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Abstract—Logging system behavior is a staple development
practice. Numerous powerful model inference algorithms have
been proposed to aid developers in log analysis and system under-
standing. Unfortunately, existing algorithms are difficult to under-
stand, extend, and compare. This paper presents InvariMint, an
approach to specify model inference algorithms declaratively. We
applied InvariMint to two model inference algorithms and present
evaluation results to illustrate that InvariMint (1) leads to new fun-
damental insights and better understanding of existing algorithms,
(2) simplifies creation of new algorithms, including hybrids that
extend existing algorithms, and (3) makes it easy to compare and
contrast previously published algorithms. Finally, algorithms spec-
ified with InvariMint can outperform their procedural versions.

I. INTRODUCTION

Understanding a system’s behavior is a challenging develop-
ment task that is required when a system behaves in an unex-
pected manner or when a developer must make changes to code
they did not write. Logging and log analysis of captured system
behavior is one of the most ubiquitous, simple, and effective
tools for system understanding. Unfortunately, the size and com-
plexity of logs often exceed a developer’s ability to navigate
and make sense of the captured data. For example, production
systems at Google log billions of events each day; these are
stored for weeks to help diagnose errant future behavior [29].

Model inference is one promising approach to help users
make sense of large and complex executions. The goal of model-
inference algorithms is to produce a model — typically a finite
state machine — that accurately and concisely represents the
system that produced the log. Numerous such algorithms and
corresponding tools exist to help debug, verify, and validate
systems [1], [15], [16], [19], [20], [22], [23], [24], [27], [30].

Unfortunately, it is challenging to apply and extend this rich
body of work because model-inference algorithms are primarily
expressed procedurally, as algorithms that iteratively modify a
representation of the log (e.g., a graph) to infer and output a
model that can be shown to a user. The procedural specification
of these algorithms makes them difficult to understand, extend,
and compare:

1. Understand. For most algorithms, it is difficult to under-
stand which temporal and structural properties of the log are
preserved in the inferred model. For example, if an inferred

Property 
miner

Property
composition

Property
instances

Composition
function

Log

Property
types

InvariMint algorithm

Algorithm
specification

Model

Fig. 1. An overview of the InvariMint approach. An InvariMint algorithm is
parameterized by an algorithm specification, which consists of a set of property
types and a composition function. The resulting InvariMint algorithm is a model-
inference algorithm — it takes a log of traces as input and outputs an inferred
model which describes the process that generated the input log. Internally, the
algorithm uses property types to mine property instances, and then applies the
composition function to the property instances to derive the model.

model of an email client states that each login event is immedi-
ately followed by a check mail event, a developer may wish to
know whether that property is true for all traces in the log, or is
an artifact of the model-inference algorithm.

2. Extend. It is difficult to modify existing model-inference
algorithms or to compose them to create hybrids. For example,
suppose that a developer uses two inference algorithms: one to
model exceptional executions and another that identifies execu-
tions with sequences of library calls not observed during testing.
The developer may want to compose these two algorithms to gen-
erate a single model, but combining the procedurally-specified
algorithms may require a complete algorithm redesign. Further,
it is difficult or impossible to exclude a specific instance of a log
property from a specific invocation of the algorithm. If a log has
every login event followed by a check mail event and if the
developer decides that this property is an artifact of an incom-
plete log, the developer may want the inferred model to allow
traces that violate this property. However, this may be difficult
because a procedural algorithm definition does not explicitly
specify the properties that the inferred model will satisfy.

3. Compare. Previously published algorithms lack a
common form to aid comparison and juxtaposition. Instead, re-
searchers must reason about pseudocode and work out complex
proofs. A declarative approach, in which a model-inference
algorithm is specified in terms of log properties that the inferred
model will satisfy, allows researchers to, for example, identify
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when two algorithms with vastly different procedural definitions
produce models with identical, or overlapping, sets of properties.

This paper proposes InvariMint, a technique to specify model-
inference algorithms declaratively. InvariMint has two key fea-
tures: (1) it explicitly specifies the types of properties that will be
enforced in the final model, and (2) it decouples the mechanism
of property mining from property specification. We illustrate
the advantages of InvariMint by specifying two procedural al-
gorithms declaratively. We find that InvariMint alleviates the
above problems:

1. Understand. InvariMint expresses an algorithm in terms
of the properties that the inferred model must satisfy. This
formulation is more clear, concise, and comprehensible. Further,
this formulation makes evident certain complexities that may
otherwise be hidden, such as non-determinism.

2. Extend. With InvariMint, it is easy to add, remove, and
modify both (1) the instances of properties in a specific infer-
ence execution (e.g., each login event must be followed by a
check mail event), and (2) the types of properties the algo-
rithm preserves (e.g., an event may only follow another event
if it did so in the log). New algorithms can be created, and
multiple algorithms can be trivially composed to create hybrid
approaches. For example, the Synoptic [6] algorithm uses the
kTails algorithm as a final (coarsening) step to derive a more
compact final model. Synoptic’s InvariMint specification ex-
presses this by simply merging the kTails property types into the
Synoptic specification.

