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Abstract—Modern cloud applications must be tuned
for high performance. Yet, a single static configuration
is insufficient since a cloud application must deal with
changes in workload, varying numbers of replicas due
to auto-scaling, and upgrades to the environment and
the application code itself. These dynamics can only be
observed altogether during the application execution
and affects different layers of the application stack.
In this paper, we describe SmartTuning, a technique
and tool to auto-tune cloud applications on the fly,
improving resource utilization and performance under
dynamic workloads.

SmartTuning reacts to different workloads over time
and automatically explores and adapts the applica-
tion’s configuration through Bayesian Optimization.
SmartTuning searches for configurations that better
use resources when the application is subject to auto-
scaling and dynamic workloads. It minimizes the need
for the operations team to instrument code or manually
try out configurations in testing environments. Our
evaluation of three industrial applications indicates
that SmartTuning can, on average, improve application
efficiency by 58% and reduce cost by 27%.

Index Terms—Auto-tuning, Elastic cloud environ-
ments, Microservices, Kubernetes

I. Introduction
Cloud-based applications must use their resources ef-

ficiently since each minute of execution has a cost. Yet,
these applications are deployed in complex stacks that
may include containers, language runtimes, and numerous
dependencies. Achieving high performance with minimal
use of resources requires tuning across the stack, a task
that is typically done by an operations team. Success in
this context is usually a configuration that provides high
performance most of the time.

Unfortunately, workloads change over time and applica-
tions are continuously re-deployed [1], [2]. This requires
re-tuning. One strategy to overcome these issues is to
over-provision the application and use an auto-scaler that
starts new application replicas as the individual replica
resources are exhausted and shuts down replicas when
they are not needed. Since cloud pricing is proportional
to resource usage, this strategy has two drawbacks. First,
over-provisioning creates a coarse scaling granularity, so
the application cannot efficiently handle low-volume work-
loads. Second, not all resources need to scale linearly
along with the application and indiscriminately scaling all
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resources harms efficiency. Ideally, the application should
scale both vertically and horizontally to address these
issues. However, today’s auto-scaling tools do not recom-
mend the use of both scaling strategies simultaneously [3].

In summary, today’s elastic cloud applications lack a
solution to adjust their many parameters. For example, a
Java application using the Open Liberty [4] application
server running on the OpenJ9 JVM [5] has dozens of
distinct parameters that can be tuned, each with many
valid options to try and several workloads to address.
These quickly explode to thousands or even millions of
possible configurations, without even considering multiple
replicas.

We introduce SmartTuning, which we designed to
deal with a specific aspect of the auto-tuning problem:
tuning multiple production replicas of an application under
varying workloads. Conceptually, SmartTuning can tune
any type of application stack that exposes configuration
parameters and metrics. However, in this work, we limit
our scope and only deal with web applications that can
tolerate replicas being added and removed frequently.
By contrast, data analytics applications (e.g., Hadoop
and Spark), databases, and messaging middleware cannot
easily accommodate frequent scaling. Short-lived services
(e.g., Lambda functions) are also out of scope of Smart-
Tuning, since they do not run long enough for a proper
validation of the tuned configuration.

SmartTuning treats services as black-box functions
that cannot be analytically modelled. We borrow the con-
cept of automatic hyper-parameter tuning for parameter
optimization [6] to tune general-purpose services. We use
Bayesian Optimization (BO) [7] to find the values for tun-
able settings that optimize application efficiency modelled
as an objective function. For example, BO finds values for
connection timeout settings, garbage collection settings,
and resource limits that increase application throughput
while reducing cost.

SmartTuning samples configurations based on run-
time monitoring and current workload. For each work-
load, SmartTuning explores configurations looking for
the most suitable one for the current workload type,
avoiding wasted resources due to the auto-scaling of over-
provisioned replicas. Finally, SmartTuning automati-
cally applies its best known configuration for each ob-
served workload as the service’s workload changes over
time.

Workload classification is a broad topic [8] and we



built SmartTuning with the assumption that such a
classifier already exists. SmartTuning auto-tunes ser-
vices to satisfy multi-objective requirements based on their
workloads. It uses the workload classifier to learn about
variations in the workload. Based on workload change
notifications, SmartTuning uses statistical analysis to
sample configurations that may improve the performance
for each workload type while coping with auto-scaling
that is controlled by an independent service, such as
Kubernetes. SmartTuning performs all these processes
online with no need for service downtime.

In summary we make the following contributions:
? To the best of our knowledge, we are the first to pro-

pose and implement an automatic configuration tuning
system for live deployments in production. Our system
performs on-the-fly tuning and automatically re-deploys
applications with better suited configurations as the
workload changes.

? We propose a design for tuning elastic applications
with multiple replicas with the objective of minimizing
resource contention and resource waste.

II. Related work

Tuning services is a well known problem that has been
tackled by many groups [9], [10]. Most of these initiatives
tune monolithic applications and single-layer services,
such as databases [11]–[13], big data processors [14]–[16],
message middleware [17], and application servers [18], to
improve, for example, their performance [19]–[21], reduce
energy consumption [22]–[24], or improve the safety of the
tuned configurations [25]. There are fewer initiatives, such
as BestConfig [26], ClassyTuner [27], and Auto-Tune [28]
proposing a general tuner for different kinds of services as
we do in this paper. But, none of them tune multiple layers
of the application stack at runtime under a dynamic load
and subject to a horizontal auto-scaler.

