
One Bad Apple Spoils the Bunch:
Transaction DoS in MimbleWimble Blockchains

Seyed Ali Tabatabaee, Charlene Nicer, Ivan Beschastnikh, Chen Feng
University of British Columbia, Canada

Abstract—As adoption of blockchain-based systems grows,
more attention is being given to privacy of these systems.
Early systems like BitCoin provided few privacy features. As a
result, systems with strong privacy guarantees, including Monero,
Zcash, and MimbleWimble have been developed. Compared to
BitCoin, these cryptocurrencies are much less understood. In this
paper, we focus on MimbleWimble, which uses the Dandelion++
protocol for private transaction relay and transaction aggregation
to provide transaction content privacy. We find that in combi-
nation these two features make MimbleWimble susceptible to a
new type of denial-of-service attacks. We design, prototype, and
evaluate this attack on the Beam network using a private test
network and a network simulator. We find that by controlling
only 10% of the network nodes, the adversary can prevent over
45% of all transactions from ending up in the blockchain. We also
discuss several potential approaches for mitigating this attack.

I. INTRODUCTION

Like more established financial systems, blockchain-based
digital currencies are concerned with privacy [1]. For example,
in BitCoin [2], the transaction amounts and addresses of inputs
and outputs are publicly visible. Indeed, previous research
has shown that valuable information can be extracted from
the resulting transaction graph, including linking of users
across transactions [3]–[5]. In response, several protocols that
offer enhanced privacy, such as Monero [6], Zcash [7], and
MimbleWimble [8], have been proposed.

There are different types of privacy guarantees that users of
blockchain-based networks care about and that these networks
provide. One type of privacy is transaction source privacy.
This privacy aims to hide the source of the transaction in
the system [9]. To improve transaction source privacy, the
Dandelion family of protocols have been proposed [10], [11].
These protocols constrain the number of neighbors that a node
will send its transaction during transaction relay: a transaction
will first be relayed through a stem path, where each node
passes the transaction only to one of its neighbors. This way,
just one node in the network will receive the transaction
directly from the transaction source and most nodes will
receive the transaction once it has passed through several
nodes, thereby improving source privacy.

Another important type of privacy is transaction content
privacy. This privacy aims to hide transaction content. Proto-
cols such as Monero [6], Zcash [7], and MimbleWimble [8]
have introduced various techniques to enhance the content
privacy of transactions. This privacy may be achieved with
encryption and aggregation approaches that combine several

transactions and make it difficult to reconstruct the exact set
of transactions [12]. MimbleWimble (MW) uses confiden-
tial transactions [13] to encrypt the amounts in transactions.
And, somewhat similar to CoinJoin [14], MW allows for the
aggregation of several transactions into one transaction to
enhance content privacy. Grin [15] and Beam [16] are the two
major implementations of MW. Both of these cryptocurrency
protocols additionally use Dandelion++ for transaction relay
to improve source privacy.

There are few blockchain systems that provide both source
and content privacy. The MW family of blockchains is one
such example. Moreover, the transaction cut-through mecha-
nism used in MW allows for the deletion of spent outputs and
thus a more compact blockchain size. Hence, MW blockchains
achieve great scalability which makes them stand out from
other privacy-preserving blockchain systems. However, con-
sidering the strong guarantees offered by MW blockchains,
these systems have received surprisingly little research atten-
tion.

We study the MimbleWimble blockchain design in Beam
from a network-level perspective, specifically focusing on
its transaction relay protocol. The network-level security of
blockchains has been a topic of extensive research. Mul-
tiple network-related attacks, such as eclipse attacks [17],
deanonymization attacks [18], [19], transaction malleability
attacks [20], [21], and denial of service attacks [22], [23], have
been proposed against the existing blockchain systems. How-
ever, unlike this previous work, we rely on the vulnerability
of the MW aggregation protocol for our proposed attack.

More specifically, the contribution of our work is the design
of a new type of attack against MW blockchains that we call
transaction denial of service with aggregations. This attack
targets the transaction throughput of the network. In this
attack, malicious nodes on stem paths aggregate incoming
transactions with a newly generated transaction that has not
yet been mined into a block. As a result, at the cost of one
transaction fee, an attacker can prevent all aggregations from
ending up in a block. We prototyped this attack on the Beam
network and found that a rogue node performing the attack can
prevent 100% of the incoming transactions in the stem phase
from ending up in the blockchain. We demonstrated that if
10% of the nodes in the network are malicious, the adversary
can prevent more than 45% of all transactions from ending up
in the blockchain.978-1-6654-9538-7/22/$31.00 ©2022 IEEE

II. BACKGROUND

In this section, we provide the relevant background on
Dandelion++ and MimbleWimble.

A. Dandelion++ overview

Dandelion++ is a transaction relay protocol based on a
preceding proposal called Dandelion. The two protocols have
similar goals but subtle differences in implementation choices.
To improve the source privacy of transactions, Dandelion++
constrains the number of neighbors that a node will send a
transaction at the beginning of the transaction relay. With
Dandelion++, transactions are relayed in two phases. First,
in the stem phase, when a node receives a transaction it
passes the transaction to just one other node. Then, in the
fluff phase, a node forwards a received transaction to all of its
neighbors except the one that initially sent it the transaction.
Figure 1 illustrates these two phases of transaction relay in
Dandelion++.

Source Stem
path

Fluff
phase

Figure 1: The two phases of transaction relay in Dandelion++.
A transaction originating at node Source is first relayed
through a stem path. Then, the fluff phase begins and each
node that receives the transaction sends it to all of its neigh-
bors.

