/learn/complete-guide-elk-stack/

Wanted: program analysis to support change

Existing tool support

 Supporting microservice evolution 6

• Academia: app-bisect [1], GRU [2]

• OpenSource (Industry): Istio [3] (IBM/Google), Zipkin [4] (Twitter),
Kubernetes [5] (Google), ELK stack [6], Zuul [7] (Netflix), InfluxDB
[8]

[1] Rajagopalan and Jamjoom, App–Bisect: Autonomous Healing for Microservice-Based Aps, HotCloud 2015
[2] Florio et al., Gru : an Approach to Introduce Decentralized Autonomic Behavior in Microservices Architectures, ICAC 2016
[3] https://istio.io/
[4] http://zipkin.io/
[5] https://kubernetes.io/
[6] https://logz.io/learn/complete-guide-elk-stack/
[7] https://github.com/Netflix/zuul/
[8] https://www.influxdata.com/

Wanted: program analysis to support change
Idea: model over timeµApp

 Supporting microservice evolution

Model over time

7

1. Construct a model of the and its configuration

2. Update model as or configuration change

3. Analyze sequence of models (past, present, future)

4. Use the analysis to support developers

Appµ

Appµ

µApp

LOG LOG

LOG LOG LOG

Continuous
Log Analysis Model

µApp

Developer
Changes Model

Analysis

 Supporting microservice evolution

Proposed evolutionary (meta) model

8

Provider

Application

Scenario

Service

+isExternal: boolean

Message

+correlationId: String
+timestamp: long
+totalTime: long
+processingTime: long

Operation

ServiceVersion
ServiceReplica

Location Host

+hosting: Environment

*

{ordered}

*

*

*

*

*

*

*

+source
OperationVersion

+target

ApplicationVersion*

*
*

*

*

+API
*

«enumeration»
Environment

CONTAINER
VIRTUAL_MACHINE
PHYSICAL_MACHINE

Metric

+cpu: float
+memory: float

*

*

Architectural Layer Instance LayerInfrastructure Layer

*

*

 Supporting microservice evolution

Example model instance

9

Location
WestCoast

Location
EastCoast

Host
vm1

Host
vm2

ServiceReplica
Frontend.2.A

ServiceReplica
Frontend.1.A

ServiceReplica
Frontend.2.B

Service
Frontend

Provider
IBM Bluemix

ServiceVersion
frontend.2

ServiceVersion
frontend.1

Application
ToDo

ApplicationVersion
version 2

ApplicationVersion
version 1

EastCoast WestCoast

 Supporting microservice evolution

Model analysis

10

• Sequence of models over time allows for rich analyses

• Retrospective: Study inter-services messages to
recommend service refactorings

• Prospective: Explore and instantiate new deployment
configurations to optimize resources usage

Curr.
Model

Future
Model 1… Prev

Model
Future
Model2…Time

Now

Retrospective
Analysis

Prospective
Analysis

Init
Model

 Supporting microservice evolution

Ongoing/future work

11

• Assessing developer needs: which tasks are the most pressing?

• Model representation: many modeling formalisms, which one is the
best for the task?

• Defining analysis: Build on existing model analysis work

• Extensibility: Can we allow the model to change?
(Cannot foresee future information we may need to integrate)

• Social factors: interplay between technical and social dependencies

Image from: https://martinfowler.com/bliki/MicroservicePrerequisites.html

https://martinfowler.com/bliki/MicroservicePrerequisites.html

12

• Loose coupling
• Rapid deployment
• Multi-lingual
• Multiple teams

https://github.com/adalrsjr1/k8s-monitoring

Microservices require new approaches

Vision: Generate an evolutionary model
from dynamic observations (logs) for

retrospective and prospective analyses

B

A

B

B

C

B B

BA’
)

Constant
Change

Find us at tomorrow’s poster session!