In previous work, tuning is done mostly off-line and
assumes the same workloads [29]–[31]. Furthermore, tun-
ing for cloud applications usually targets a single aspect,
such as tuning the thread model [32], host nodes [33], the
services placement [34], or a single service layer such as the
JVM [35] and may only provide advice [36] rather than
actively update the application. Zhang et al. [37] suggest
the use of proactive techniques to improve application
parameters; a strategy that we adopt in SmartTuning.
Finally, [38] is a complementary approach to Smart-
Tuning that seeks the best initial configuration for the
application before deployment in production.

The fundamental difference between SmartTuning
and these approaches is SmartTuning’s focus on tuning
elastic applications that use multiple replicas to dynami-
cally auto-scale. Conversely, Autopilot [39] actively scales
out vertically and horizontally to improve efficiency, al-
though it does not act on an application’s parameters like
SmartTuning.

Fig. 1: Daytrader application stack.

SmartTuning also customizes the tuning search to the
workload. Other approaches, like Fekry et al.’s [15] do not
use workload to guide the tuning. Instead, they identify
common workloads and create tuning policies for those
workloads to avoid computing new policies at runtime.

III. Tuning challenges
We overview the tuning challenges by using a bench-

mark cloud application called Daytrader [40]. Daytrader
(Figure 1) is a Java service for stock trading. Daytrader
must quickly serve requests and deal with dynamic work-
loads. We use dynamic workload to refer to a set of
concurrent clients that send a mix of requests to the
application at a high rate, while the number of clients
varies periodically.

Several runtime layers make up Daytrader: (1) Open
Liberty application server handles connections to the
database, (2) the JVM abstracts code execution and re-
source management, (3) a Docker container abstracts the
file system and allocation of resources, and (4) a Kuber-
netes Pod provides auto-scaling, deployment mechanisms,
and resource allocation.

Tuning multiple layers simultaneously. A cloud
application layer exposes tunable settings, and a combi-
nation of settings across these layers controls application
behaviour. Some settings have dependencies and cannot
be tuned independently. For example, the number of open
HTTP connections in Open Liberty is affected by Open
Liberty’s thread and connection pools, which rely on the
heap size of the JVM. Therefore, the number of tunable
setting combinations quickly becomes impractical for De-
vOps to explore.

Tuning during resource contention. An application
with a fixed configuration and workload may perform
inconsistently due to other applications running on the
same cluster. For example, Daytrader might be co-located
with other services. While the configuration and workload
remain constant for Daytrader, it may suffer from resource
contention.

Adjusting tuning to workload. Cloud applications
must deal with workloads that change over time [8].
CI/CD will also induce changes in the application. A
DevOps team has little time to master the most relevant
tunable settings for a given workload and application
version.

Tuning the application while scaling. Cloud ap-
plications add/remove replicas as the load increases/de-
creases. As the number of replicas changes, tunable set-



tings must be adjusted. For instance, Daytrader may be
scaled out to address a CPU-bound workload. The new
replicas would increase the available memory, but also the
number of database connections. These extra connections
may surpass database capacity.

Tuning to satisfy multiple objectives. Cloud
providers charge for consumed resources. Therefore, when
a developer tunes an application, they usually want to
improve its efficiency — increasing performance while
reducing cost. Tuning becomes even more complex when
considering cost.

IV. SmartTuning assumptions

Cloud services model. We assume a black-box ap-
plication whose behaviour is observable through metrics
that change as workload varies. We cannot know a priori
the frequency and period of the application’s workload
patterns, nor the rules that govern the application’s per-
formance and resource usage.

Tuning duration. It takes some time for an applica-
tion to reach steady-state after its settings change. We
assume that the application we tune has a well-known
stabilization interval, i.e., how long the application takes
to reach steady performance from start-up. Usually, this
information comes from performance tests done prior to a
production deployment.

Horizontal autoscaling. We assume that the number
of replicas may be controlled by a Horizontal Autoscaler
(HA). If HA is used, we assume that SmartTuning is
aware of the resource the HA is triggering on and we design
SmartTuning to avoid tuning this resource.

Load balancing. SmartTuning tunes applications
with multiple replicas. To ensure an unbiased analysis,
SmartTuning assumes that each replica receives an iden-
tical mix and equal proportion of request traffic to the
application.

Specifically, we assume that the tuned application sits
behind a fair load balancer that guarantees that 1/(n+ 1)
of traffic is sent to each of the n+ 1 replicas: one training
replica for experimenting with configurations, and n pro-
duction replicas using a reliable configuration. This allows
us to replicate the production traffic volume so that it is
observed by the training replica.

Replica representativeness. We assume that any
one replica is representative of the other replicas given
identical volume of requests. This allows us to assume
that a good configuration found for our training replica
can be promoted to production and attain comparable
performance.

Ignoring connected microservices. SmartTuning
tunes microservices without regard for connected microser-
vices or applications which can shift the performance
bottleneck [41]. For example, tuning one service may harm
the efficiency of other, chained, services. We plan to deal
with bottleneck shifts in our future work.

V. SmartTuning background

SmartTuning’s goal is to optimize cloud services based
on their workloads to satisfy an objective set by the
DevOps team. SmartTuning observes the application1

and its varying workloads (via the workload classifier),
searches among configurations, and determines how well
each new configuration satisfies the target objective.

A. Application modeling

The cloud application is the function we are aiming to
tune. We consider the application as a black-box function
f : C,W → R that maps a configuration c ∈ C
and a workload w ∈ W to a score value. The DevOps
team encodes their tuning goal into an objective function
f̂ , which is expressed using only the runtime-monitored
observables. SmartTuning uses a numeric approach to
search for values that make f̂ yield high scores.