Compared to the broadcast-based transaction dissemination
protocol used in BitCoin, in Dandelion++ adversarial nodes
have a less chance of receiving a transaction directly from
the transaction source so it is more difficult for the adversary
to localize the transaction source node. The probability of
transitioning to the fluff phase in each step of the stem phase is
a parameter in the protocol. The lower this probability is, the
longer the average length of stem paths. Longer stem paths
improve transaction source privacy, but increase latency. To
mitigate black-hole attacks where the adversarial nodes decide
not to forward an incoming stem transactions, Dandelion++
incorporates a fail-safe mechanism. Each node along the stem
path of a transaction would fluff the transaction on its own if
it does not receive the fluff version of the transaction within
a time period. For this, nodes along the stem path create
independent random timers for the transaction.

B. MimbleWimble (MW) overview

MimbleWimble is a cryptocurrency protocol that uses en-
cryption and aggregation to enhance the content privacy of
transactions. Compared to other cryptocurrency protocols like
Bitcoin, MimbleWimble has the following important advan-
tages:

• Input and output amounts in a transaction are encrypted.
• Aggregation of transactions makes it difficult to link the

inputs and outputs.
• The size of the blockchain is reduced through the deletion

of spent outputs (the cut-through mechanism).
MimbleWimble uses confidential transactions to encrypt

amounts. The commitments of inputs and outputs are put into
transactions and kept on the blockchain. Each commitment is
in the form of

C = r ·G+ v ·H

where C is a Pedersen commitment, v is the amount, r
is a secret random blinding key which should be known
only to the owner, and G and H are fixed Elliptic Curve
Cryptography (ECC) group generators known to all. A range-
proof is attached to each output commitment which proves that
its amount is valid. The r value in commitments with explicit
amounts, such as transaction fees and block rewards, is zero.
The owner of a set of outputs is one who knows the sum of
their r values. By knowing the sum of r values for a set of
outputs, one can create a valid transaction that spends those
outputs. For a transaction to be valid, the commitments in that
transaction should sum to zero and the range-proofs for the
output commitments should be valid.

To prevent the sender of inputs in a transaction from spend-
ing the outputs, the sum of r values for the outputs should
differ from the sum of r values for the inputs. Therefore, the
commitments of inputs and outputs in each transaction should
sum to a non-zero value k ·G (kernel) where k is chosen by
the recipient. A kernel is a non-spendable commitment with
zero amount. A transaction is allowed to have more than one
kernel. Hence, the sum of commitments in a transaction is

∑
Ci∈inputs

Ci +
∑

Co∈outputs

Co +
∑

Ck∈kernels

Ck = 0.

Aggregation of transactions makes it difficult to link the
inputs and outputs. Since the sum of commitments in each
valid transaction is zero, the total sum of commitments for
multiple transactions is still zero. Therefore, the aggregation
of multiple valid transactions is a valid transaction. Because
each block consists of some valid transactions, a block can be
interpreted as a single aggregated transaction.

Transaction cut-through is one of the most significant fea-
tures of MimbleWimble. In MimbleWimble, it is possible to
safely remove a spent output and its corresponding input from
the blockchain (Figure 2). The sum of all commitments in
each block is zero. Hence, the sum of all commitments in the
blockchain is also zero. An output of a transaction can be spent
in the succeeding blocks and appear as an input of another
transaction. The sum of commitments for this pair of input
and output is zero. Consequently, if both commitments are
removed from the blockchain, the sum of all commitments in
the blockchain remains zero. Using this technique, the size of
the blockchain can be substantially reduced. The only elements

that remain in the blockchain are the explicit amounts for block
rewards, kernels for all transactions, and unspent outputs along
with their range-proofs and Merkle proofs.

Block 2

Block 1

Block Reward

Cut-
through

Output A

Kernel 1

Block Reward

Input A

Output B

Output C

Kernel 2

Block 3

Block Reward

Input C

Output D

Output E

Kernel 3

Block 2

Block 1

Block Reward

Kernel 1

Block Reward Output B

Kernel 2

Block 3

Block Reward Output D

Output E

Kernel 3

Figure 2: Deletion of spent outputs and their corresponding
inputs from the blockchain in MimbleWimble.

Although the original proposal did not specify a transaction
relay protocol for MimbleWimble, the two major implemen-
tations of this protocol, Grin [15] and Beam [16], have
incorporated Dandelion++, where transactions are aggregated
in the stem phase. Using this approach, not only do these
cryptocurrencies attempt to improve the transaction source
privacy, but also they try to make it difficult to link the inputs
and outputs of transactions by first relaying them through stem
paths and reducing the number of network nodes that observe
them before aggregation.

Bulletproofs [24], which are short proofs for confidential
transactions, have also been proposed to improve on the
original range-proofs in MimbleWimble. Bulletproofs have
been adopted by both Grin and Beam implementations. Other
research projects have provided a provable-security analysis
for MimbleWimble [25] as a step toward a formalization of
the MimbleWimble protocol and a verification of its imple-
mentations [26], [27].

In this project, we focus on the vulnerabilities of transaction
relay in the implementations of MimbleWimble.

III. TRANSACTION RELAY IN BEAM

Since we use the implementation of MimbleWimble in
Beam for the purpose of validating our proposed attack, it is
important to have an in-depth understanding of Beam. Here,
we describe Beam’s transaction relay protocol. We provide
an overview of the life cycle of a transaction from when it
is received by a node to when it is forwarded to the peers
of the node. For that purpose, we use pseudocode that we
have written based on Beam’s source code. All the pseudocode
presented here has been obtained from the node/node.cpp file

Table I: The Beam network parameters.