3. Compare. InvariMint makes it easier for those using
and developing model-inference algorithms to compare and
improve on those algorithms. For example, algorithms with
incomparable procedural definitions may enforce overlapping
sets of properties on their inferred models. InvariMint makes
this overlap evident.

A model-inference algorithm outputs a model that accepts a
formal language. The model’s language is smaller than Σ∗: it
is limited by certain temporal or structural properties that the
algorithm mined from the log. Some of these properties may
be explicit in the algorithm definition, whereas others may be
implicit and deeply hidden in the procedural definitions.

InvariMint (Figure 1) represents a model-inference algorithm
with the types of properties that are expected to be true of the
inferred model. InvariMint mines instances of these properties
from the log, represents each property as a DFA, and composes
the DFAs using standard DFA operations (such as DFA union
and intersection). Well-understood work on formal languages
allows InvariMint to perform these operations efficiently and to
produce minimal models [17].

To evaluate InvariMint, we applied it to two previously-
published algorithms. First, we used InvariMint to declaratively
and exactly specify the well-known kTails [7] algorithm. From
our past experiences with kTails, we know that this algorithm be-
haves non-trivially on large log inputs. For instance, it is neither
apparent which states will be merged, nor what synthetic traces
the final kTails-inferred model will accept. The InvariMint for-

mulation decomposes a kTails execution into a set of properties
that are easy to inspect to better understand the characteristics
of the final kTails-inferred model. The InvariMint kTails spec-
ification also provides the user with more fine-grained control
over the execution of the algorithm — the user may remove
a particular merge (by modifying a property instance) without
having to modify the algorithm implementation.

Second, we used InvariMint to approximate Synoptic [6].
Synoptic is a more recent algorithm constructed with explicit
log properties in mind. Although Synoptic attempts to make
certain properties explicit, we found that it in fact preserves a set
of implicit, or hidden, properties in its procedural declaration.
Specifically, Synoptic allows a log event type to be immediately
followed by another type only if such following occurred in the
observed log. For example, Synoptic forbids a login event from
being immediately followed by a compose mail event if, in the
log, login was never immediately followed by compose mail.
Synoptic’s procedural declaration does not allow this property to
be removed, altered, or relaxed, and hides this property from the
user. In contrast, an InvariMint formulation of Synoptic makes
this property explicit and allows a user to remove all properties
of this type or to select individual instances of this property for
specific log event types to enforce. More importantly, InvariMint
makes the algorithm’s user and developer explicitly aware of the
properties it enforces.

Another feature of Synoptic is that it is a non-deterministic
algorithm. Depending on the order with which Synoptic satisfies
the mined log properties, the algorithm might produce a different
final model. Although our InvariMint Synoptic formulation is an
approximation of Synoptic, its advantage is that it is determin-
istic and highly predictable. In particular, it is easier to check
whether two different logs produce identical models.

As a final benefit, the InvariMint versions of kTails and Syn-
optic with efficient property mining scale linearly with log size
and greatly outperform their procedural counterparts.

The rest of this paper is structured as follows: Section II uses
an example model-inference algorithm to explain the InvariMint
approach. Sections III and IV present InvariMint specifications
of kTails and Synoptic, respectively. Section V discusses impli-
cations of our work. Section VI covers related prior research,
and Section VII concludes.

II. THE INVARIMINT APPROACH

This section describes a model-inference algorithm named
SimpleAlg and then overviews the InvariMint approach by out-
lining the InvariMint steps in specifying an example algorithm,
called SimpleAlg. Sections III and IV extend SimpleAlg’s spec-
ification to derive the kTails and Synoptic algorithms.

A. SimpleAlg

A model-inference algorithm’s input is a log — a set of traces
of a system’s execution. Each trace is an ordered sequence of
events (elements of a finite alphabet) that occurred during exe-
cution. SimpleAlg’s output is a model — a finite state machine
whose language is a set of traces. (Figure 2 shows example
input and output.) The language corresponding to the model
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Fig. 2. (a) An example log of an email client with two traces. (b) The model
inferred with SimpleAlg (Figure 3) for the input log in (a).

accepts all the traces in the log, as well as other traces. A model-
inference algorithm’s goal is to infer a model that accurately
describes and generalizes the log: the extra accepted traces
should be ones that are likely to be generated by the system that
produced the log.

SimpleAlg is a model-inference algorithm. It generalizes in
the following way: if SimpleAlg ever observes an event e1 to be
immediately followed by an event e2 in the log, then whenever
the system being modeled produces or consumes an e1 event,
SimpleAlg assumes that it is legal for the system to then produce
or consume an e2 event.

Pseudocode for SimpleAlg appears in Figure 3. In the gener-
ated model, each state represents an event that has just occurred.

1 Input: Log L
2 let M = new FSM model
3
4 // Create states
5 M.addState(init)
6 foreach (Trace t in L):
7 foreach (Event e in t):
8 let y = Event type of e
9 if (¬M.hasState(sy)) : M.addState(sy)

10
11 // Add transitions among the states.
12 foreach (Trace t in L):
13 // Add transition from init state to first event.
14 let f = Event type of first event in t
15 M.addTransition(src=init, dst=s f , label= f )
16
17 // For each pair of adjacent events, add a transition
18 // between states of corresponding event types.
19 foreach (Event e in t):
20 if (e.hasNext()):
21 let y = Event type of e
22 let z = Event type of e.next()
23 if (¬M.hasTransition(sy, sz)):
24 M.addTransition(src=sy, dst=sz, label=z)
25
26 Output: M

Fig. 3. Procedural pseudocode of the SimpleAlg algorithm.