An observable is any information exposed by the ap-
plication or environment that can be monitored. Smart-
Tuning allows the developer to use arithmetic operators
to freely combine observables to describe f̂ . Classical
observables are CPU/memory consumption, availability,
throughput, and response time. SmartTuning also inter-
prets tunable setting values as observables. For example, if
the DevOps team wants to minimize their cost to run the
application in a public cloud, and the provider charges $k
per CPU hour and $m per gigabyte hour, then they can
use the objective function in Equation 1:

f̂ = throughput

k ∗ CPU +m ∗memory
(1)

By convention, SmartTuning minimizes f̂ . To max-
imize f̂ , we minimize −f̂ . Ultimately, SmartTuning
aims to optimize an application by searching for a con-
figuration c∗ that minimizes f̂ for a given workload w:
c∗ = arg minc∈C f̂(c, w)

SmartTuning allows composition of objective func-
tions using arithmetic and max and min functions to
combine fractions p/q, where each fraction expresses one
aspect of the overall objective. The parameters to maxi-
mize go into p, and those to minimize go into q. Indepen-
dent parameters are sums of fractions, while dependent
parameters are modelled as a product. Care should be
taken to normalize and weigh each factor according to the
desired goal. Exponents and logarithms can also be used.
For example, we can model the SLO max throughput with
memory consumption < 80%, as in Equation 2:

f̂ = −throughput
1 + max(0,memory utilization− 0.8) (2)

1We use service and application interchangeably, although the
term application primarily refers to the collection of replicas.



B. Bayesian Optimization
Every tunable setting is defined as a range of values that

bounds valid regions. We call the list of all tunable settings
a configuration, and the list of tunable setting ranges a
search space. Bayesian optimization [42] is an enhancement
of random search [43], [44] that uses Bayes’ theorem to
sample the next value based on previous observations
and to speed up the convergence to a global optimal.
In general, Bayesian optimization converges faster than
Random search [45].

Bayesian optimization samples several configurations
from the search space and checks which one has the
greatest chance to yield a higher objective function score.
We choose the Tree Parzen Estimator (TPE) [45], [46],
a specialization of Bayesian optimization, due to its abil-
ity to handle conditional search spaces [44]. Conditional
search spaces bring more flexibility to describe complex
relationships between tunable settings in cloud applica-
tions. This approach deals with categorical values using
one-hot encoding, although this is not the most efficient
approach [47].

C. Workload classification
In this paper our aim is not to contribute a new

workload classifier. We assume that one exists, based,
for example, on previous work [8], [48]. SmartTuning
requires a classifier h : W → K that maps a workload
wa,b ∈ W observed in a time window (a, b) to a class
k ∈ K. The classifier observes and labels the application’s
workload and signals if the current workload has changed.
In our evaluation we use two simple workload classifiers.
Our classifiers identify workloads based on the number of
requests arriving to the application and the mix of request
types [49].

VI. SmartTuning design
The architecture of SmartTuning follows the MAPE-

K framework [50], which defines four phases in a feedback
loop: monitoring, analysis, planning, and execution. These
phases share a knowledge-base that is built up during the
tuning process. In SmartTuning’s design, we merged the
analysis and planning into a phase we call tuning analysis.
To simplify management and to smoothly integrate with
modern deployment environments, we designed and imple-
mented SmartTuning as a custom Kubernetes controller.

Figure 2 overviews our design. At a high-level, Smart-
Tuning tunes an application by repeating three steps.
First it iterates by sampling an experimental configura-
tion, applying it on a newly deployed training replica, and
running the training replica along with the application in
production (Figure 2). After t time units, SmartTuning
scores the training and production configurations using the
objective function f . Second, after k iterations, Smart-
Tuning checks if the best configuration so far maintains
a good score over a longer time period. Third, and finally,
SmartTuning promotes the best configuration found so
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Fig. 2: SmartTuning architecture.

far from training into production, but only if the score
of this configuration is higher than the current configura-
tion in production. The tuning ends when SmartTuning
reaches N iterations. Table I lists the set of parameters
that a DevOps engineer provides to SmartTuning. The
table also lists default parameter values that we have found
to work well in practice.

Parameter Default Description
N 50 Stopping criteria
k 10 Number of

search iterations
t App dependent Iteration length
f̂ Goal dependent Objective function

Monitoring queries App dependent Cfg. Tunables

TABLE I: Parameters for configuring SmartTuning.

A. Knowledge base
The knowledge base stores the search space, workload

types, and tuning trials.
Search space. The search space is a multi-dimensional
structure that maps an application’s parameters (tunable
settings) to a range of values. During tuning, SmartTun-
ing samples a single value for each tunable.

The search space captures dependencies between tun-
ables. SmartTuning relies on the operation team to de-
fine these dependencies. A tunable can depend on another
tunable in any of the application’s layers. We use these
dependencies to provide higher configuration reliability.
For example, the JVM’s heap size should not exceed
the memory available to its container. SmartTuning
filters out tunable setting combinations that do not satisfy
dependencies, reducing the set of configurations to try. In
our future work we plan to detect dependencies between
tunables automatically [51]–[53].
Workload types. The knowledge base also stores work-
load types. These are generated by the workload classifier
and are associated with each configuration experiment.
Trials. The knowledge base tracks all attempted configu-
rations. A trial is a triplet that links the list of tunables
in the configuration, the score calculated by the objective



function, and the workload observed during a tuning
iteration.

