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Edge Devices and Machine Learning (ML)
• Generate massive private data • Increasing ML capabilities
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Based on https://ai-benchmark.com/ranking.html

Federated Learning[1]: ML training with edge devices

[1] McMahan et al. Communication-Efficient Learning of Deep Networks from Decentralized Data
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Cross-Device Federated Learning (FL)
• Clients

• are edge devices such as phones, laptops, IoT device, intelligent vehicles etc.
• collaboratively train models under coordination of a server

sync local model with server’s latest model
perform training steps with optimizer (e.g., SGD) on local data
transmit model updates to get next round’s model through server aggregation
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Clients:

Server:
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Challenges in Scaling FL
• Huge number of clients (production jobs see 10M daily active clients[1])
• System and statistical heterogeneity of clients leading to straggler effect
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… … …

[1] Bonawitz et al. Towards Federated Learning at Scale: System Design. 2019
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Client Sampling
• Chooses 𝐾 clients from a population of 𝑁 clients for partial participation[1]
• Generally, reduces communication load in the network and on the server

• Specific methods may have other benefits[2,3]
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Client Sampling

… … …

[1] McMahan et al. Communication-Efficient Learning of Deep Networks from Decentralized Data. 2017
[2] He et al. GlueFL: Reconciling Client Sampling and Model Masking for Bandwidth Efficient Federated Learning. 2023
[3] Lai et al. Oort: Efficient Federated Learning via Guided Participant Selection. 2021
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Update Compression
• Compress updates with

• masking/sparsification[1,2]
• quantization[3,4,5]
• low-rank matix factorization[6] 
• and more!

• Reduce communication costs 
but with more training rounds 
and potential accuracy drop
• Most works address upstream 

(client → server) compression 
with 𝐶!"
• Few works tackle downstream 

(server → client) compression 
with 𝑪𝒅𝒍
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[1] He et al. GlueFL: Reconciling Client Sampling and Model Masking for Bandwidth Efficient Federated Learning. 2023
[2] Sattler et al. Robust and Communication-Efficient Federated Learning from Non-IID Data. 2019
[3] Alistar et al. QSGD: Communication-Efficient SGD via Gradient Quantization and Encoding. 2017
[4] Dorfman et al. DoCoFL: Downlink Compression for Cross-Device Federated Learning. 2023
[5] Amiri et al. Federated Learning With Quantized Global Model Updates. 2020
[6] Vogels et al. PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization. 2019
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Quantization

Masking

No Compression

Incompatibility of Sampling and Compression
• Upstream was previously the bottleneck but have become less impactful
• Under client sampling, update compression cannot effectively reduce 

downstream (server → client) communication costs
Downstream is the new bottleneck!

• Our prior work GlueFL[1] explores this specifically for sampling + masking
FedFetch generalizes the problem

7

FedFetch

[1] He et al. GlueFL: Reconciling Client Sampling and Model Masking for Bandwidth Efficient Federated Learning. 2023

Note: No optimizations 
applied to compute
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Client Model Staleness is the Culprit
• Client models are increasingly stale with every round of non-participation
• Downstream synchronization costs grow with increasing staleness
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Eventually transmit the entire server model Can we prefetch these to reduce 
client model staleness?

Available 1 round earlier 

Available 2 rounds earlier 

With infrequent participation, most 
clients have large synchronization cost L

Past server models	𝒘𝒕%𝒓 available

Prefetch
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FedFetch Design
• Prepare phase: presample clients to get a stable participation schedule
• Prefetch phase: clients download in advance to accelerate Train phase
• Train phase: same as standard FL 
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FedFetch Prepare Phase
• Presampling:

• Run client sampling function 𝑹 rounds in advance
• Typically, no modifications to the client sampling function

• Prefetch Scheduling:
• Prefetching comes at a cost of additional bandwidth overhead and grows with 𝑹
• Scheduling to pick 𝑹 per-client for best time/bandwidth-to-accuracy performance
• See paper for prefetch scheduling design
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FedFetch Prefetch Phase
• Clients follow prefetch schedule (from Prepare phase)
• Slower clients, especially stragglers, prefetch to save time in Train phase
• Faster clients exempted from prefetching to save bandwidth
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Evaluation Objectives
Q1: Compatibility with client sampling and update compression methods

Q2: Impact on time, bandwidth, and accuracy

Q3: Impact of hyperparameter (full results in paper)
Q4: Impact of client availability and overcommitment (full results in paper)
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Method vs FedFetch + Method
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Main Performance Evaluation
• Combined with 7 techniques(including GlueFL)
• Speeds up fetch (blocking download) time by 4.49x
• Reduces training time by 1.26x
• Incurs extra bandwidth of 13%, shifts from fetch (download) to prefetch
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FT: Fetch Time
TT: Total Time
FV: Fetch Volume
TV: Total Volume
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Hyperparameter Evaluation
• The presample/prefetch round 𝑹 is the main hyperparameter of FedFetch
• FedFetch + STC (STC_1R, STC_3R, STC_5R, STC_10R)[1] consistently perform better than 

STC by itself (STC_baseline) in terms of time-to-accuracy
• Small 𝑅s have similar bandwidth-to-accuracy performance as STC by itself
• We recommend a small 𝑅 = 3work for better time/bandwidth-to-accuracy
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[2] Sattler et al. Robust and Communication-Efficient Federated Learning from Non-IID Data. 2019
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Summary of Contributions
• FedFetch

• reveals conflicts between client sampling and update compression

• accelerates downstream communication by4.49xwith low bandwidth overhead

• is a general design compatible with many sampling and compression techniques
• introduces new research direction of short-term stable client participation schedules

• Code available at https://github.com/DistributedML/FedFetch
• as a FedScale[1] module using real client bandwidth[2], compute performance[3], 

online/offline behavior[4] data
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Thank you!

[1] Lai et al. FedScale: Benchmarking Model and System Performance of Federated Learning at Scale. 2022
[2] https://www.measurementlab.net/
[3] https://ai-benchmark.com/index.html
[4] Yang et  al. Characterizing impacts of heterogeneity in federated learning upon large-scale smartphone data. 2021

https://github.com/DistributedML/FedFetch
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Presampling and Client Sampling
• Presampling means that client sampling cannot use information available at 

start of a client’s training round
• Example: Sticky sampling from GlueFL[1] 

• strongly benefits from recent client participation schedules

• However, FedFetch + GlueFL is 1.13x faster than GlueFL by itself
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[1] He et al. GlueFL: Reconciling Client Sampling and Model Masking for Bandwidth Efficient Federated Learning
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Full Result Table
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Full Prefetch Process
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Downstream and Upstream Bandwidth Across Rounds
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