The model contains one state for each unique event type that
occurs in the log, plus one “initial” state. The model contains a
transition from the state for event type e1 to the state for event
type e2, with the label e2, iff there exists a trace in the log in
which an e2 event immediately follows an e1 event.

Figure 2(a) lists an email client log with two traces. The
event alphabet is {login, check mail (shortened to check),
compose, send, logout}. Figure 2(b) shows the model Sim-
pleAlg infers for this input log. The model has six states, one
for each event type (e.g., s4 corresponds to compose) plus the
initial state (s1).

SimpleAlg’s models are compact — the number of states
is one more than the number of unique event types in the log,
which is independent of the total number of events in the log.
The running time is asymptotically linear in the size of the log.
The inferred model’s language always contains every trace in
the input log, plus other traces SimpleAlg deemed possible.

B. InvariMint Overview

InvariMint is an approach — or a common language — for
describing model-inference algorithms, such as SimpleAlg. Fig-
ure 1 overviews the InvariMint approach. Like other model-
inference algorithms, an InvariMint algorithm takes as input a
log of traces to be modeled, and outputs a model. The common
language InvariMint uses to specify an algorithm is: a set of
property types that describe properties to be mined from the
log to derive property instances; and a composition function
that combines the mined property instances into a final model.

Different model-inference algorithms take different ap-
proaches to generalizing the traces in the log to infer traces
likely traces that are not in the log. What constitutes reasonable
generalization is often subjective and depends on features of the
system, its environment, and the specific development task that
the model will be used for. While typical model-inference algo-
rithms hard-code these features as assumptions in their procedu-
ral definitions, InvariMint uses property types and the composi-

Eval(Log L, hx=a, Y =Bi) =
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Fig. 4. An InvariMint specification of SimpleAlg. This is equivalent to the
pseudocode in Figure 3. (a) The property type “event x can be immediately
followed by an event from set Y ”, represented as a parameterized FSM (PFSM)
and a corresponding evaluation function (Eval). Given an input log, Eval deter-
mines the validity of bindings of parameters in the PFSM to event types. (b) The
composition function, which InvariMint uses to compose a model from mined
property instances.
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Fig. 5. Property instances mined by InvariMint from the log in Figure 2(a),
based on property types in Figure 4(a). Prop1 represents “event login can be
immediately followed by an event from set {check}”. Prop2 represents “event
check can be immediately followed by an event from set {check, logout,
compose}”.

tion function to generalize the model-inference process. Property
types define desirable properties of the final model. For exam-
ple, the SimpleAlg-inferred model preserves log properties, such
as “event x can be immediately followed by an event from set
Y ”. A property type consists of a parameterized FSM (PFSM)
— an FSM with variable-labeled transitions (e.g., top portion
of Figure 4(a)) — and an evaluation function to decide which
bindings of PFSM variables to event types are valid in the log
(e.g., bottom portion of Figure 4(a)). Together, the PFSM and
evaluation function encode relationships between event types.

Using these evaluation functions, InvariMint mines the log for
property instances, which are instantiations of the corresponding
PFSM. InvariMint then combines the derived property instances
into a model using the composition function (e.g., Figure 4(b)).
The Minimize procedure referenced in this composition is the
FSM minimization algorithm [17], which guarantees that the
final model will be minimal.

We now illustrate InvariMint on the SimpleAlg example.

C. Specifying SimpleAlg with InvariMint

InvariMint’s formulation of SimpleAlg has only a single prop-
erty type: “event x can be immediately followed by an event
from set Y ”. Figure 4 shows the InvariMint specification of
SimpleAlg. Figure 4(a) shows the property type (a PFSM and an
evaluation function). The PFSM is an FSM with variable labels
that accepts all traces that relate event x and a set of events Y .
The evaluation function defines which bindings of variables to
log events result in valid property type instances. We use LTL to
compactly specify evaluation functions. LTL statements use the
operators always (�), eventually (♦), until (U), and next (©).
For example, the evaluation function in Figure 4(a) returns true
for event a and events set B whenever a can be immediately
followed by only events from B across all traces in the log —
that is, there is a trace for every b ∈ B and there is a b ∈ B for
every trace such that eventually (♦), if we observe an a event,
then we will observe a b as the next (©) event.

By indicating how to evaluate a binding of x and Y to event
types, the evaluation function specifies how x and Y must relate:
an event of type x must be immediately followed by one event
from the set Y .

While all bindings can create property instances, the evalua-
tion function determines which instances are valid for a given
log. Figure 5 lists two of the property instances that are valid

1 Input: Log L,
Property types 〈PFSM1,Eval1〉, ...,〈PFSMn,Evaln〉

2 let Props = {}
3 foreach (Property type 〈PFSMi,Evali〉)
4 foreach (Binding of variables in PFSMi, B)
5 if (Evali(L, B)):
6 Props = Props∪{PFSMi(B)}
7 Output: Props

Fig. 6. The generic property miner algorithm.