We assume that workload types eventually repeat, and
to properly track a workload’s behaviour a trial holds
statistics of the relevant metrics, such as mean, median,
and standard deviation. These metrics are updated any
time the same tuple of workload and configuration repeats.

During tuning, each trialed configuration belongs to
either the nursery or is considered tenured. The nursery
holds recent trials until SmartTuning progresses to select
a better candidate to be promoted into production. These
promoted trials are then stored as tenured. After tuning
ends, SmartTuning uses only tenured trials to keep the
application tuned as the workload changes.

B. Monitoring metrics and workloads
At runtime, SmartTuning observes metrics exposed by

the application to evaluate the objective function f̂ .
The workload classifier runs along with SmartTuning

and identifies the inbound workload on the fly. Smart-
Tuning maintains the state of tuning for several workload
classes, relying on the classifier to detect and report the
observed workload over time. SmartTuning creates one
tuning context per workload class, and tracks all configu-
ration and application metrics related to the workload in
this context. The state management of a tuning context
is delayed until the end of the current iteration it is
processing. At the end of an iteration, SmartTuning
checks with the workload classifier to see if the current
workload has changed. If so, SmartTuning either creates
a new context for a first time identified workload, or adds
the results to the context corresponding to the already
observed workload.

If there are changes to the workload type in the middle
of the iteration, SmartTuning only checks at the end
of the iteration which workload has lasted the longest
during the iteration. If the longest workload does not
match the current context, SmartTuning switches to the
appropriate context. Otherwise, SmartTuning continues
the tuning without switching tuning contexts.

C. Tuning analysis
Algorithm 1 details how SmartTuning tunes an appli-

cation in three steps: search, reinforcement, and probation.
Searching. At every searching iteration, SmartTun-

ing samples a configuration, applies it to the training
replica at the end of the iteration, and saves it into the
nursery. SmartTuning iterates at least k times to search
for a configuration that achieves a score higher than the
configuration currently used by the production replicas.
Then, SmartTuning ranks all the trials in the nursery
by their score and workload and selects the trial with the
highest score that matches the current workload observed
in the application (Algorithm 1 line 16).

During the first k iterations, the exploration phase,
SmartTuning samples the configurations at random to

Algorithm 1 Tuning algorithm
1: global production, training ← {workload, score, cfg}
2: procedure tuning(N, k, t, workload)
3: nursery, tenured ← ∅
4: while N ≥ 0 do
5: bestCfg ← searching(k, t, workload)
6: progress ← reinforcement(k, t, bestCfg, workload)
7: if progress then
8: promoted ← probation(k, t, bestCfg, workload)
9: if promoted then

10: nursery ← ∅
11: end if
12: end if
13: end while
14: end procedure
15:
16: procedure searching(k,t, workload)
17: bestCfg ← nil
18: for k iterations or bestCfg = nil do
19: training ← sampleCfg() . updates training replica
20: trial ← monitoring(t)
21: nursery ← nursery ∪ trial
22: bestCfg ← lookupCfg(nursery, production, work-

load)
23: N ← N − 1
24: scheduleIfWorkloadHasChanged(workload)
25: end for
26: return bestCfg
27: end procedure
28:
29: procedure reinforcement(k, t, bestCfg, workload)
30: training ← bestCfg . updates training replica
31: for k/3 iterations do
32: trial ← monitoring(t)
33: updateScore(trial, nursery, tenured)
34: N ← N − 1
35: scheduleIfWorkloadHasChanged(workload)
36: end for
37: return training.score > production.score
38: end procedure
39:
40: procedure probation(k, t, bestCfg, workload)
41: lastCfg, lastScore ← production . save previous cfg
42: production ← bestCfg . updates production replicas
43: for k/3 iterations do
44: trial ← monitoring(t)
45: updateScore(trial, nursery, tenured)
46: N ← N − 1
47: scheduleIfWorkloadHasChanged(workload)
48: end for
49: if production.score < lastScore then
50: production ← lastCfg . reverts cfg in production
51: return FALSE
52: end if
53: tenured ← tenured ∪ trial
54: return TRUE
55: end procedure

cover more of the search space. After these k iterations,
SmartTuning changes to the Bayesian Optimization
(BO) approach, or the exploitation phase. During exploita-
tion, BO considers the search space region that the explo-
ration phase has yielded to find the best configuration.

A larger k value promotes search space exploration,



while a smaller k value promotes exploitation of a bounded
region. In our experiments, we found k = 10 to be a
reasonable value.

While SmartTuning is searching, two or more con-
secutive configurations with similar tunable settings and
scores might be found. SmartTuning handles this by
only selecting the configuration with the highest score,
and deleting the remaining ones in the nursery after each
promotion.

At the end of this step, SmartTuning pauses this loop
and moves to reinforcement.

Reinforcement. SmartTuning uses this loop to en-
sure that the selected configuration maintains its high
score when run for a longer period. For the subsequent k/3
(Algorithm 1 line 31) iterations SmartTuning monitors
the score of the configurations at both the production
and the training replicas. If at the end of this loop, the
median of the score of the training replica is greater
than the production replica, SmartTuning moves the
configuration in training to the probation step for a final
quality check. Otherwise, this configuration is discarded
and SmartTuning returns to the searching step for k
more iterations.

Probation. During this loop, SmartTuning config-
ures both the training and production replicas to use
the same configuration from reinforcement (Algorithm 1
line 40). This lasts for k/3 iterations. Probation is used by
SmartTuning to ensure that the candidate configuration
works as expected when scaled out to all production repli-
cas. This helps detect problems that show up at scale, e.g.,
contention on shared backend resources like a database.