Name Value
FluffProbability 0.1

TimeoutMin 20s
TimeoutMax 50s

AggregationTime 10s
OutputsMin 5
OutputsMax 40

in the “mainnet” branch of Beam’s GitHub repository as of
February 20211.

There are six important functions that every Beam node
uses to manage and forward incoming transactions. These are
also the functions that we need to modify in the source code to
implement our proposed attack. Table I presents the values for
the Beam network parameters that are used in the functions
that we describe.

When a new transaction is received, the function OnTrans-
action (Algorithm 1) will be called. This function calls either
OnTransactionStem (Algorithm 2) or OnTransactionFluff (Al-
gorithm 5) based on the type of the incoming transaction.

Algorithm 1 OnTransaction
1: function ONTRANSACTION(Transaction tx)
2: if tx is stem then
3: OnTransactionStem(tx)
4: else
5: OnTransactionFluff(tx)

If the incoming transaction is a stem transaction, then the
function OnTransactionStem (Algorithm 2) will be called. This
function compares the new stem transaction to transactions
in the node’s stempool (data structure containing valid stem
transactions that have not been fluffed) and checks the validity
of the new transaction. If the new stem transaction is accepted,
then the stempool will be updated and the new transaction will
also be added to it. Eventually, if the number of outputs in the
transaction is greater than or equal to OutputsMax, then the
transaction does not need to be aggregated any further; hence,
the function OnTransactionAggregated (Algorithm 3) will be
called. Otherwise, PerformAggregation (Algorithm 4) will be
called.

Given a stem transaction, OnTransactionAggregated (Algo-
rithm 3) sends the stem transaction to a randomly chosen peer
with a probability of 0.9 or fluffs the transaction by calling
OnTransactionFluff (Algorithm 5) with a probability of 0.1.

PerformAggregation (Algorithm 4) tries to merge a given
stem transaction with other transactions in the stempool. In
the end, if the number of outputs in the transaction is at least
OutputsMin (the transaction does not necessarily need more
aggregation), OnTransactionAggregated (Algorithm 3) will be
called to forward the transaction. If the transaction still needs
to be aggregated, the function will set a timer (10s) on the
transaction to bound the time that it remains in the stempool
without being forwarded.

1https://github.com/BeamMW/beam/commit/
ade19e1f8b1a702ad81d81092ba6a8f6561513ed

https://github.com/BeamMW/beam/commit/ade19e1f8b1a702ad81d81092ba6a8f6561513ed
https://github.com/BeamMW/beam/commit/ade19e1f8b1a702ad81d81092ba6a8f6561513ed

Algorithm 2 OnTransactionStem
1: function ONTRANSACTIONSTEM(Transaction tx)
2: for each Kernel k in tx do ▷ at most one Tx in stempool has k
3: Find Transaction q in stempool that contains k ▷ if it exists
4: // continue to the next iteration if such q does not exist
5: if tx does not cover q then ▷ tx covers q if it has all Kernels of

q
6: Drop tx
7: return ▷ error code will be returned to sender
8: if q covers tx then ▷ it means tx and q are the same
9: if q is still aggregating then ▷ should not normally happen

10: Drop tx
11: return ▷ with ’accept’ error code
12: else
13: break
14: // if tx covers q but q does not cover tx
15: Validate(tx) ▷ if not done before
16: Drop q from stempool
17: Validate(tx) ▷ if not done before
18: // by this point, the given stem-tx is accepted
19: Add tx to stempool ▷ also add dummy inputs to tx if necessary
20: if NoNeedForAggregation(tx) then ▷ tx has at least OutputsMax

outputs
21: OnTransactionAggregated(tx)
22: else
23: PerformAggregation(tx)

Algorithm 3 OnTransactionAggregated
1: function ONTRANSACTIONAGGREGATED(Transaction tx)
2: if RandInt(1, 10) ̸= 10 then
3: Select a random Peer p
4: Send (stem) tx to p
5: Set timer (uniformly selected between TimeoutMin and Timeout-

Max) on tx to later check if it is fluffed or not
6: else ▷ FluffProbability = 0.1
7: OnTransactionFluff(tx)

The function OnTransactionFluff (Algorithm 5), after mak-
ing sure that a given transaction is valid, updates the stempool.
The function also updates the fluffpool (data structure contain-
ing valid fluff transactions) and sends the given transaction
to all of its peers except the one that initially sent the fluff
transaction.

Finally, we explain OnTimedOut (Algorithm 6). If a stem
transaction is still waiting for aggregation by the expiration
of the timer that was set for it in the PerformAggregation
function (Algorithm 4), then dummy outputs will be added
to the transaction (to ensure that the transaction has at least
OutputsMin outputs and therefore it is sufficiently difficult to
link its inputs and outputs) and OnTransactionAggregated (Al-
gorithm 3) will be called to forward the transaction. Moreover,
if the fluff version of a forwarded stem transaction is not
received by the expiration of its independent random timer,
then OnTransactionFluff (Algorithm 5) will be called to fluff
the transaction.

