

FedFetch: Faster <u>Fed</u>erated Learning with Adaptive Downstream Pre<u>fetch</u>ing

Qifan (Eric) Yan, Andrew Liu, Shiqi He, Mathias Lécuyer, Ivan Beschastnikh

Yan et al.

Edge Devices and Machine Learning (ML)

• Generate massive private data

• Increasing ML capabilities

Based on https://ai-benchmark.com/ranking.html

Federated Learning[1]: ML training with edge devices

Cross-Device Federated Learning (FL)

Clients

- are **edge devices** such as phones, laptops, IoT device, intelligent vehicles etc.
- collaboratively train models under coordination of a **server**
- sync local model with server's latest model
- 2 perform training steps with optimizer (e.g., SGD) on **local** data
- 3 transmit model updates to get next round's model through server aggregation

Challenges in Scaling FL

- Huge number of clients (production jobs see 10M daily active clients[1])
- System and statistical heterogeneity of clients leading to straggler effect

(a) CDF of edge device download and upload bandwidth distribution for North America in Jan 2024 [25].

Client Sampling

- Chooses *K* clients from a population of *N* clients for **partial participation**[1]
- Generally, reduces communication load in the network and on the server
 - Specific methods may have other benefits[2,3]

Update Compression

- Compress updates with
 - masking/sparsification[1,2]
 - quantization[3,4,5]
 - low-rank matix factorization[6]
 - and more!
- Reduce communication costs but with more training rounds and potential accuracy drop
- Most works address upstream (client \rightarrow server) compression with C_{ul}
- Few works tackle downstream (server → client) compression with C_{dl}

- [2] Sattler et al. Robust and Communication-Efficient Federated Learning from Non-IID Data. 2019
- [3] Alistar et al. QSGD: Communication-Efficient SGD via Gradient Quantization and Encoding. 2017
- [4] Dorfman et al. DoCoFL: Downlink Compression for Cross-Device Federated Learning. 2023
- [5] Amiri et al. Federated Learning With Quantized Global Model Updates. 2020
- [6] Vogels et al. PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization. 2019

Incompatibility of Sampling and Compression

- Upstream was previously the bottleneck but have become less impactful
- Under client sampling, update compression cannot effectively reduce downstream (server → client) communication costs

Downstream is the new bottleneck!

• Our prior work **GlueFL**[1] explores this specifically for sampling + masking

FedFetch generalizes the problem

[1] He et al. GlueFL: Reconciling Client Sampling and Model Masking for Bandwidth Efficient Federated Learning. 2023

With infrequent participation, most

Client Model Staleness is the Culprit

- Client models are increasingly **stale** with every round of non-participation
- Downstream synchronization costs grow with increasing staleness

FedFetch Design

- **Prepare phase**: presample clients to get a stable participation schedule
- Prefetch phase: clients download in advance to accelerate Train phase
- Train phase: same as standard FL

FedFetch Prepare Phase

• Presampling:

- Run client sampling function *R* rounds in advance
- Typically, **no modifications** to the client sampling function

• Prefetch Scheduling:

- Prefetching comes at a cost of additional bandwidth overhead and grows with R
- Scheduling to pick *R* per-client for best time/bandwidth-to-accuracy performance
- See paper for prefetch scheduling design

FedFetch Prefetch Phase

- Clients follow **prefetch schedule** (from Prepare phase)
- Slower clients, especially stragglers, prefetch to save time in Train phase
- Faster clients exempted from prefetching to save bandwidth

Evaluation Objectives

Q1: Compatibility with client sampling and update compression methods

Method vs FedFetch + Method

Q2: Impact on time, bandwidth, and accuracy

Q3: Impact of hyperparameter (full results in paper)

Q4: Impact of client availability and overcommitment (full results in paper)

Main Performance Evaluation

- Combined with 7 techniques(including GlueFL)
- Speeds up fetch (blocking download) time by 4.49x
- Reduces training time by **1.26x**
- Incurs extra bandwidth of 13%, shifts from fetch (download) to prefetch