If after the k/3 iterations SmartTuning observes that
the production service does not achieve better perfor-
mance, it reverts the configuration. Alternatively, Smart-
Tuning promotes the configuration as tenured, keeps it in
production, and erases the nursery region.

After the probation loop SmartTuning transitions
back to the searching step where it will again search for
better configurations.

D. Execution

When SmartTuning decides to update a service in
training or production, it serializes the new configuration
and updates the Kubernetes configuration files that hold
the environment variables for the replicas. These changes
will trigger Kubernetes to restart all pods with the new
values.

If a new workload type appears, SmartTuning starts
a new tuning session for it, using the latest configuration
as the initial configuration for the session. If a new ap-
plication version is deployed, SmartTuning resets the
tuning, using the latest tenured configurations applied to
the application as its starting point.

E. Implementation
We built SmartTuning as a Kubernetes controller

in Python. It uses a black-box workload classifier and
Prometheus to observe the application and its metrics.

Knowledge base. SmartTuning defines a search
space that lists several tunables. A tunable is either nu-
meric continuous, numeric discrete, or categorical, e.g., a
list of strings. We express dependency between tunables
using a direct acyclic graph (DAG). We implemented the
search space as a Kubernetes Custom Resource Definition
(CRD) [54]. All tunables are exposed through environment
variables in Kubernetes’ Config Maps or Resources Limits
from a Pod Specification.

Monitoring. At runtime, SmartTuning can ob-
serve any metric exposed by the application through
Prometheus [55] to evaluate the objective function.
SmartTuning considers the first third of the iteration
length to be a warm-up interval.

Execution. The update process uses Kubernetes
probes [56] and a custom rolling update strategy [57]
to restart the application replicas without downtime. We
customized this strategy to eliminate unavailable pods and
to cope with workload surges. We briefly over-provision the
replica set during an update to ensure that fresh replicas
will not crash due to a sudden burst of requests while it
is warming up. Finally, we install custom PreStop hooks
in Kubernetes to enforce a delay during pod exclusion.

VII. Evaluation
Our evaluation targets three research questions:

1) RQ1: How efficient are the configurations that
SmartTuning finds as the application is scaled up
and down and the application workload varies?

2) RQ2: What is the cost of tuning? And, how long does
it take before a configuration found with SmartTun-
ing starts to pay off?

3) RQ3: How much does an application’s performance
degrade while SmartTuning is doing the tuning?

In our experiments we use Equation 3 as the objec-
tive function. We measure memory in GBs and CPU in
vCores. This equation aims to maximize the application
efficiency by increasing its performance while reducing the
processing time, and resource utilization, which reduces the
cost of deployment. SmartTuning calculates the total
throughput and resource utilization of each training and
production replica-set, and the average of processing time
of all requests per replica.

We have experimented with alternative objective func-
tions, including those that minimize cost and maximize
client-observed performance (see Section VII-F). Through-
out, we have found that SmartTuning’s search process is
objective-agnostic. Ultimately, choosing the right objective
function is a matter of requirements. By collaborating with
our clients we found that Equation 3 strikes a good bal-
ance between the cost of cloud resources and application
performance.



f̂ = 1
1 + response time

× throughput

CPU +memory
(3)

We run all experiments in a Kubernetes cluster on Azure
with four nodes, each configured with 16 vCpus and 56GB
of RAM. The experiments run with the Horizontal Pod
Autoscaler [58] (HPA) enabled to scale the application
whenever the CPU consumption of the application is
above 50%.

A. Evaluated applications
We used three open source cloud applications: Quarkus-

HTTP-Demo (QHD) [59], AcmeAir [60], and Day-
trader [40]. RedHat uses QHD to evaluate its Quarkus
framework, and IBM uses AcmeAir and Daytrader inter-
nally to evaluate their products. Daytrader is the most
complex of the three.

The three applications implement the traditional model-
view-controller architecture in Java. AcmeAir and Day-
trader use the Open Liberty application server [61] while
QHD uses Quarkus [62]. Each application has one attached
database: AcmeAir uses MongoDB [63], Daytrader uses
DB2 [64], and QHD uses PostgreSQL [65]. QHD is a
generic REST service to expose database CRUD (create,
read, update, delete) operations. AcmeAir is an implemen-
tation of an airline website. It allows users to login, update
profiles, and manage flight bookings. Finally, Daytrader is
an application built to simulate an online stock trading
system. It allows users to login, view their portfolio, lookup
stock quotes, and buy or sell stock shares. Daytrader is
our most complex application: it has an asynchronous
messaging communication mechanism and provides two
different endpoints implemented in distinct frameworks.
All applications use the OpenJ9 [5] JVM and run inside
Docker [66] deployed in a Kubernetes cluster.

All applications are deployed with default configuration
from their repositories. We use these defaults as baselines
in our evaluation to compute the efficiency of the config-
uration that SmartTuning finds after 50 iterations2 for
each observed workload. We also use these to evaluate the
pay-off in tuning each application.

We tune a different mix of parameters for different layers
of each application. Common to all of these are container
memory limits, JVM heap size, and the size of thread and
connection pools. Table II summarizes our SmartTuning
experimental settings. We selected the parameters to tune
based on the recommendation of IBM engineers who know
these applications well.

