Tolerating Faults
iN Disaggregated
Datacenters

Amanda Carbonari, lvan Beschastnikh
University of British Columbia

Memory
blade

Memory
blade

Storage

blade | \ / m—
ompute
o Network fabric blaze
Storage — /
blade Compute
| Controller | " SE

Virtualization

App | =t | App
HotNets17/




Server

Memory

Compute

Storage

Server

Memory

Compute

™

Storage

A4

Server

Memory

Compute

Storage

Network fabric

2

/

~—

-—-—-———""/

Controller

_//-v

Server

Memory

Compute

Storage




Storage
resource

Memory
resource

A

Storage
blade

IVIemory
blade

X

Compute
resource

Memory
blade

.y

U

Network fabric

Compute

blade

Storage
blade

——_._/

~ |

S

Controller

.

oer® |

Compute

blade




Hre-future: Disaggregation is coming

> |ntel Rack Scale Design, Ericsson Hyperscale
Datacenter System 8000

1
% &
= %
2
5 ©

o
= >
o | Ll
8
B -

4




Disaggregation Research Space

Network + disaggregation [R2C2 TR
SIGCOMM'’15, Gao et. al. OSDI'16] :

CPU blade

Memory disaggregation [Raoet. al.
ANCS’'16, Gu et. al. NSDI’17, Aguileraet.al. =
SoCC’17]

Storage i
blade :
E
H .

F

Flash/Storage disaggregation
[Klimovic et. al. EuroSys’16, Legtchenko et.
al. HotStorage’17, Decibel NSDI'17]

Our research focus: how to build systems on DDCs ‘




Our Assumptions

CPU blade

CPU blade

CPU blade

CPU

CPU




What happens if a resource fails?

How should applications observe resource failures?

DC: resources fate share DDC: resources do not fate share
cPU | ey | CPU | Tremy |
CPU Mem CPU Mem
Server Disaggregated Server

DDC fate sharing should be enforced in the network.




Why enforce fate sharing in the
network?

> Reasonable to assume legacy applications will run on
DDCs unmodified

> All memory accesses are across the rack network

> Interposition layer = Software Defined Networking
(SDN)



Fault tolerance in DDCs

> Fate sharing exposes a failure type to higher layers
(failure granularity)

> Techniques inspired by related work

o Distributed systems [Bonvinet. al. S5oCC’10, GFS

OSDI'03, Shen et. al. VLDB’14, Xu et. al. ICDE’16] CPU
o HAVMs and systems [Bressoud et. al. SOSP’95, Bernick

et. al. DSN’05, Remus NSDI'08]
CPU

Mem

o HPC [Bronevetsky et. al. PPoPP’03, Egwutuoha et. al. Journal

of Supercomputing’13]

> QOpen research question: how to integrate existing
fault tolerance techniques into DDC?




Memory

failure

Traditional fate sharing models

Non-traditional fate sharing models

CPU
failure

Coarse

Granularity of fate sharing Fine

10



Tainted Fate Sharing

>

Memory fails — CPU reading/using
memory fails with

CPU fails while writing to one replica—
inconsistent memory fails (V1)

Modularity vs. performance

Open research question: implications of
dynamic computation in-network

CPU ”

CPU Mem
v

U

Memory
failure

Mem Mem

Uy Yo

CPU
failure

11



Traditional fate sharing models Non-traditional fate sharing models

Memory
failure

DDC fate sharing should be both enforced by the network

and programmable.
25
OF
Coarse Granularity of fate sharing Fine

12




Programmable Fate Sharing

> @Goal: can describe an arbitrary fate sharing model and
install in the network

> Model specification includes
o Failure detection
o Failure domain
o Failure mitigation (optional)
> QOpen research questions:
o Who should define the specification?

o What workflow should be used for transformation of specification to
switch machine code?

13




App
Developer

@ Spec

=1 Controller

Application
Resource Resource
blade blade
A A
: Monitoring |
Compilation v ¥
9 Failure
detection )
0 = o Switch
Failures Sk
rules
& !