1 Input: Property instances Prop1, . . . ,Propn,
Composition function C

2 let Model =C(Prop1, . . . ,Propn)
3 Output: Model

Fig. 7. The generic property composition algorithm.

for the log in Figure 2(a): 〈x,Y 〉 = {〈login,{check}〉, and
〈x,Y 〉 = 〈check,{check,logout,compose}〉. In addition to
these two property instances, there are three others (one for
each of compose, send, and logout). Note that 〈logout, /0〉 is
necessary to prevent allowing all events to follow logout in the
inferred model.

Finally, InvariMint composes property instances using the
composition function in Figure 4(b) to produce the final model.
For SimpleAlg, the composition function returns the minimized
version of the intersection of the property instances. Therefore,
the resulting model is compact and includes only those traces
that satisfy all of the mined property instances. This final model
is identical to the one produced by SimpleAlg (Figure 2(b)).
This paper mostly focuses on composition functions that involve
only intersections and minimizations, but this limitation is not
inherent to InvariMint. More complex functions may include
unions, set differences, and other set operations. For example,
an algorithm that uses positive and negative trace example may
subtract the model of negative traces from one of positive traces.

D. InvariMint Benefits

The InvariMint formulation of SimpleAlg provides three ben-
efits over the SimpleAlg pseudocode: (1) The InvariMint formu-
lation helps us understand the key properties of the final model
derived with SimpleAlg by decoupling these properties from
the mining and composition procedures, while the pseudocode
mixes all three. (2) We can more easily add new constraints
to the model by defining new property types, and eliminate
behavior from the model by omitting property instances. For
example, if we do not want login to only be immediately fol-
lowed by check, we can simply omit Prop1 in Figure 5. (3) We
can, and will, extend the InvariMint formulation of SimpleAlg
to construct InvariMint specifications for kTails and Synoptic.
The pseudocode for these algorithms looks completely different
from SimpleAlg’s pseudocode, yet the InvariMint specification
reveals that both kTails and Synoptic are based on the same
property type (Figure 4(a)) used by SimpleAlg. The fact that all



1 Input: Log L, int k
2 let M = initial FSM model of traces in L
3
4 let merged = true
5 while (merged):
6 merged = false
7 foreach (States s1,s2 in M):
8 if (s1,s2 are k-equivalent):
9 M.merge(s1,s2)

10 merged = true
11
12 Output: M

Fig. 8. The kTails algorithm. Section III-A defines k-equivalence.

three algorithms share this property type is one of the insights
gained from specifying these algorithms with InvariMint.

InvariMint’s goal is not to produce models, per se, but rather
to provide a common language for expressing, or specifying,
model-inference algorithms. Specifying different algorithms
with the same language allows us to understand, combine, and
compare the algorithms. InvariMint’s common language is prop-
erty types and composition functions. Once specified, the re-
sulting property mining and property composition procedures
(Figure 1) are straightforward. Figures 6 and 7 list the unop-
timized pseudocode for these two procedures. Note that in
practice, both of these algorithms can be further optimized and
tailored to specific choices of property types and composition
functions.

Next, we describe and evaluate the InvariMint specification of
two previously-published model-inference algorithms — kTails
and Synoptic.

III. EXPRESSING KTAILS WITH INVARIMINT

kTails [7] is an extremely popular algorithm that has served as
the basis for many modern model-inference algorithms. Unfor-
tunately, there are many procedural descriptions of kTails, and it
is difficult to tell if they produce identical or different models.

This section defines the kTails algorithm (Section III-A),
demonstrates its InvariMint declarative specification (Sec-
tion III-B), discusses the insights about kTails that InvariMint
reveals (Section III-B), and reports on our empirical compari-
son of the procedural and declarative implementations of kTails
(Section III-C).

A. kTails

kTails is a state-merging algorithm. kTails takes a log and
a parameter k. It represents the log as a DFA composed of linear
sub-DFAs, one per trace, that are joined in a parallel fashion,
with a single initial state transitioning to the start of each trace,
and all traces finishing by transitioning to a single terminal
state. kTails then iteratively merges states in the DFA that are
“k-equivalent”. Two states are k-equivalent if their kTails are
identical. A state’s kTail is the set of strings, of length k or

(b) kTails(k = 2) property type
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Fig. 9. (a) kTails(k=1) property type. (a+b) kTails(k=2) property types. Each of
these is equivalent to the pseudocode in Figure 8 for the specific value of k.

shorter, that map to valid paths starting from that state. The algo-
rithm terminates and outputs the model when no two remaining
states are k-equivalent. Figure 8 lists the kTails pseudocode.

The intuition behind kTails is that if two execution points
have identical, k-long sequences of observed events following
them, then those points likely represent the same program state.
Therefore, to infer a concise model, kTails merges execution
points that it considers to represent the same program state. The
process stops once all points deemed equivalent are merged. The
parameter k determines the size and generality of the inferred
model — a smaller k leads to more merges and produces more
compact (and more general) models, while a greater k restricts
state equivalence.