B. Auto-scaling and workload classifier setup
For all applications we allocate one vCPU per pod. We

use HPA to handle the CPU needs of the application,

2We found that using 50 as the total iterations per workload
balances the number of configurations SmartTuning tries and the
overall duration of our experiments. In practice, this stop criteria can
be set to reflect the needs of the operations team.

QHD AcmeAir Daytrader
# parameters 7 12 22
iteration length 5min 10min 20min
warm up period 100s 200s 400s
total iterations
per workload 50 50 50
number workloads 3 3 5
HPA max replicas 8 8 16

TABLE II: SmartTuning evaluation details.

scaling it up/down. We follow HPA documentation in
avoiding vertical scaling based on the HPA metrics. As a
result, SmartTuning does not tune the CPU allocation
in each Pod.

We run experiments with two workload classifiers.
Workload classes based on volume. The default clas-
sifier identifies workloads based on the number of simul-
taneous clients (sessions) accessing the application. For
each application we used three workloads to exercise CPU
needs, so that HPA creates/deletes replicas over time.
We use Jmeter [67] to periodically vary the number of
virtual clients sending requests to the applications (every
two hours for Daytrader and every 30 minutes for the
other applications). For AcmeAir and QHD, we set the
workloads to be 50, 100, and 200 simultaneous clients,
for Daytrader the workloads set is 5, 10, and 50 clients3.
We use app workload to denote an app running with a
specific workload. Across all settings, each client used a
thinking time, or delay, that was sampled for each request
from a Poisson distribution with λ = 150ms.

Workload classes based on request endpoints.
For Daytrader we use a second classifier that identifies
the workload based on the set of URLs the clients re-
quest. Daytrader has two URL sets that route requests to
two Java presentation frameworks: Jakarta Server Pages
(JSP) [68], and Jakarta Server Faces (JSF) [69]. Our
second classifier determines if the current flow of requests
targets JSP or JSF endpoints.

C. Tuning results (RQ1)

How efficient are the configurations that SmartTuning finds as the
application is scaled up and down and workload varies?

SmartTuning improves application efficiency by 59% on average.
It can find optimal configurations even under dynamically changing
workload and scaling conditions.

Figure 3 shows the variation in the number of replicas
throughout the tuning (time runs left to right). We can see
that for all applications, HPA scales the number of repli-
cas up and down repeatedly, especially during workload
transitions.

Figure 4 shows the improvement achieved by a configu-
ration found with SmartTuning for all app workload

3These values are typically used to benchmark these applications
by performance engineers at IBM.
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scenarios. For each condition SmartTuning found at
least one better configuration. In all cases, the amount
of memory allocated to the application was the parameter
with the largest impact on the tuning score. SmartTun-
ing reduced at least 50% of total memory allocation for
all applications. For example, for QHD SmartTuning
reduced memory by 75% from the initial configuration.
In all cases, all applications started with 1GiB per replica,
and the memory reduction happened even when the new
configuration required the horizontal auto-scaler to create
more replicas than the initial configuration.

In general, extra replicas were a consequence of vertical
scaling that SmartTuning promotes for some parame-
ters. Hence, the horizontal auto-scaling creates new repli-
cas to avoid harming application performance. In these

cases, efficiency is not an issue due to the smaller memory
footprint.

In some cases the tuned configuration caused the appli-
cation to have a higher response time. Despite the high
relative value for this metric, the absolute values are low.
For instance, Daytrader JSF has a response time of 3ms
with the initial configuration and 17ms with the tuned con-
figuration. This outcome is expected, since we did not set
any weight in our objective function to prioritize response
time over other metrics, such as resources consumption.

QHD. SmartTuning found configurations that im-
proved QHD by 66% on average for all workloads with
the minimum improvement for workload 2 (59%) and the
maximum for workload 3 (78%). The improvement in
throughput was < 2% and the number of replicas did not
change, while the memory allocation was cut by 75% and
the response time increased by 3% on average.

AcmeAir. SmartTuning found configurations that
improved AcmeAir by 81% on average for all workloads
with the minimum improvement for workload 3 (24%) and
maximum for workload 1 (127%). On average AcmeAir
had its throughput reduced by 12%, and its response time
increase by 110%. Although the large memory reduction of
58% compensated for the performance reduction, specially
for workload 2, which had a boost in its score due to a
reduction in memory (77%) and replicas (-3 units), which
helps to explain the high score.

Daytrader. SmartTuning found configurations that
improved Daytrader by 43% on average for workloads 1,
2, and 3; and, by 35% on average for workloads JSP and
JSF. In both workload types the main improvement was
the memory (50% across all workloads). Workloads 3 and
JSF also had a boost due to a throughput improvement
of 8% and 2%, respectively.

For Daytrader, JSF improvements in replicas, memory,
and throughput, compensated for the 4x response time
degradation. JSF has a larger memory footprint than JSP,
and the reduction in memory for this workload frequently
triggered the JVM gc, which impacted response time. As
SmartTuning performs multi-objective tuning, we can
expect trade-offs: improvements in some objectives and
degradation in others. If the application requires strict
optimization, the objective function must capture this, see
Section V-A.

Overall, these experiments show that SmartTuning
can find better configurations for all applications under
most workloads, even while HPA actively varies the num-
ber of replicas during tuning. This answers RQ1.
D. Cost of tuning (RQ2)

What is the cost of tuning? And, how long does it take before a
configuration found with SmartTuning starts to pay off?

SmartTuning reduced application cost by 27% on average as
compared to the initial configuration. The cost break-even point was
reached after at least 2.08 hours and at most 34 hours.