IV. THREAT MODEL

The participating nodes form a peer-to-peer network. The
adversary in our model can create nodes and connect to other
nodes in the network. The adversarial nodes can connect to
more nodes than what the protocol suggests. The adversary
needs to know the addresses of other nodes before connecting

Algorithm 4 PerformAggregation
1: function PERFORMAGGREGATION(Transaction tx)
2: for each Transaction q in stempool that needs to be aggre-

gated, starting from the one with the closest profitability to tx, until
!NeedsAggregation(tx) do ▷ in Beam, Transaction profitability is
defined as Transaction fee

Transaction size
3: TryMerge(tx, q) ▷ merges q into tx if the result is valid
4:
5: if tx has at least OutputsMin outputs then
6: OnTransactionAggregated(tx)
7: else
8: Set timer (AggregationTime) on tx ▷ to later add dummy outputs

and stem if not aggregated enough by then

Algorithm 5 OnTransactionFluff
1: function ONTRANSACTIONFLUFF(Transaction tx)
2: if tx is in stempool then
3: Drop tx from stempool
4: if tx is already in fluffpool then ▷ we already received the fluff tx
5: Drop tx
6: return ▷ with ’accept’ error code
7: Validate(tx)
8: if tx was not in stempool then ▷ when this function was called
9: for each Kernel k in tx do

10: Find Transaction q in stempool that contains k ▷ if it exists
11: // continue to the next iteration if such q does not exist
12: Drop q from stempool
13: while fluffpool does not have enough capacity for tx do
14: Find q, the least profitable Transaction in fluffpool
15: if q is less profitable than tx then
16: Drop q from fluffpool
17: else
18: Drop tx
19: return ▷ with ’accept’ error code
20: Add tx to fluffpool
21: Send tx to all Peers of the node ▷ except the Peer that sent tx

to them. Nevertheless, the adversary cannot impose a connec-
tion on any other node if the other node does not want to
connect to it. By increasing the number of adversarial nodes
in the network or the number of connections from adversarial
nodes to honest nodes, the adversary will be incident on more
relay paths and therefore can attack the transaction relay paths
more effectively.

We assume that instead of targeting specific nodes or users,
the adversary is interested in mass attacks on the honest
portion of the network. Nonetheless, selective attacking could
help to hide the position of the adversary in the network.
Adversarial nodes can store the information that they receive
about the network and the transactions. They can analyze the
stored information and adjust their decisions. The adversary
can deviate from the relay policy of the network and disre-
gard the relay phase of transactions. Also, the adversary can
generate new valid transactions and pay for their transaction
fees. The adversarial nodes can aggregate different valid
transactions that they previously received or generated.

The adversary in our model is only interested in attacking
the transaction relay network and does not influence the block
generation process. Therefore, we do not assume any mining
power for the adversary. Generally, the adversary is unaware of
the exact topology of the network and the connections between

Algorithm 6 OnTimedOut
1: function ONTIMEDOUT(Transaction tx)
2: if tx is still aggregating then
3: Add dummy outputs to tx so that it has at least OutputsMin outputs
4: OnTransactionAggregated(tx)
5: else ▷ fluff timed-out, emergency fluff
6: OnTransactionFluff(tx)

pairs of honest nodes. We assume that the adversary cannot
decrypt commitments in transactions to learn their amounts or
secret blinding keys. Furthermore, the adversary cannot spend
the outputs that are owned by others or trick honest nodes into
accepting invalid transactions.

V. APPROACH

To improve content privacy, MimbleWimble allows for
the aggregation of transactions. However, the adversary can
exploit this feature to launch a denial of service attack. Among
different aggregations that have a transaction in common, at
most one can end up in the blockchain. Therefore, by aggre-
gating different incoming transactions with a newly generated
transaction, the adversary can perform a denial of service
attack on the incoming transactions.

Let TA be a new stem transaction received by an adversarial
node. To execute the attack, instead of normally aggregat-
ing and relaying the stem transaction, the adversarial node
generates a new transaction TB . Then, the adversarial node
aggregates the two transactions into TA + TB and fluffs both
TA+TB and TB . Since TA is fluffed as a part of an aggregated
transaction, the other nodes in the stem path of TA will not
separately fluff TA. Nevertheless, only one transaction between
TA + TB and TB can end up in the blockchain. Hence, if the
adversarial node creates TB in a way that miners prioritize
it over TA + TB (for this to happen, the profitability for TB

should be higher than the profitability for TA + TB), then TA

will not end up in the blockchain. In this case, the wallet that
initially created TA needs to resend TA to the network. The
cost of this denial of service attack for the adversary is the
transaction fee of TB .

To validate the feasibility of this attack, in our attack, a
rogue node will aggregate the incoming stem transactions
with new transactions that have not been mined into any
block and fluff the resulting aggregations and the newly
generated transactions. We will then measure and compare the
block mining time for the transactions that were aggregated
in this way by the adversary and for the normally relayed
transactions.

VI. IMPLEMENTATION

In this section, we explain our implementation of the Beam
network simulator, the proposed attack, and the Beam private
test network.

We have provided a simulation of the Beam network to
estimate the percentage of stem paths that the adversary will be
incident on. The inputs of this simulation are parameters such
as the number of nodes, the percentage of malicious nodes, the

expected degree of each node, and the probability of transition-
ing to the fluff phase in each step of the stem phase. Based on
these parameters, the program creates a pseudorandom graph
representing the network. The connections of each node are
uniformly selected among all other nodes without replacement.
The program then tests 1 million pseudorandom stem paths
for the estimation. Each tested stem path starts from a source
uniformly selected from the set of all nodes and each node in
the stem path selects the next node uniformly from the set of
its neighbors to forward the stem transaction. We implemented
this network simulator in approximately 200 lines of C++.

To implement our proposed attack, we modified the source
code of Beam in the “testnet” branch2. Most of the changes
were applied to the files in the ”node” directory and especially
the functions described in Section III. We modified approxi-
mately 500 lines of C++ code to implement our attack.

