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Edge Devices and Machine Learning (ML)

* Generate massive private data * Increasing ML capabilities
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Federated Learning[1]: ML training with edge devices

[1] McMahan et al. Communication-Efficient Learning of Deep Networks from Decentralized Data
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Cross-Device Federated Learning (FL)

* Clients
* are edge devices such as phones, laptops, ol device, intelligent vehicles etc.
* collaboratively train models under coordination of a server
@ sync local model with server’s latest model
@ perform training steps with optimizer (e.g., SGD) on local data
© transmit model updates to get next round’s model through server aggregation

Server: @
-

Clients:
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Challenges in Scaling FL

* Huge number of clients (production jobs see 10M daily active clients[1])
* System and statistical heterogeneity of clients leading to straggler effect
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[1] Bonawitz et al. Towards Federated Learning at Scale: System Design. 2019
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Client Sampling

* Chooses K clients from a population of N clients for partial participation[1]

* Generally, reduces communication load in the network and on the server
* Specific methods may have other benefits[2,3]

/ Client Sampling

[11 McMahan et al. Communication-Efficient Learning of Deep Networks from Decentralized Data. 2017 5
[2] He et al. GlueFL: Reconciling Client Sampling and Model Masking for Bandwidth Efficient Federated Learning. 2023
[3] Lai et al. Oort: Efficient Federated Learning via Guided Participant Selection. 2021
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Update Compression

« Compress updates with

* masking/sparsification[1,2] Server Ay = ZCH(Cu(AL))
* quantization[3,4,5] Compress
* low-rank matix factorization[6] =~ Downstream Car ()
* and more!
 Reduce communication costs we = Car' (Cai(A)) + Wes we = Car' (Car(80)) + Wiy
but with more training rounds Clients Training Step U 5T
and potential accuracy drop i Atpr = Wiyy — Wy A2y = Wiy — Wy

Compress Compress

* Most works address upstream

' : - Cut(At41) Cou (02, )
(Cllent - Server) compression Upstream 1(Bes1 l
Server Aty = ZCJll(Cul(Agﬁl))

* Few works tackle downstream
(server = client) compression
with Cdl

[1] He et al. GlueFL: Reconciling Client Sampling and Model Masking for Bandwidth Efficient Federated Learning. 2023

[2] Sattler et al. Robust and Communication-Efficient Federated Learning from Non-1ID Data. 2019

[3] Alistar et al. QSGD: Communication-Efficient SGD via Gradient Quantization and Encoding. 2017

[4] Dorfman et al. DoCoFL: Downlink Compression for Cross-Device Federated Learning. 2023 6
[5] Amiri et al. Federated Learning With Quantized Global Model Updates. 2020

[6]1 Vogels et al. PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization. 2019
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Incompatibility of Sampling and Compression

* Upstream was previously the bottleneck but have become less impactful

* Under client sampling, update compression cannot effectively reduce
downstream (server 2 client) communication costs

Downstream is the new bottleneck!
e Our prior work GlueFL[1] explores this specifically for sampling + masking

FedFetch generalizes the problem
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[1] He et al. GlueFL: Reconciling Client Sampling and Model Masking for Bandwidth Efficient Federated Learning. 2023



Yan et al. FedFetch

Client Model Staleness is the Culprit

* Client models are increasingly stale with every round of non-participation

 Downstream synchronization costs grow with increasing staleness

With infrequent participation, most
clients have large synchronization cost ®

Client model 22 ( ]
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Eventually transmit the entire server model

Can we prefetch these to reduce

client model staleness?
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FedFetch Design

* Prepare phase: presample clients to get a stable participation schedule
* Prefetch phase: clients download in advance to accelerate Train phase
* Train phase: same as standard FL

Round: t t+1 ... t*—1 t*=t+ R

Gerver Presamplg érver Creates Prefetc\h
Client Set K« Schedule P;x
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FedFetch Prepare Phase

* Presampling:
* Run client sampling function R rounds in advance
* Typically, no modifications to the client sampling function
* Prefetch Scheduling:

* Prefetching comes at a cost of additional bandwidth overhead and grows with R

* Scheduling to pick R per-client for best time/bandwidth-to-accuracy performance
* See paper for prefetch scheduling design
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FedFetch Prefetch Phase

FedFetch

* Clients follow prefetch schedule (from Prepare phase)

* Slower clients, especially stragglers, prefetch to save time in Train phase

* Faster clients exempted from prefetching to save bandwidth

Client Types Prefetch Phase Train Phase
| ] ] [ >
¢ :_ _O __________ f _?_1_ _________ f_ - i _ _{_: 3 Time
Slower | dle { wy  ldlei das
Straggler wo 0,1 E E 92,2
Faster | Idle L ws
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Evaluation Objectives

Q1: Compatibility with client sampling and update compression methods

Method vs FedFetch + Method
Q2: Impact on time, bandwidth, and accuracy

Test
Acc.

FedFetch + Method

Method

Time Elapsed

Test
Acc.