To answer RQ2 we calculated the break-even time with
Equation 4. This equation calculates the time before there
is a tuning pay off, where cost(x) is the cumulative cost
of running a set of replicas x over time. cost(prod) cal-
culates the cost of running the production replica while
it is adjusted with better configurations found during
tuning. cost(train) is the cost of the training replica that
SmartTuning updates at every iteration. cost(untuned)
is a virtual replica set that emulates the application if
it remains with its initial configuration during its entire
execution. Untuned replica set is an extrapolation from
the initial 10 iterations of the production replicas, during
these iterations it is guaranteed that the application will
retain the same initial configuration.

∫ Tpayoff

0
[cost(untuned)− cost(prod)− cost(train)] dt = 0

(4)
Figure 5 depicts the break-even time for all applica-

tions and workloads. The no tuning line (green) is the
cumulative cost(untuned) replicas set. We use least squares
fitting [70] to extrapolate the initial 10 iterations of the
replicas in production to model an entire execution. The
production line (blue) is the actual cumulative cost(prod)
of replicas running and being tuned in the system. Train-
ing line (orange) is the cumulative cost(train) of the single
training replica. Finally, the payoff line (red) is the tuning
payoff.

We calculate the cost of each replica according to the
Azure VM cost. In our experiments we used instances
of DS5 V2 with 16 vCpus and 56GB ram at the cost
of $1.12/hour [71]. Thus, the hourly cost for CPU and
memory follows: 16× cpu + 56×memory = 1.12. At every
iteration we calculated the cost of all vCPU and memory
allocated to all pods in the different contexts – untuned,
production, and training.

In Figure 5 the dashed portion of all the lines are
extrapolations to show when the payoff is likely to be
positive for those cases where it does not turn positive
within the 50 tuning iterations. For the training line, after
the tuning ends, there is no more training replica running
so their cost remains constant from that point.

The break-even point happens before the end of 50
iterations in five out of 11 workloads. The break-even point
of Figure 5d workload 100 happens after +6% of the total
tuning duration. In the other five experiments, the break-
even point happens in between +20% and +88% of the
tuning duration, with Figure 5c workload JSP having the
longest break-even point.

On average, after SmartTuning finished tuning, it has
saved 27% from the cost of running the application as
compared with the application running with its initial
configuration. Daytrader JSP had the smallest cost im-
provement of 10% (Daytrader JSP), while AcmeAir 100
had the maximum reduction of 49%. The applications with
the largest cost saving for all workloads was QHD (41%),

Experiment Cfgs
found Improvement Tuning

Efficiency Cost Duration Pay off
QHD 50 1 60.28% 39.44% 5.25h 6.33h
QHD 100 4 58.77% 43.17% 4.83h 5.16h
QHD 200 3 77.55% 41.83% 4.41h 2.08h
AcmeAir 50 3 93.40% 13.83% 5.25h 9.58h
AcmeAir 100 3 126.56% 48.93% 4.75h 2.75h
AcmeAir 200 4 24.27% 23.22% 4.42h 6.33h
Daytrader 5 2 62.11% 14.34% 14.33h 18h
Daytrader 10 2 24.69% 16.36% 14.66 h 14h
Daytrader 50 3 40.82% 18.32% 14.6 h 13h
Daytrader JSP 3 38.37% 10.15% 18h 34h
Daytrader JSF 1 31.33% 32.05% 18.33h 6.33h

TABLE III: Number of configurations promoted to pro-
duction, efficiency (objective fn.) and cost improvements,
tuning overhead, and payoff

followed by AcmeAir (29%), Daytrader JSP-JSF (21%),
and Daytrader (16%).

Table III summarizes the tuning time, the improvements
achieved, and also how long it would take for tuning to pay
off for each application workload.

E. Performance degradation (RQ3)

How much does an application’s performance degrade while
SmartTuning is running?

On average, the tuning process resulted in a 3.5% degradation
in throughput for some workloads and a 7% increase in response
time for others. Over-provisioning during configuration handover
and the reinforcement and probation steps mitigated performance
degradation and avoided application downtime.

In all experiments we carefully monitored the training
and production replicas. We did not observe any down-
time. In general, we observed negative variation of 3.5% on
average for throughput, with QHD 100, AcmeAir 200,
Daytrader 50, and Daytrader JSF with positive varia-
tion. Similarly, we observed a higher response time median
(7%) for most applications, with only QHD 200 and
Daytrader 50 having lower response times.

We believe that our strategy of over-provisioning and ac-
tively monitoring probation configurations in production
allows for a robust and safe tuning process that avoids
downtime and performance degradation.

F. Tuning with other objective functions
We informally validated that SmartTuning generalizes

to other objective functions. We experimented with using
the functions and applications listed in Table IV. For these
experiments we manually varied the workload request
volumes and used tunables that directly impacted just the
features in each objective function. Below we briefly report
on our experience with these alternative objectives.

We observed that tuning an application with a single
target performance metric, such as throughput in FN 1,
only briefly improved application performance. In the long
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Fig. 5: Break-even time. The dashed lines are the estimated cost of the application running after the experiment.

run, some tunables were under- or over-adjusted and this
harmed other aspects of the application, such as memory
usage.

For simpler applications like QHD, function FN 2 is a
reasonable choice, since it covers both memory allocation
and performance, two key features that DevOps engineers
monitor and tune. But, for more complex applications, like
AcmeAir and Daytrader, FN 2 is limited and SmartTun-
ing hardly finds better configurations with this objective.