To validate our proposed attack, we have implemented a
private test network. The network consists of some normal
Beam nodes and some malicious nodes that run with our mod-
ifications. This private network has the following properties:

1) Number of nodes: After consulting with the Beam de-
veloper community, considering the requirements of our
evaluations, and also taking into account the resources
available, we decided to have 100 nodes in our private
network.

2) Number of bootstrapping nodes: The Beam main
network includes multiple bootstrapping nodes in dif-
ferent geographical locations3. When a new node joins
the Beam network, it usually connects to bootstrapping
nodes at the beginning. Hence, bootstrapping nodes have
more connections and receive more stem transactions
compared to normal nodes. In our private network, there
are 10 bootstrapping nodes (out of a total of 100 nodes)
and normal nodes first connect to them upon joining the
network.

3) Number of adversarial nodes: This is a configurable
parameter of our private test network. For different
attacks, we might need different numbers of adversarial
nodes.

4) Versions of nodes: For the honest nodes, we use
the latest stable version of the “testnet” branch4. For
the adversarial nodes, we modify this source code to
implement each of our proposed attacks.

5) Number of connections per node: We do not change
the algorithm for finding new connections and we main-
tain all the node policies from the Beam main network
in the test network.

6) Probability of transitioning to the fluff phase: Sim-
ilar to the policy of the Beam main network and test
network, we set the probability of transitioning to the
fluff phase in each step of the stem phase in our private
network to 0.1.

2https://github.com/BeamMW/beam/tree/testnet
3https://beam.mw/downloads/mainnet-mac
4https://github.com/BeamMW/beam/commit/

cfe091468fbcfcd2092352c22a18099bf9d017f0

https://github.com/BeamMW/beam/tree/testnet
https://beam.mw/downloads/mainnet-mac
https://github.com/BeamMW/beam/commit/cfe091468fbcfcd2092352c22a18099bf9d017f0
https://github.com/BeamMW/beam/commit/cfe091468fbcfcd2092352c22a18099bf9d017f0

7) Mining: In our private test network, similar to the Beam
main network and test network, a new block is added
to the blockchain every minute, on average. The Beam
main network uses a Proof of Work (PoW) scheme to
grow the blockchain. Instead, in our private test network,
we use a fake mining scheme to avoid wasting our
resources on the expensive process of PoW mining. In
the fake mining scheme, nodes do not compete with each
other over mining new blocks. Fake mining is adequate
since our attack focuses on transaction relay and does
not assume malicious miners.

8) Transaction generation rate: This is a configurable
parameter of our private network. For most of our exper-
iments, we want to set the transaction generation rate in
a way that the frequency of stem transactions received
in the private network nodes reflects the frequency in
the Beam main network. Nevertheless, we also want to
be able to vary the transaction generation rate to observe
its effect on aggregations.

9) Number of wallets assigned to each node: We assign
one wallet to each node of the network because we want
newly generated transactions to be relayed from each
node.

We deployed our private test network across Azure virtual
machines running Ubuntu Server 18.04 LTS Gen 1. We
launched 100 virtual nodes in two geographically separated
VMs located in the Eastern United States and South East
Asia with each server containing 50 virtual nodes. The latency
between the virtual nodes in our setup is simulated by adding a
pseudorandom delay from a normal distribution with a mean of
100ms and a standard deviation of 20ms to each message using
the NetEm network emulator. The topology of the network is
controlled by the peer parameter in the command line interface
of the Beam node. Transactions are generated using the Beam
wallet Node.js API.

VII. EVALUATION

In this section, we evaluate our proposed attack on the
implementation of MimbleWimble in Beam. In particular, we
focus on the following question:

• How does maliciously aggregating a transaction with
other transactions increase the transaction processing time
from the user’s perspective?

To answer the question above, we need to determine the
proportion of transactions attacked by the adversarial nodes
and the impact of our proposed attack on a targeted transaction.
We use our network simulator to estimate the proportion of
transactions that the adversary can attack, given the percent-
age of adversarial nodes and other network parameters. To
determine the impact of our proposed attack on a targeted
transaction, we run a rogue node in our test network and
perform the attack.

Simulation results. The adversary can perform the attack
on a transaction if and only if an adversarial node is on the
stem path of that transaction. Therefore, to estimate the pro-
portion of transactions that the adversary can attack, we have

Table II: The default values for the parameters of the network
simulator.

Name Value
Percentage of Malicious Nodes 10%

Probability of Transitioning to the Fluff Phase 0.1
Number of Nodes 1000

Expected Degree of Each Node 10
Number of Bootstrapping Nodes 0

conducted several experiments with our network simulator to
estimate the percentage of stem paths that the adversary will
be incident on (also referred to as infected stem paths), given
the network parameters.

Table II presents the default values that we have used for
the parameters of the network simulator. We have set the
probability of transitioning to the fluff phase to 0.1 (similar to
the policy of the Beam main network), the number of nodes
to 1000, and the expected degree of each node to 10. We use
10 based on a measurement study: we recorded the number of
connections for a Beam main network node and a Beam test
network node, deployed on our University servers, every six
hours from April 21 2021 to April 23 2021. We observed that
the recorded numbers were between 11 and 14 for the main
network node and between 9 and 11 for the test network node.
Therefore, setting the default value for the expected degree of
each node to 10 is reasonable.

In each experiment, we have varied the value of one
network parameter while maintaining the default values for
other parameters. Hence, we have observed the effect of each
network parameter on the percentage of stem paths that pass
through the adversary.