Failure domain rules

14



Fate Sharing Specification

> Provides interface between components

> High-level language — high-level networking

language [1] — compiles to switch

Application

> Open research questions: A

Resource

blade

Resource
blade

o Spec verification?

ec 4 ‘
@ o i @ Monitoring |
Compilation v v

Switch

o Language and switch —pre— =
i o
requirements for
eXp reSSive neSS? Failure d:)\%ain rules T

[1] FatTire HotSDN’13, NetKAT POPL’14, Merlin CONEXT’14, P4 CCR’14, SNAP SIGCOMM’16

15



Vision: programmable, in-network fate sharing

Open research questions

>

Failure semantics for GPUs?
Storage?

Switch or controller failure?
Correlated failures?

Other non-traditional fate
sharing models?

Fault tolerance
- Checkpointing

Application

- Replication
+ - Logging, etc

Virtualization

|| Failure granularity
(e.g., process)

Fate sharing
- Fault detection
- Domain computation
- Domain enforcement

Network fabric

(SDN)

Thank you!

16



Backup slides

17



Traditional fate sharing models Non-traditional fate sharing models

-3
S e |lcrPu CPU CPU.,, CPU
3
€= | | |
S8 Mem
= CPU Mem CPU Mem S v CPU Mem
o || CPU Mem CPU Mem MBI, CPU Mem
I
a3 | | | | |
el Mem Mem IVIemUO Metn, Mem
VM Process Tainted fate sharing No fate sharing
(Complete fate sharing) (Partial fate sharing)
Coarse Granularity of fate sharing Fine

18




In-Network Memory Replication

>

Port mirror CPU operations to memory replicas,
automatically recovers replica during failure

Challenges: coherency, network delay, etc.

Different assumptions than previous work

o Persistent storage backings [Sinfonia SOSP’'07, RAMCloud SOSP’11,
FaRM NSDI’'14, Infiniswap NSDI'17]

Must consider network requirements
o Combined solutions [GFS OSDI'03, Ceph OSDI'06]
o Performance sensitive [Costaet. al. OSDI'96]

19



In-Network CPU Checkpointing

>

Controller checkpoints processor state to remote
memory (state attached operation packets)

Challenges: consistent client view, checkpoint
retention, non-idempotent operations, etc.

Different requirements than previous work

o Low tail-latency [Remus NSDI'08, Bressoud et. al. SOSP’95]

Similar trade-offs (application specific vs generality)
o Protocol [DMTCP IPDPS’09, Bronevetskey et. al. PPoPP’03]

o  Workflow [Shenet.al. VLDB 14, Xu et. al. ICDE’16]

20



Passive Application

> Defines what information
must be collected during
normal execution

Monitoring

@ Spec E‘

Application

App
Developer

Resource

blade

Resource
blade

Compilation

Y
=l Controller

Failures

:@Monitoring | |
L N

e
<\@/’ detection

Forwarding

Switch

o Domain table e
. . &—]
o Context information Failure: domals futes
o Application protocol headers opu_ip memory._ip start | ack
X.X.X.X X.X.X.X t t
S a
src IP src port dst IP dst port rtype op tstamp

21



Application Failure Notification

> Spec defines notification semantics
> When controller gets notified of failure —
notifies application
‘ Application

Resource | | Resource
P blade blade
S A A
@ o | @Monitoring !
Compilation v v

E Controller 2 | Failure
detection .
Switch
orwarding

Failures
rules

&

Failure domain rules

22




Active Failure Mitigation

> Defines how to generate a
failure domain and what
rules to install on the
switch

> Compares every domain
entry to failed resource to
build failure domain

> |nstalls rules based on
mitigation action

App
Developer

(1) spec ?

Application

Resource
blade

blade

Resource

Compilation

A .
! @Momtorlng !
v

3
v

E1 Controller

Failure
detection

Failures

Forwarding

rules

Switch

5)

Failure domain rules

23




In-Network Memory Recovery

Normal Execution

Mem 1 Mem 2 Mem 3
X 7 &
X SDN
G\YSWI’[CI’I Controller

\

i

CPU

24



Under Failure

Mem 3

-1-(4,5,6) gpN
‘|s» Controller

25



