#### Understanding Regression Failures

Roykrong Sukkerd, Ivan Beschastnikh, Jochen Wuttke, Sai Zhang, Yuriy Brun

University of Washington University of Massachusetts, Amherst

### Motivation



## Minimal failing change set



Zeller et al. TSE 2002

### Maximal passing change set



#### Question

 ${\sf Do}\, \Delta f$  and  $\Delta p$  identify the same set as guilty changes?

Not always

## $\Delta f$ as bug indicator

```
@Test
assert (getSurfaceArea(2, 4) == 24 * Math.PI);
```

# $\overline{\Delta p}$ as bug indicator

```
@Test
assert (getSurfaceArea(2, 4) == 24 * Math.PI);
```

# $\overline{\Delta p}$ and $\Delta r$ arfelationships



Total of 9 possible relationships

### Case study: compare



 $\Delta f$ 

- ➤ Voldemort: distributed key-value storage system
- **►**130K LOC
- ➤ Of 305 revisions, found 45 regression failures
- imesComputed and compared  $\overline{\Delta p}$  and  $\Delta f$

# $\overline{\Delta p}$ and $\Delta r$ arfelationships



## $\Delta f \subset \overline{\Delta p}$ multiple bugs



There might be multiple bugs.  $\Delta p$  is likely to catch more.

$$\Delta f = \overline{\Delta p}$$



No difference between inspecting  $\overline{\Delta p}$  and  $\Delta f$ .

## $\overline{\Delta p}\subset\Delta f_{ ext{hteraction causes failure}}$



Failure cause is *interaction* between changes in  $\Delta p$  and  $\overline{\Delta p}$ .

# $\overline{\Delta p}$ and $\Delta r$ Elationships



#### Related work

- ➤ Determine which changes should be examined:
  - most cross-cutting concerns [Eaddy TSE'08]
  - > modules with highest churn [Nagappan ICSE'05]
  - modules with most dependencies [Zimmermann ESEM'09]
- ➤ Delta debugging [Zeller TSE'02]
- ➤ Safe-Commit analysis [Wloka ICSE'09]
- Change impact analysis [Ren TSE'06, Zhang PASTE'08]

#### Future work

- $\succ$ Study how often **defects** are in  $\Delta p$  and not in  $\Delta f$ .
- ightharpoonup Develop a technique that leverages  $\Delta p$  and  $\Delta f$  to help developers debug.

#### Contributions

- $ightarrow \overline{\Delta p}$  : changes we need to undo to regain correct behavior
- $\succ$ 9 possible relationships b/w  $\overline{\Delta p}$  and  $\Delta f$

>87%: 
$$\overline{\Delta p} 
eq \Delta f$$

>78%:  $\overline{\Delta p}$  contains changes not in  $\Delta f$ 



**Recommendation**: Considering  $\overline{\Delta p}$  in addition to  $\Delta f$  may benefit debugging.