Figure 3 shows the results of our experiments with the
network simulator. We observe that by increasing the percent-
age of malicious nodes in the network, the adversary will be
incident on more stem paths and therefore can attack more
transactions (Figure 3a). We also observe that increasing the
probability of transitioning to the fluff phase in each step
of the stem phase (and consequently decreasing the average
length of stem paths) decreases the percentage of stem paths
that pass through the adversary (Figure 3b). Nevertheless,
varying the values of other network parameters, such as the
number of nodes (Figure 3c), the expected degree of each
node (Figure 3d), and the number of bootstrapping nodes
(Figure 3e), does not particularly affect the percentage of stem
paths that pass through the adversary. The probability that a
stem transaction passes through the adversary depends on the
probability that the transaction arrives at an adversarial node
in each step of the stem phase and also on the number of steps.
The percentage of adversarial nodes in the network determines
the probability that a transaction arrives at such a node in
each step of the stem phase. Furthermore, the probability of
transitioning to the fluff phase in each step of the stem phase
determines the average number of steps. These are the reasons
why the percentage of stem paths that the adversary will be
incident on depends on the percentage of adversarial nodes
in the network and the probability of transitioning to the fluff

phase, but not the other parameters.
Let us consider the cases where the probability of transi-

tioning to the fluff phase in each step of the stem phase is
set to 0.1 (similar to the Beam main network). We note that if
10% of the nodes are malicious, the adversary will be incident
on the stem paths of more than 45% of all transactions in the
network and hence can attack those transactions. Increasing the
percentage of malicious nodes to 30% increases the percentage
of transactions that the adversary can attack to over 70%.

5 10 15 20 25 30 35 40 45 50
Percentage of Malicious Nodes

0

25

50

75

100

%
 o

f I
nf

ec
te

d
Pa

th
s

(a)

.05 .10 .15 .20 .25 .30 .35 .40 .45 .50
Prob. of Transitioning to Fluff Phase
0

25

50

75

100
%

 o
f I

nf
ec

te
d

Pa
th

s

(b)

100 200 300 400 500 600 700 800 9001000
Number of Nodes

0

25

50

75

100

%
 o

f I
nf

ec
te

d
Pa

th
s

(c)

10 20 30 40 50 60 70 80 90100
Expected Degree of Each Node

0

25

50

75

100

%
 o

f I
nf

ec
te

d
Pa

th
s

(d)

10 20 30 40 50 60 70 80 90100
Number of Bootstrapping Nodes

0

25

50

75

100

%
 o

f I
nf

ec
te

d
Pa

th
s

(e)

Figure 3: The percentage of stem paths that the adversary will
be incident on, also referred to as infected paths, with (a) vary-
ing percentages of malicious nodes, (b) varying probabilities of
transitioning to the fluff phase in each step of the stem phase,
(c) varying numbers of nodes, (d) varying expected degrees of
nodes, and (e) varying numbers of bootstrapping nodes.

Testnet results. To measure the impact of our attack, we
added a rogue node to a private test network. Our rogue node
performed the attack on 300 incoming stem transactions. For
each attacked transaction TA, our rogue node generated a new
transaction TB with higher profitability compared to TA and
fluffed TA + TB and TB . For each attacked transaction TA

and its corresponding adversarial transaction TB , we observed
whether TA + TB or TB ended up in the blockchain.

Our rogue node successfully prevented 100% of the attacked
transactions from ending up in the blockchain. In fact, for
each attacked transaction TA and its corresponding adversarial
transaction TB , TA + TB had lower profitability compared to
TB and hence TB ended up in the blockchain. Therefore, if
10% of the nodes are malicious, the adversary can attack more
than 45% of all transactions and prevent them from ending up
in the blockchain.

We have also measured the latency of 300 normally relayed
stem transactions and compared this latency against the latency
of transactions that the adversary generated to perform the
denial of service attack. We measured the latency of each nor-
mally relayed transaction by calculating the difference between
the time that our node received that transaction in the stem
phase and the time that the transaction was recorded in the
blockchain (obtained from the block timestamp). We measured
the latency of each adversarial transaction by determining the
difference between the time that our rogue node generated that
transaction and the time that the transaction was recorded in
the blockchain.

Figure 4 shows the latency results. The average latency
for the adversarial transactions in the attack is 29s and it is
slightly lower than the average latency for normally relayed
transactions, which is 31s. That is because the adversary
immediately fluffs the newly generated transactions to perform
the attack.

0 10 20 30 40 50 60 70 80
Transaction Latency (s)

Adversarial
 (Newly

 Generated)

Normally
 Relayed

Figure 4: Latency distribution comparison of the normally
relayed transactions and the transactions that the adversary
generated to perform the DoS attack with aggregations.

VIII. DISCUSSION

Cost of attack. The cost of the attack for the adversary
are the transaction fees of newly generated transactions. The
adversary can reduce the cost for a newly generated transaction
by reducing its size while choosing a sufficient transaction fee
so that the profitability (defined as Transaction fee

Transaction size) of the
new transaction is higher than the profitability of the incoming
stem transaction that it is aggregated with. Moreover, if the
adversary modifies each of its nodes to aggregate multiple
incoming stem transactions that arrive within a short period of
time with one new transaction, then the adversary can reduce
the number of newly generated transactions and hence the total
cost of the attack.

Attack is limited to transactions along stem paths. We
note that this attack does not work on fluffed transactions.
Let us consider the case that an adversarial node aggregates
an incoming fluff transaction TA with a newly generated
transaction TB and fluffs both TA+TB and TB . The fact that
TA was sent to the adversarial node in the fluff phase means
that some honest node(s) had TA as a fluff transaction. Since
honest nodes follow the protocol and relay the incoming fluff

transactions without aggregating them, TA will be broadcasted
through the network. Hence, TA can still end up in the
blockchain, even if miners prioritize TB over TA + TB .