Hyperparameter Evaluation

- The presample/prefetch round **R** is the main hyperparameter of FedFetch
- FedFetch + STC (stc_1R, stc_3R, stc_5R, stc_10R)[1] consistently perform better than STC by itself (stc_baseline) in terms of time-to-accuracy
- Small *R*s have similar bandwidth-to-accuracy performance as STC by itself
- We recommend a small R = 3 work for better time/bandwidth-to-accuracy

Summary of Contributions

FedFetch

- reveals conflicts between **client sampling** and **update compression**
- accelerates **downstream communication** by **4.49x** with low bandwidth overhead
- is a **general design** compatible with many sampling and compression techniques
- introduces new research direction of **short-term stable client participation schedules**
- Code available at https://github.com/DistributedML/FedFetch
 - as a FedScale[1] module using real client bandwidth[2], compute performance[3], online/offline behavior[4] data

Thank you!

[1] Lai et al. FedScale: Benchmarking Model and System Performance of Federated Learning at Scale. 2022

[2] https://www.measurementlab.net/

[3] https://ai-benchmark.com/index.html

[4] Yang et al. Characterizing impacts of heterogeneity in federated learning upon large-scale smartphone data. 2021

Extra slides

FedFetch: Faster Federated Learning with Adaptive Downstream Prefetching Yan et al.

Presampling and Client Sampling

- Presampling means that client sampling cannot use information available at start of a client's training round
- Example: Sticky sampling from GlueFL[1]
 - strongly benefits from recent client participation schedules

Step 2: Rebalance non-sticky and sticky groups with sampled clients

• However, **FedFetch** + GlueFL is **1.13x** faster than GlueFL by itself

Full Result Table

				FEMNIST Trg 75%				Google Speech Trg 61%				OpenImage Trg 68%			
		FT	TT	FV	TV	FT	TT	FV	TV	FT	TT	FV	TV		
Baseline	FedAvg	0.64	2.56	1.56	2.76	5.54	21.7	12.2	21.6	1.14	5.4	10.8	19.1		
Masking	STC	0.85	2.46	2.58	3.07	9.96	25.0	13.7	18.0	0.97	4.47	11.5	15.0		
	FedFetch + STC	0.21	1.67	1.31	3.14	2.71	13.4	10.4	21.6	0.44	4.00	8.85	18.1		
	GlueFL	0.30	2.11	2.58	3.32	2.28	16.7	12.9	18.9	0.38	2.55	14.0	20.7		
	FedFetch + GlueFL	0.18	1.84	1.49	4.01	1.26	14.3	11.2	25.0	0.23	2.36	8.84	24.6		
Quantization	QSGD	0.46	1.35	1.56	1.73	3.41	8.62	10.49	11.6	0.72	3.68	10.8	12.0		
	FedFetch + QSGD	0.06	0.90	0.58	1.83	0.84	6.26	4.87	14.3	0.13	3.07	4.45	13.7		
	LFL	0.43	1.27	1.45	1.60	3.03	10.9	10.78	11.9	0.67	3.55	10.4	11.6		
	FedFetch + LFL	0.06	0.90	0.58	1.83	0.58	8.88	4.7	14.7	0.12	3.09	4.34	13.7		
	EDEN	0.42	1.26	1.43	1.60	4.02	12.7	11.7	13.7	0.74	3.54	10.2	11.7		
	FedFetch + EDEN	0.06	0.89	0.60	1.75	1.12	10.1	6.92	16.5	0.16	3.12	5.48	14.1		
Low-rank	POWERSGD	1.49	4.23	5.25	5.62	6.87	26.7	28.1	29.8	0.58	2.81	8.01	<u>9.24</u>		
	FedFetch + POWERSGD	0.14	3.02	1.47	6.54	0.67	21.0	6.89	35.5	<u>0.11</u>	<u>2.43</u>	<u>4.28</u>	<u>11.0</u>		
Quantization	DoCoFL	0.04	0.96	0.13	0.72	0.48	8.79	1.45	6.97	0.12	3.26	1.15	5.52		
(Full model)	FedFetch + DoCoFL	0.04	0.93	0.28	0.56	0.50	8.47	2.95	6.02	0.12	2.87	2.50	5.38		

Full Prefetch Process

Downstream and Upstream Bandwidth Across Rounds