In InvariMint kTails we introduce a pre- and a post-processing
step. We modify each input trace to include an α and ω symbols
at the start and end of each of the traces, respectively. After the
property instances are composed into a final model we update
states in the model with incoming α transition to be initial states,
update states with outgoing ω transition to be accept states, and
also remove all α and ω transitions from the model.

InvariMint uses property types to capture tail-equivalence and
to specify kTails. Figure 9(a) lists the k = 1 property type for
kTails. For k = 2, InvariMint requires two property types — the
property type for k = 1 in Figure 9(a) and a new property type
shown in Figure 9(b). Note that the property type for k = 1 kTails
in Figure 9(a) is identical to the “can be immediately followed by”
property type in Figure 4(a). This equality is not a coincidence
— the k parameter generalizes the “can be immediately followed
by” property type to k steps into the future.

The greater k is, the finer the granularity of the properties
kTails enforces. For example, the property type in Figure 9(b)
says that an event x, followed by an event y, must be followed by
one — any one — of the events in the set Z. In other words, it
corresponds to merging all x,y tails together. Section V discusses
in more detail the granularity of properties and how the wrong
granularity may cause the algorithm to overfit to the input log.
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Fig. 10. The kTails(k = i) property type.

An important feature of the InvariMint kTails specification is
that it is deterministic. This feature helped us better understand
the kTails algorithm and helped to reveal a bug in our procedural
implementation, which happened to be non-deterministic.

B. Comparing Procedural and InvariMint Versions of kTails

The model produced by the kTails algorithm behaves identi-
cally to the model produced by the InvariMint formulation of
kTails. Next, we formally define the kTails algorithm based on
the formulation in [11], and claim that the two formulations of
the algorithm are identical. A proof of this theorem appears in
our technical report [5].

Let Σk denote the set of all strings of length k or less. Let a
trace be a string over alphabet Σ∪{α,ω}, and let a log L be a set
of traces, each of which starts with an α symbol and terminates
with the ω symbol. Let PFL be the set of all prefixes of strings
in L. We use p · t to denote concatenation of string t to p, and
refer to t as the tail.

Definition 1 (kTails FSM FkTails). The kTails algorithm takes
a log L and an integer k as inputs and generates a kTails FSM
FkTails. The states of FkTails correspond to equivalence classes of
prefixes from PFL. An equivalence class E is a set of prefixes
such that:

∀(p, p′) ∈ E,∀t ∈ Σk,(p · t) ∈ PFL⇔ (p′ · t) ∈ PFL

That is, all prefixes in a class E have the same set of tails of
length k or less, and every prefix in PFL is assigned to some
equivalence class.

The transition function ∆ for equivalence classes, or states,
in FkTails is defined as follows. Given a state Ei and a symbol
a ∈ Σ,

∆(Ei,a) =
⋃

E[p ·a],∀p ∈ Ei

where E[p ·a] is the equivalence class of p ·a.
The initial state of FkTails is E[ε], and an equivalence class Ei

is an accept state of FkTails if ∃ s ∈ L, such that s ∈ Ei.

Definition 2 (InvariMint kTails FSM FInvMint). For a log L and
an integer k, let FInvMint be the FSM derived using the InvariMint
algorithm specified by the kTails(k) property types and the input
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Fig. 11. The running time of procedural kTails and the declarative InvariMint
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log L. We can express FInvMint as a composition of property
instances1:

FInvMint =
⋂

(P1
1 , . . . ,P

1
n1
, . . . ,Pk

1 , . . . ,P
k
nk
)

where Pi
1, . . . ,P

j
ni are the property instances for the PFSM corre-

sponding to kTails(k = i) property type. Figure 10 shows this
generalized property type.

Theorem 1 (InvariMint specification of kTails is exact). For
an input log L and an integer k, let FkTails be the corresponding
kTails FSM and let FInvMint be the InvariMint kTails FSM. Then,
the languages of the two FSMs are equivalent, or:

L(FkTails) = L(FInvMint)

C. Empirical Evaluation

We implemented InvariMint and the kTails algorithm in Java
and evaluated their relative performance in two experiments.
Both experiments were executed on an OS X 10.8 machine with
a 2.8GHz Intel i7 processor and 8GB of RAM. In all experiments
the bottleneck resource was the CPU. Our experiments used logs
with tens of thousands of events. From our previous studies [6]
we consider this to be a representative log size for logs generated
by developers during debugging sessions.

In the first experiment, we ran both algorithms on logs that
ranged in size from 5K to 50K events, but maintained a constant
number of property instances per log. Each log ranged over
an alphabet of 5 event types, and each log was partitioned into
20 traces of equal length. The number of property instances
true for each log was held constant at 182. We performed this
experiment three times. Figure 11 plots the average runtime of
the three runs for each log size.

In the figure, as the log size increases the standard kTails al-
gorithm scales poorly because it needs to perform more merges.
The InvariMint kTails algorithm maintains an almost constant
running time. This is because for a constant number of prop-
erty instances InvariMint kTails composes property instances
in constant time — composing 182 property instances used in
the experiment took about 10 seconds. Although the time to
mine property instances does increase linearly with log size, it

1We omit FSM minimization as it does not change the FSM’s language.
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Fig. 12. The running time of procedural kTails and the declarative InvariMint
version of kTails for logs with different number of property instances. The size
of the log was held constant at 25K events.

remains insignificant (for a 50K event log, all property instances
are mined in under one second).