Attack mitigations. One way to mitigate this attack is
to modify the wallet’s source code to periodically resend
previously broadcasted transactions that have not yet ended
up in the blockchain. Increasing the number of retries for
a transaction exponentially decreases the probability that the
transaction does not appear in the blockchain. Nonetheless,
even if we modify the wallet’s source code, the attack can
still significantly increase the latency for transactions. We also
note that resending a transaction too frequently could cause the
transaction to appear in multiple aggregations and therefore
prevent other transactions from ending up in a block.

Another mitigation is to consider alternative routing pro-
tocols, such as those developed in the context of ad hoc
networks, such as Castor [28]. In these protocols, each node
keeps an estimate of reliability for each of its neighbors
and makes routing decisions based on those estimates. We
conjecture that there is value in adopting a similar idea
to blockchain protocols concerned with source privacy. One
design is for each node in the blockchain network to maintain
an internal reliability score for each of its neighbors. The
scores would be updated based on the feedback that nodes
receive regarding the propagation of the transactions that they
relayed to their neighbors. Using reliability scores, nodes
can improve their relaying decisions. Scoring schemes have
also been incorporated in other blockchain networks, such as
Filecoin and Ethereum 2.0 [29].

We can also modify the protocol and disallow aggregation
of transactions during the relay phase. For example, we could
allow aggregation to occur only when transactions are being
added to the blockchain. This approach mitigates the proposed
denial of service attack but may compromise the content pri-
vacy of transactions as network nodes can observe transactions
before they are aggregated with other transactions during the
relay phase. Nonetheless, based on the information obtained
from the log files of some Beam bootstrapping nodes5 and
also our main network node (deployed on University servers)
from April 21, 2021, to April 23, 2021, we have observed that
over 64% of the incoming stem transactions to each of these
nodes were not aggregated.

Other attacks against MimbleWimble. Besides the denial
of service attack described in this paper, we have designed and
validated the modification of two well-known attacks [11], [30]
against the Beam implementations of MimbleWimble. Here
we briefly summarize our results. For more information about
these attacks and our results please see the associated MSc
thesis [31].

1) Improved transaction source detection: In this attack,
the adversary uses information obtained from the content
of incoming stem transactions for improved detection of

5We have obtained information from the log files of bootstrapping nodes
located in Europe-Frankfurt, USA-California, Hong Kong, and Singapore from
the Beam developer community.

the transaction source. We observed that the precision
of the first node detection attack is 32% for the single-
kernel transactions while only 12% for aggregated trans-
actions. Therefore, performing the first node detection
attack only on single-kernel transactions would lead to
an improved transaction source detection.

2) Delaying transaction relay: In this attack, to increase
the latency of incoming transactions, the adversary adds
excessive delays before forwarding stem transactions.
We found that if 10% of the network nodes are adver-
sarial, by delaying transaction relay, the adversary can
increase the expected transaction latency by over 31%.

Independent code review finds bugs. While studying the
Beam source code, we found a validation bug in the function
OnTransactionFluff (Algorithm 5). This bug would allow an
attacker to change the state of the stempool in an honest node
by sending invalid transactions. We communicated with the
Beam developer community about this issue and they modified
the source code so that the function OnTransactionFluff would
validate transactions earlier6. To us, this experience further
illustrates the value of independent code review for blockchain
codebases.

IX. CONCLUSION

MimbleWimble offers enhanced content privacy and promi-
nent implementations of MimbleWimble, such as Beam, have
adopted Dandelion++ for source privacy in transaction relay.

This paper contributes a transaction denial of service attack
that uses MimbleWimble aggregation in combination with the
Dandelion++ design. We evaluated this attack in a private test
network of 100 Beam nodes. We found that if 10% of the
network nodes are adversarial, the attacker can prevent over
45% of all transactions from ending up in the blockchain. We
also presented several ideas for potential ways to mitigate this
attack. We hope that our work will encourage more researchers
to study MimbleWimble blockchains and their deployments.

ACKNOWLEDGMENT

This work was supported by the Blockchain@UBC research
cluster at the University of British Columbia, the Natural Sci-
ences and Engineering Research Council of Canada (NSERC),
Mitacs, and Aquanow. The authors would also like to thank
the Beam developer community and Gleb Naumenko for their
contributions to this project.

REFERENCES

[1] E. Androulaki, G. O. Karame, M. Roeschlin, T. Scherer, and S. Capkun,
“Evaluating user privacy in bitcoin,” in International Conference on
Financial Cryptography and Data Security. Springer, 2013, pp. 34–51.

[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[3] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M.

Voelker, and S. Savage, “A fistful of bitcoins: characterizing payments
among men with no names,” in Proceedings of the 2013 conference on
Internet measurement conference, 2013, pp. 127–140.

6https://github.com/BeamMW/beam/commit/
ade19e1f8b1a702ad81d81092ba6a8f6561513ed

https://github.com/BeamMW/beam/commit/ade19e1f8b1a702ad81d81092ba6a8f6561513ed
https://github.com/BeamMW/beam/commit/ade19e1f8b1a702ad81d81092ba6a8f6561513ed

[4] M. Ober, S. Katzenbeisser, and K. Hamacher, “Structure and anonymity
of the bitcoin transaction graph,” Future internet, vol. 5, no. 2, pp. 237–
250, 2013.