We found that for complex applications like Daytrader,
the more tunables that are available to SmartTuning
the better. Due to the internal async communication in
Daytrader, we experimented with FN 3 to increase its
volume of requests processed without inflating response
time. We did not reach our aim with this function because
the tuned memory allocation would cause the application
to saturate, with long pauses due to garbage collection.
To handle this, we used FN 4, which considers memory
saturation. In this case, SmartTuning could find config-

urations that improved application performance without
harming memory allocation.

# Objective function f̂ App
FN 1 throughput All

FN 2 throughput
mem All

FN 3 throughput
(1+resp. time) D.trader

FN 4 1
1+max(0,mem util−0.5) × 1

1+resp. time × throughput
mem + cpu D.trader

TABLE IV: Alternative objective functions we evaluated.

G. A closer look at tuning Daytrader

We looked more closely at Daytrader under workloads
based on request endpoints (JSP and JSF) to better
understand the tuning process. We consider experiment
scenarios in Table V.



Scenario # Description
0-[JSP|JSF] baseline as described in Section VII-C
1-[JSP|JSF] in a shared environment with contention
2-[JSP|JSF] random sampling
3-[JSP|JSF] no dependencies among tunables
4-[JSP|JSF] no memory vertical scaling
5-[JSP|JSF] tuning no parameter related to memory
6-[JSP|JSF] no thread pool tuning
7-[JSP|JSF] combining scenario 5 and 6
8-[JSP|JSF] add weight=10 to response time in Eq. 3
9-[JSP|JSF] add weight=1000 to response time in Eq. 3

TABLE V: In each scenario the application was under
two workloads JSP and JSF that hits different APIs in
the applications. We use “#-[JSP|JSF]” for the scenario
number and the type of workload, e.g., “0-JSP” is the
application in scenario 0 with the JSP workload.

0 1 2 3 4 5 6 7 8 9 10 11 12
Experiment #

CONMGR1_AGED_TIMEOUT
CONMGR1_MAX_IDLE_TIMEOUT

CONMGR1_MAX_POOL_SIZE
CONMGR1_MIN_POOL_SIZE

CONMGR1_REAP_TIME
CONMGR1_TIMEOUT

CONMGR4_AGED_TIMEOUT
CONMGR4_MAX_IDLE_TIMEOUT

CONMGR4_MAX_POOL_SIZE
CONMGR4_MIN_POOL_SIZE

CONMGR4_REAP_TIME
CONMGR4_TIMEOUT

HTTP_MAX_KEEP_ALIVE_REQUESTS
HTTP_PERSIST_TIMEOUT

MAX_THREADS
XX:SharedCacheHardLimit

Xmns
Xmnx

Xms
Xmx

Xscmx
memory

Parameter importance

Fig. 6: Parameter importance. The experiments 0 to 9 are
summarized in Table V. The experiments 10, 11, and 12
are virtual, and combine the values achieved from other
experiments showing the overall importance of the param-
eters when workloads are not specified (#10), and their
importance for all JSP (#11) and JSF (#12) workloads.

Figure 6 plots the importance of each tuned parame-
ter for each scenario (calculated with XGBoost4.) Over-
all, the container memory and the max thread pool
size (MAX THREADS) had the highest impact on the
tuning. When omitting these parameters during tun-
ing, the connection pool to the application database
(CONMGR1 [MAX|MIN] POOL SIZE) becomes the most
important parameter. The importance of the other param-
eters are more or less uniformly distributed.

No experiment could optimize all metrics of interest
(memory, response time, and throughput) modeled in
Equation 3, as response time is negatively correlated to
other metrics (Table VI). Thus, any non-trivial objective
function requires tuning to make trade offs.

4We used the default configuration for XGBoost [72]

Score Memory Throughput Resp. Time
Score 1.00 0.20 -0.72 0.26
Memory 0.20 1.00 -0.02 -0.20
Throughput -0.72 -0.02 1.00 -0.41
Resp. Time 0.26 -0.20 -0.41 1.00

TABLE VI: Pearson correlation of the variables in Equa-
tion 3, data from all experiments in Table V.

VIII. Limitations and Future work

Our current implementation assumes that services in a
multi-service application can be tuned individually. This
is not true in general as there may be dependencies among
services that would require simultaneous tuning. Our re-
sults do not generalize to this broader class of applications.

We used artificial workloads in our experiments to
demonstrate that SmartTuning can tune to specific
workloads. However, real workloads will have other fea-
tures that we cannot claim to reproduce or match.

Finally, the performance of some services may be dom-
inated by external stateful services, such as a database.
As the database fills up over time, the application’s per-
formance will change. We explicitly avoid this issue in
our evaluation by minimizing the database size during
experiments. A general approach would require extending
the objective function with database metrics.

Our next steps include enhancing SmartTuning to
handle multi-service applications and stateful systems.
We aim to explore new techniques for identifying inter-
dependencies among tunables and services and incorpo-
rating the dynamics of stateful services in the objective
function to account for changes in the database during the
tuning process. With these enhancements, we expect to op-
timize all services’ combined performance while avoiding
bottleneck shifting during the tuning process.

IX. Conclusion

We presented an approach called SmartTuning to
tune blackbox elastic cloud applications at runtime. We
evaluated SmartTuning across 11 experimental condi-
tions (3 industry applications and multiple workloads).
We found that SmartTuning finds configurations that
improve application efficiency by 58% on average, and
decrease memory usage by up to 77% and the application
cost by 27% on average. We also show that Smart-
Tuning finds configurations in coordination with active
auto-scaling while the application is in production and
without inducing any downtime and minimal performance
degradation.
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