
Tolerating Faults
in Disaggregated
Datacenters

Amanda Carbonari, Ivan Beschastnikh

University of British Columbia HotNets17

Today’s Datacenters

2

The future: Disaggregation

3

The future: Disaggregation
▷ Intel Rack Scale Design, Ericsson Hyperscale

Datacenter System 8000

4

The future: Disaggregation is coming

▷ HP The Machine

▷ UC Berkeley Firebox

Disaggregation Research Space

Flash/Storage disaggregation
[Klimovic et. al. EuroSys’16, Legtchenko et.
al. HotStorage’17, Decibel NSDI’17]

5

ToR

CPU blade

Memory
blade

Storage
blade

Network + disaggregation [R2C2
SIGCOMM’15, Gao et. al. OSDI’16]

Memory disaggregation [Rao et. al.
ANCS’16, Gu et. al. NSDI’17, Aguilera et. al.
SoCC’17]

Our research focus: how to build systems on DDCs

ToR

CPU blade

Memory
blade

Storage
blade

CPU CPU

CPUCPU

ToR

CPU blade

Memory
blade

Storage
blade

Rack-scalePartial Disaggregation

Our Assumptions

6

ToR

CPU blade

Memory
blade

Memory

Memory
Storage
blade

CPU Blade Memory Blade

Mem Mem

Mem Mem

CPU

CPU

What happens if a resource fails?

DC: resources fate share

7

Server

DDC: resources do not fate share

Disaggregated Server

How should applications observe resource failures?

DDC fate sharing should be enforced in the network.

Why enforce fate sharing in the
network?
▷ Reasonable to assume legacy applications will run on

DDCs unmodified

▷ All memory accesses are across the rack network

▷ Interposition layer = Software Defined Networking
(SDN)

8

Fault tolerance in DDCs
▷ Fate sharing exposes a failure type to higher layers

(failure granularity)

9

▷ Techniques inspired by related work
○ Distributed systems [Bonvin et. al. SoCC’10, GFS

OSDI’03, Shen et. al. VLDB’14, Xu et. al. ICDE’16]

○ HA VMs and systems [Bressoud et. al. SOSP’95, Bernick
et. al. DSN’05, Remus NSDI’08]

○ HPC [Bronevetsky et. al. PPoPP’03, Egwutuoha et. al. Journal
of Supercomputing’13]

▷ Open research question: how to integrate existing
fault tolerance techniques into DDC?

Fate Sharing Granularities

10

Tainted Fate Sharing
▷ Memory fails → CPU reading/using

memory fails with

▷ CPU fails while writing to one replica→
inconsistent memory fails (v1)

▷ Modularity vs. performance

▷ Open research question: implications of
dynamic computation in-network

11

Fate Sharing Granularities

12

Containers? Serverless?
DDC fate sharing should be both enforced by the network

and programmable.

▷ Goal: can describe an arbitrary fate sharing model and
install in the network

▷ Model specification includes
○ Failure detection

○ Failure domain

○ Failure mitigation (optional)

▷ Open research questions:
○ Who should define the specification?

○ What workflow should be used for transformation of specification to
switch machine code?

13

Programmable Fate Sharing

Proposed Workflow

14

Fate Sharing Specification
▷ Provides interface between components

▷ High-level language → high-level networking
language [1] → compiles to switch

15[1] FatTire HotSDN’13, NetKAT POPL’14, Merlin CoNEXT’14, P4 CCR’14, SNAP SIGCOMM’16

▷ Open research questions:

○ Spec verification?

○ Language and switch
requirements for
expressiveness?

Vision: programmable, in-network fate sharing

16

▷ Failure semantics for GPUs?
Storage?

▷ Switch or controller failure?
▷ Correlated failures?
▷ Other non-traditional fate

sharing models?

Open research questions

Thank you!

Backup slides

17

18

In-Network Memory Replication
▷ Port mirror CPU operations to memory replicas,

automatically recovers replica during failure

▷ Challenges: coherency, network delay, etc.

▷ Different assumptions than previous work
○ Persistent storage backings [Sinfonia SOSP’07, RAMCloud SOSP’11,

FaRM NSDI’14, Infiniswap NSDI’17]

▷ Must consider network requirements
○ Combined solutions [GFS OSDI’03, Ceph OSDI’06]

○ Performance sensitive [Costa et. al. OSDI’96]

19

In-Network CPU Checkpointing
▷ Controller checkpoints processor state to remote

memory (state attached operation packets)

▷ Challenges: consistent client view, checkpoint
retention, non-idempotent operations, etc.

▷ Different requirements than previous work

○ Low tail-latency [Remus NSDI’08, Bressoud et. al. SOSP’95]

▷ Similar trade-offs (application specific vs generality)

○ Protocol [DMTCP IPDPS’09, Bronevetskey et. al. PPoPP’03]

○ Workflow [Shen et. al. VLDB’14, Xu et. al. ICDE’16]
20

▷ Defines what information
must be collected during
normal execution
○ Domain table

○ Context information

○ Application protocol headers

Passive Application Monitoring

21

cpu_ip memory_ip start ack

x.x.x.x x.x.x.x ts ta

src IP src port dst IP dst port rtype op tstamp

Application Failure Notification
▷ Spec defines notification semantics
▷ When controller gets notified of failure →

notifies application

22

Active Failure Mitigation
▷ Defines how to generate a

failure domain and what
rules to install on the
switch

▷ Compares every domain
entry to failed resource to
build failure domain

▷ Installs rules based on
mitigation action

23

In-Network Memory Recovery
Normal Execution

24

In-Network Memory Recovery

25

Under Failure