In the second experiment, we varied the number of property
instances for the log from 108 to 1,480, but maintained a constant
log size of 25K events. Logs were drawn from an alphabet that
had between 9 and 37 event types. As above, each run was
repeated three times and Figure 12 plots the average for each set
of three running times. Overall InvariMint kTails had a lower
running time than procedural kTails. However, the relative ratio
between the two running times indicates that InvariMint kTails
scales worse than procedural kTails as the number of property
instances increases.

Overall we found that our declarative InvariMint kTails im-
plementation outperforms kTails on large logs with few property
instances, while procedural kTails scales better with increasing
number of property instances.

IV. EXPRESSING SYNOPTIC WITH INVARIMINT

This section describes the Synoptic model-inference algo-
rithm, formulates it with InvariMint, and evaluates the resulting
formulation.

A. Synoptic and its Shortcomings

Synoptic is a model-inference algorithm that explicitly infers
properties from the log, then constructs a model that satisfies
them.2 Synoptic first infers an overly-general model of the log,
which accepts too many traces. Then, Synoptic progressively
refines the model until every trace in the language of the model
satisfies specific properties mined from the log. Because Syn-
optic models enforce these observed properties, prior work has
found that the models accurately describe the underlying system
and can improve understanding and aid debugging [6].

The Synoptic algorithm has four steps: (1) Mine three kinds of
properties from the log — “x AlwaysFollowedBy y” (whenever
event x occurs in a trace, event y also occurs later in the same
trace), “x AlwaysPrecedes y” (whenever event y occurs in a trace,
event x also occurs earlier in the same trace), and “x NeverFol-
lowedBy y” (whenever event x occurs in a trace, event y never oc-
curs later in the same trace). (2) Build an initial model by merg-

2For simplicity, and despite minor differences, we use “property” where the
Synoptic literature uses the term “invariant”.

ing all anonymous3 states with the same outgoing event into a
single state. (3) Iteratively apply counterexample-guided abstrac-
tion refinement (CEGAR) [10] to derive a model that satisfies
all of the mined properties. Synoptic does this by model check-
ing the current (e.g., initial) model against the mined properties
to find counterexample traces in the model’s language, which
falsify one or more of the properties. Synoptic then traces the
found counterexample in the model to find the first state respon-
sible for falsifying the property, and refines (splits) that state to
remove the counterexample path. Synoptic repeatedly refines the
model to eliminate counterexamples until it reaches a model that
satisfies all of the properties. (4) Finally, to compact the model,
Synoptic applies kTails(k=1) to the refined model, but only per-
forms a merge if it does not un-satisfy any of the properties.4

While empirically shown to help developers improve their sys-
tem understanding and find bugs [6], Synoptic has two features
that may cause its users difficulty.

First, Synoptic is non-deterministic. The order in which it
resolves the counterexamples may affect the language of the final
model it produces. (More generally, the problem Synoptic tries
to solve is NP-complete [10], [14], [2], so the non-deterministic
algorithm attempts to balance running time against the size of
the final model.) If a user makes a change to the input log and
Synoptic produces a different model, the user does not know
if the input log difference explains the change in the returned
model. This makes it difficult to apply Synoptic to verify a bug
fix or to check how a new feature impacts the model.

Second, while significantly more efficient on large traces than
kTail-based model inference, Synoptic may still be slow. This is
because Synoptic must maintain all of the parsed log traces in
memory, and it makes repeated model checking invocations and
repeatedly traverses the model.

Next, we present an InvariMint formulation that approximates
Synoptic. We show that the InvariMint algorithm resolves the
above two issues of non-determinism and performance, and
discuss insights that we gained about Synoptic through this
formulation.

B. Modeling Synoptic with InvariMint

Synoptic’s use of well-defined properties simplifies the task of
declaratively specifying it with InvariMint — each of the three
mined properties in Synoptic (AlwaysFollowedBy, AlwaysPre-
cedes, and NeverFollowedBy) has a corresponding property type,
shown in Figure 13.

However, while Synoptic explicitly specifies some of the log
properties that the inferred models will enforce, its original pro-
cedural definition imposed a property that was unknown both
to Synoptic users and to us, the researchers who developed the
algorithm. The process of specifying Synoptic declaratively
with InvariMint revealed this property. We found that the initial

3Synoptic uses an event-based graph model with nodes representing event
types and unlabeled edges representing observed event orderings in the log. This
model is equivalent to an FSM with anonymous states, which is the model type
we use in this paper.

4In an event-based model, Synoptic uses kTails(k=0) to merge nodes with
identical event labels. This is equivalent to kTails(k=1) in a state-based model.
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Fig. 13. Three of the four property types used by InvariMint to model the
Synoptic algorithm. Figure 4(a) shows the fourth property type, which captures
Synoptic’s initial model.