FedFetch

FedFetch + Method

Method

Transmission Volume

Q3: Impact of hyperparameter (full results in paper)

Q4: Impact of client availability and overcommitment (full results in paper)

12
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Main Performance Evaluation

« Combined with 7 techniques(including GlueFL)

* Speeds up fetch (blocking download) time by 4.49x

* Reduces training time by 1.26x

FedFetch

* Incurs extra bandwidth of 13%, shifts from fetch (download) to prefetch
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Hyperparameter Evaluation

* The presample/prefetch round R is the main hyperparameter of FedFetch

* FedFetch + STC (stc_1r, stc_3R, stc_sR, stc_10r)[ 1] consistently perform better than
STC by itself (stc_vaseline) in terms of time-to-accuracy

 Small Rs have similar bandwidth-to-accuracy performance as STC by itself

* We recommend a small R = 3 work for better time/bandwidth-to-accuracy
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[2] Sattler et al. Robust and Communication-Efficient Federated Learning from Non-1ID Data. 2019
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Summary of Contributions
* FedFetch

* reveals conflicts between client sampling and update compression
* accelerates downstream communication by A . 49X with low bandwidth overhead

. isageneral design compatible with many sampling and compression techniques
* introduces new research direction of short-term stable client participation schedules

 Code available at https://github.com/DistributedML/FedFetch

* as a FedScale[1] module using real client bandwidth[2], compute performance[3],
online/offline behavior[4] data

AV

Thank you!

[1] Lai et al. FedScale: Benchmarking Model and System Performance of Federated Learning at Scale. 2022 S Y S T O PIA

[2] https://www.measurementlab.net/ 15
[3] https://ai-benchmark.com/index.html

[4]1Yang et al. Characterizing impacts of heterogeneity in federated learning upon large-scale smartphone data. 2021


https://github.com/DistributedML/FedFetch

Extra slides

FedFetch: Faster Federated Learning with Adaptive
Downstream Prefetching

16
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Presampling and Client Sampling

* Presampling means that client sampling cannot use information available at
start of a client’s training round

 Example: Sticky sampling from GlueFL[1]

* strongly benefits from recent client participation schedules

‘ Non- stlcky clients ‘ ' S"Cky cllents ) Sampled ;

\ /N /T glients .1

Step 1: Sample clients for training

-

g O‘>< <
,“/ 2
‘[ .' Sampled N

\_ Non-sticky clients Stick cllents v clients .
\ Yy P / \ y ° / e

Step 2: Rebalance non-sticky and sticky groups with sampled clients

* However, FedFetch + GlueFL is 1.13x faster than GlueFL by itself

17
[1] He et al. GlueFL: Reconciling Client Sampling and Model Masking for Bandwidth Efficient Federated Learning
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Full Result Table

FedFetch: Faster Federated Learning with Adaptive Downstream Prefetching

FEMNIST Trg 75%

Google Speech Trg 61%

Openlmage Trg 68%

FI' TT FV TV | FT TT FV TV | FT TT FV TV

Baseline FedAvg | 0.64 256 156 276 | 554 21.7 122 216 | 1.14 5.4 10.8 19.1
STC | 0.85 246 258 3.07 | 996 25.0 13.7 18.0 | 0.97 447 11.5 15.0

Masking FedFetch + STC | 0.21 1.67 131 3.14 | 271 134 104 216 | 044 4.00 8385 18.1
GlueFL | 0.30 2.11 258 3.32 | 2.28 16.7 129 18.9 | 0.38  2.55 14.0  20.7

FedFetch + GlueFL | 0.18 1.84 149 401 | 1.26 143 11.2 250 | 0.23 236 884 246

QSGD | 046 1.35 156 1.73 | 341 8.62 1049 11.6 | 0.72 3.68 10.8  12.0

FedFetch + QSGD | 0.06 090 0.58 183 | 0.84 6.26 4.87 143 | 013 3.07 445 137

Quantization LFL | 043 127 145 1.60 | 3.03 109  10.78 11.9 | 0.67 3.55 104 11.6
FedFetch + LFL | 0.06 090 0.58 1.83 | 0.58 8.88 4.7 147 |1 012 3.09 434 137

EDEN | 042 126 143 1.60 | 4.02 127 11.7 13.7 | 0.74 3.54 10.2 11.7

FedFetch + EDEN | 0.06 089 0.60 1.75 | 1.12 10.1 6.92 16.5 | 0.16 3.12 548 14.1

Low-rank POWERSGD | 149 423 525 5.62 | 6.87 267 28.1 298 | 0.58 2.81 8.01 9.24
FedFetch + POWERSGD | 0.14 3.02 147 654 | 0.67 21.0 6.89 355 | 011 243 428 11.0

Quantization DoCoFL | 0.04 096 0.13 0.72 | 048 879 145 697 | 0.12 326 115 552
(Full model) FedFetch + DoCoFL | 0.04 093 028 0.56 | 0.50 847 295 6.02 | 0.12 287 250 5.38

18
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Full Prefetch Process

Client Types

Typical cq
Typical c9
Fast c3
Missed ¢4
Straggler cs

Extreme cg

FedFetch: Faster Federated Learning with Adaptive Downstream Prefetching

Prefetch Phase

Train Phase
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Downstream and Upstream Bandwidth Across Rounds
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