[5] D. Ron and A. Shamir, “Quantitative analysis of the full bitcoin trans-
action graph,” in International Conference on Financial Cryptography
and Data Security. Springer, 2013, pp. 6–24.

[6] S. Noether, “Ring signature confidential transactions for
Monero,” Cryptology ePrint Archive, Report 2015/1098, 2015,
https://eprint.iacr.org/2015/1098.

[7] D. Hopwood, S. Bowe, T. Hornby, and N. Wilcox, “Zcash protocol
specification,” GitHub: San Francisco, CA, USA, 2016.

[8] A. Poelstra, “Mimblewimble,” 2016.
[9] E. Rohrer and F. Tschorsch, “Counting down thunder: Timing attacks on

privacy in payment channel networks,” in Proceedings of the 2nd ACM
Conference on Advances in Financial Technologies, 2020, pp. 214–227.

[10] S. Bojja Venkatakrishnan, G. Fanti, and P. Viswanath, “Dandelion:
Redesigning the bitcoin network for anonymity,” Proceedings of the
ACM on Measurement and Analysis of Computing Systems, vol. 1, no. 1,
pp. 1–34, 2017.

[11] G. Fanti, S. B. Venkatakrishnan, S. Bakshi, B. Denby, S. Bhargava,
A. Miller, and P. Viswanath, “Dandelion++ lightweight cryptocurrency
networking with formal anonymity guarantees,” Proceedings of the ACM
on Measurement and Analysis of Computing Systems, vol. 2, no. 2, pp.
1–35, 2018.

[12] T. Mitani and A. Otsuka, “Anonymous probabilistic payment in payment
hub,” 2020.

[13] G. Maxwell, “Confidential transactions,” 2016.
[14] ——, “Coinjoin: Bitcoin privacy for the real world,” in Post on Bitcoin

forum, 2013.
[15] “Grin developers, Grin,” https://grin-tech.org/, accessed: 2021-04-23.
[16] “Beam developers, Beam,” https://beam.mw/, accessed: 2021-04-23.
[17] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse attacks on

bitcoin’s peer-to-peer network,” in 24th {USENIX} Security Symposium
({USENIX} Security 15), 2015, pp. 129–144.

[18] A. Biryukov, D. Khovratovich, and I. Pustogarov, “Deanonymisation
of clients in bitcoin p2p network,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, 2014,
pp. 15–29.

[19] G. Fanti and P. Viswanath, “Deanonymization in the bitcoin p2p net-
work,” in Proceedings of the 31st International Conference on Neural
Information Processing Systems, 2017, pp. 1364–1373.

[20] C. Decker and R. Wattenhofer, “Bitcoin transaction malleability and
mtgox,” in European Symposium on Research in Computer Security.
Springer, 2014, pp. 313–326.

[21] M. Andrychowicz, S. Dziembowski, D. Malinowski, and Ł. Mazurek,
“On the malleability of bitcoin transactions,” in International Conference
on Financial Cryptography and Data Security. Springer, 2015, pp. 1–
18.

[22] A. Gervais, H. Ritzdorf, G. O. Karame, and S. Capkun, “Tampering with
the delivery of blocks and transactions in bitcoin,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security, 2015, pp. 692–705.

[23] K. Baqer, D. Y. Huang, D. McCoy, and N. Weaver, “Stressing out:
Bitcoin “stress testing”,” in International Conference on Financial
Cryptography and Data Security. Springer, 2016, pp. 3–18.

[24] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell,
“Bulletproofs: Short proofs for confidential transactions and more,” in
2018 IEEE Symposium on Security and Privacy (SP). IEEE, 2018, pp.
315–334.

[25] G. Fuchsbauer, M. Orrù, and Y. Seurin, “Aggregate cash systems: A
cryptographic investigation of mimblewimble,” in Annual International
Conference on the Theory and Applications of Cryptographic Tech-
niques. Springer, 2019, pp. 657–689.

[26] G. Betarte, M. Cristiá, C. Luna, A. Silveira, and D. Zanarini, “Towards a
formally verified implementation of the mimblewimble cryptocurrency
protocol,” in International Conference on Applied Cryptography and
Network Security. Springer, 2020, pp. 3–23.

[27] A. Silveira, G. Betarte, M. Cristiá, and C. Luna, “A formal anal-
ysis of the mimblewimble cryptocurrency protocol,” arXiv preprint
arXiv:2104.00822, 2021.

[28] W. Galuba, P. Papadimitratos, M. Poturalski, K. Aberer, Z. Despotovic,
and W. Kellerer, “Castor: Scalable secure routing for ad hoc networks,”
in 2010 Proceedings IEEE INFOCOM. IEEE, 2010, pp. 1–9.

[29] D. Vyzovitis, Y. Napora, D. McCormick, D. Dias, and Y. Psaras,
“Gossipsub: Attack-resilient message propagation in the filecoin and
eth2. 0 networks,” arXiv preprint arXiv:2007.02754, 2020.

[30] P. Koshy, D. Koshy, and P. McDaniel, “An analysis of anonymity
in bitcoin using p2p network traffic,” in International Conference on
Financial Cryptography and Data Security. Springer, 2014, pp. 469–
485.

[31] S. A. Tabatabaee, “Attacking transaction relay in mimblewimble
blockchains,” Master’s thesis, University of British Columbia, 2021.

https://grin-tech.org/
https://beam.mw/

	Introduction
	Background
	Dandelion++ overview
	MimbleWimble (MW) overview

	Transaction Relay in Beam
	Threat Model
	Approach
	Implementation
	Evaluation
	Discussion
	Conclusion
	References