Synoptic model is not captured by the three explicit properties
and the InvariMint formulation requires the additional “immedi-
ately followed by” property type, which is exactly SimpleAlg’s
property type (Figure 4(b)).

To compose Synoptic property instances, InvariMint
uses a composition formula that is similar to Sim-
pleAlg: Compose(Prop1, . . . ,Propn) = Minimize( · · ·
(Minimize(Prop1 ∩ Prop2) ∩ ·· ·) ∩ Propn). This composi-
tion minimizes intermediate models so as to maintain a small
model in memory at runtime. For a large number of property
instances, this composition yields a faster algorithm.

Next, we evaluate this InvariMint formulation of Synoptic.

C. Theoretical Evaluation

We were already intimately familiar with Synoptic. Nonethe-
less, when we modeled Synoptic with InvariMint, we discovered
a new feature, demonstrating how InvariMint can improve algo-
rithm understanding. The InvariMint formulation of Synoptic
is, in fact, an approximation of the Synoptic algorithm. A key
feature of Synoptic models is that they have no spurious transi-
tions. That is, every transition in the model is associated with
some event in the log — there are no uncovered, or spurious,
transitions. The reason for this feature is that Synoptic models
are defined in terms of traces — a transition between two states
in the model exists only if there are two observed states in the
log that map to the model states and have this transition.

InvariMint models, on the other hand, are specified in terms
of event types, so the particular trace-specific constraints are

InvariMint Synoptic

Synoptic
Model 1

Synoptic
Model 2Log

Fig. 14. The inclusion relationships between an input log, the language of the
model derived from the log with InvariMint Synoptic, and the languages of two
potential non-deterministically-derived Synoptic models for the log.

absent from an InvariMint model unless they are explicitly
specified with property types. Therefore, InvariMint models
may contain spurious transitions. Figure 14 summarizes the
relationships between the language of the model derived us-
ing an InvariMint formulation of Synoptic, the languages of
possible non-deterministically-derived Synoptic models, and
the input log. The InvariMint formulation is more permissive
than Synoptic, and includes the language of all possible non-
deterministically-derived Synoptic models. Here, we prove that
a Synoptic model’s language is a subset of the model derived
using InvariMint Synoptic algorithm. We have also proved that
the InvariMint model does not satisfy any Synoptic property
instances that are not true of the input log [5].

Theorem 2 (InvariMint specification of Synoptic encompasses
Synoptic). Let L be a log. Let FSynoptic and FInvMint be the FSMs
produced by the Synoptic algorithm and the InvariMint Synoptic
algorithm on L, respectively. Let L(FSynoptic) and L(FInvMint) be
the languages of those models. Then L(FSynoptic)⊆ L(FInvMint).

Proof: Let t be a trace in L(FSynoptic). By construction, Synoptic
terminates when all traces accepted by its inferred model satisfy
all instances of the AlwaysFollowedBy, AlwaysPrecedes, and
NeverFollowedBy property instances mined from L. Therefore,
t must satisfy all such property instances.

Consider each of the property instances intersected to form
FInvMint. First, each property instance of the three types de-
scribed in Figure 13 is mined from L, and therefore must be true
in each trace in L. Since t satisfies all such property instances,
the language of each of these instance FSMs must contain t. Sec-
ond, each property instance of the type described in Figure 4(a)
accepts all traces whose transitions are pairs of consecutive
events observed in L. Since each transition in FInvMint maps to at
least one pair of consecutive events in at least one trace in L, a
property instance FSM must accept t.

Since every property instance intersected to form FInvMint
accepts t, t ∈ L(FInvMint). Therefore, L(FSynoptic)⊆ L(FInvMint).

As discussed in Section IV-A, Synoptic is non-deterministic
and executing Synoptic on two similar logs may produce differ-
ent models, even when using identical random number generator
seeds. The InvariMint formulation of Synoptic removes this
non-determinism because FSM intersection and minimization
are commutative. This, in turn, makes it possible to use the
algorithm to assist in other development tasks, such as to verify
a bug fix or to check how a new feature impacts the model.
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D. Empirical Evaluation

We compared the performance of procedural Synoptic against
the declarative InvariMint Synoptic implementation. Both algo-
rithms are implemented in Java and we use the same experimen-
tal setting as in the kTails experiments (Section III-C).

We carried out two experiments to compare algorithm per-
formance across different log sizes (Figure 15), and across logs
with varying number of property instances (Figure 16). As with
the kTails algorithm, Figure 15 indicates that the declarative ver-
sion of Synoptic outperforms procedural Synoptic on large logs.
As the number of property instances increases (in Figure 16),
InvariMint Synoptic continues to outperform Synoptic.

V. DISCUSSION

Although this paper has presented insights derived from ex-
pressing existing model-inference algorithms with InvariMint,
there are other benefits to the InvariMint formulation. If the
model is used for model checking or runtime verification, a
declarative specification can be more efficiently checked (e.g., in
parallel) against a property, and can yield more efficient runtime
conformance checking of a trace. A violated property instance
can also be more helpful than a path counterexample in under-
standing why the property does not hold or why a trace does not
conform to the model.

As an example of the generality and expressiveness of our
approach, an evaluation function may deem a property valid
if it is true in most of the traces. This can be useful when the
properties are probabilistic or the log is incomplete, as when it is

not feasible to capture a log from a live, online system’s start of
execution to its end. For example, some traces at the start may be
missing the login event while others at the end may be missing
the logout event. InvariMint can still mine the property that
all traces start with login and end with logout, as long as an
overwhelming fraction of the traces satisfy that property. Other
kinds of property types include conditional properties (e.g., an
event is present only if the username is root), properties on
resource usage (e.g., time or space), and anomaly-detecting
properties (e.g., two events co-occur rarely).

In this paper we use LTL to compactly specify evaluation func-
tions. As a result, in all of the presented examples the PFSM
could be automatically derived from the LTL — the PFSM is a
parameterized version of the büchi automaton corresponding to
the LTL formula. However, this is not possible for the alterna-
tive evaluation functions mentioned above, as these cannot be
expressed with LTL.

InvariMint can be robust to specifications with overlapping or
conflicting property types. For example, an evaluation function
that intersects property instances will ignore overlapping prop-
erty instances, and will immediately reveal conflicting property
instances as their intersection would be the empty set.

A. Tips for Declaratively Expressing Algorithms with InvariMint
First, identify the right property-type granularity. Do not sim-

ply simulate the procedural version of the algorithm with the
property types. Instead, consider the properties that the procedu-
ral algorithm enforces. Property types that are too fine-grained
and too close to the input traces (e.g., union of positive exam-
ple trace DFAs) lead to models that overfit the log, rather than
describe the algorithm. Property types can describe algorithm
operations. For example, Section III showed how a single prop-
erty type describes merging of all states with the same k-tail.

If the procedural algorithm deals with positive examples of
traces (as both kTails and Synoptic do), starting from a formula-
tion that produces a model that is a generalization of the desired
model may be easier, as this model may enforce fewer properties.
Then, refine this model towards the desired model by introducing
new property types or by refining the existing properties.

If the procedural algorithm deals with both positive and nega-
tive examples of traces (we have not shown such an algorithm
in this paper), consider building separate models, one for the
positive examples and one for the negative examples. Then, in
the composition function, subtract the negative-example model
from the positive-example model.

VI. RELATED WORK

The kTails algorithm [7] is the basis for numerous model-
inference algorithms [11], [22], [19], [20], [23], [9], [27], [28].
Many of these algorithms can be modeled with InvariMint to bet-
ter understand, extend, combine, and compare them. At least two
of the techniques require richer models than the standard FSM
models we use in this paper. GK-Tails [23] requires EFSMs, and
RPNI [9] requires Probabilistic FSMs.

There are numerous algorithms to mine temporal properties,
like the ones we have used in this paper [3]. Data-value proper-
ties that relate internal program variables can encode method pre-



and post-conditions, as well as class-level properties. Automat-
ically inferring these properties from program executions [12]
can improve model inference [23]. Combining data-value and
temporal properties can improve scenario-based specification
mining [21]. Recent work by Gabel and Zhendong can also
be applied to validate property instances during an InvariMint
execution [13].

Model-inference frameworks can facilitate algorithm compar-
ison [25]. However, to date, these frameworks have been used
to compare model performance and accuracy, not properties
of model inference. Further, much of the kTail-based model-
inference work compares the recall and precision of inferred
models against manually-specified ground-truth models. This
process is manual, error-prone, and, again, compares model
quality, as opposed to model-inference properties. Model qual-
ity is a notoriously challenging aspect of model inference [19].
QUARK, a comparison framework, allows for comparing the
quality of models generated by algorithms such as kTails [7]
and sk-strings [26]. InvariMint is complementary to these frame-
works, as it aims to unify model-inference algorithms with a
declarative specification language, facilitating algorithm com-
parison, and model property comparison.

Non-FSM model inference (e.g., of UML sequence dia-
grams [31], communicating automata [8], and symbolic message
sequence graphs [18]) can also aid developer tasks. Some of this
work is similar to kTails, and we believe InvariMint can be ex-
tended to accommodate such algorithms. Similarly, InvariMint
may be extendable to other types of properties, such as those
used to infer behavioral models of web-services [4].

VII. CONCLUSION

Model-inference algorithms can automatically mine models
of complex systems. Such models aid numerous development
tasks, such as program understanding and debugging. Unfortu-
nately, existing model-inference algorithms are defined procedu-
rally, making them difficult to understand, extend, and compare
to one another. We have presented InvariMint, a declarative
specification approach for model-inference algorithms. Invari-
Mint enables specification of algorithms in terms of the types
of properties they enforce in the models they infer. InvariMint’s
declarative specifications (1) provide insight into how inference
algorithms work and how the model relates to the underlying
system, (2) allow for easy extension of existing algorithms to
construct hybrid alternatives, and (3) provide a common lan-
guage for comparing and contrasting the essential aspects of
model-inference algorithms. We demonstrated the benefits of
InvariMint by declaratively specifying two existing algorithms,
kTails and Synoptic. For example, the InvariMint versions of
these algorithms greatly outperform their procedural analogs.
InvariMint is available as an open-source tool:
http://synoptic.googlecode.com
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