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Hre-future: Disaggregation is coming

> |ntel Rack Scale Design, Ericsson Hyperscale
Datacenter System 8000
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Disaggregation Research Space

Network + disaggregation [R2C2 TR
SIGCOMM'’15, Gao et. al. OSDI'16] :

CPU blade

Memory disaggregation [Raoet. al.
ANCS’'16, Gu et. al. NSDI’17, Aguileraet.al. =
SoCC’17]

Storage i
blade :
E
H .

F

Flash/Storage disaggregation
[Klimovic et. al. EuroSys’16, Legtchenko et.
al. HotStorage’17, Decibel NSDI'17]

Our research focus: how to build systems on DDCs ‘




Our Assumptions
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What happens if a resource fails?

How should applications observe resource failures?

DC: resources fate share DDC: resources do not fate share
cPU | ey | CPU | Tremy |
CPU Mem CPU Mem
Server Disaggregated Server

DDC fate sharing should be enforced in the network.




Why enforce fate sharing in the
network?

> Reasonable to assume legacy applications will run on
DDCs unmodified

> All memory accesses are across the rack network

> Interposition layer = Software Defined Networking
(SDN)



Fault tolerance in DDCs

> Fate sharing exposes a failure type to higher layers
(failure granularity)

> Techniques inspired by related work

o Distributed systems [Bonvinet. al. S5oCC’10, GFS

OSDI'03, Shen et. al. VLDB’14, Xu et. al. ICDE’16] CPU
o HAVMs and systems [Bressoud et. al. SOSP’95, Bernick

et. al. DSN’05, Remus NSDI'08]
CPU

Mem

o HPC [Bronevetsky et. al. PPoPP’03, Egwutuoha et. al. Journal

of Supercomputing’13]

> QOpen research question: how to integrate existing
fault tolerance techniques into DDC?
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Tainted Fate Sharing

>

Memory fails — CPU reading/using
memory fails with

CPU fails while writing to one replica—
inconsistent memory fails (V1)

Modularity vs. performance

Open research question: implications of
dynamic computation in-network
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Traditional fate sharing models Non-traditional fate sharing models

Memory
failure

DDC fate sharing should be both enforced by the network

and programmable.
25
OF
Coarse Granularity of fate sharing Fine
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Programmable Fate Sharing

> @Goal: can describe an arbitrary fate sharing model and
install in the network

> Model specification includes
o Failure detection
o Failure domain
o Failure mitigation (optional)
> QOpen research questions:
o Who should define the specification?

o What workflow should be used for transformation of specification to
switch machine code?
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Fate Sharing Specification

> Provides interface between components

> High-level language — high-level networking

language [1] — compiles to switch

Application

> Open research questions: A

Resource

blade

Resource
blade

o Spec verification?

ec 4 ‘
@ o i @ Monitoring |
Compilation v v

Switch

o Language and switch —pre— =
i o
requirements for
eXp reSSive neSS? Failure d:)\%ain rules T

[1] FatTire HotSDN’13, NetKAT POPL’14, Merlin CONEXT’14, P4 CCR’14, SNAP SIGCOMM’16
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Vision: programmable, in-network fate sharing

Open research questions

>

Failure semantics for GPUs?
Storage?

Switch or controller failure?
Correlated failures?

Other non-traditional fate
sharing models?

Fault tolerance
- Checkpointing

Application

- Replication
+ - Logging, etc

Virtualization

|| Failure granularity
(e.g., process)

Fate sharing
- Fault detection
- Domain computation
- Domain enforcement

Network fabric

(SDN)

Thank you!
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Backup slides
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Traditional fate sharing models Non-traditional fate sharing models
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I
a3 | | | | |
el Mem Mem IVIemUO Metn, Mem
VM Process Tainted fate sharing No fate sharing
(Complete fate sharing) (Partial fate sharing)
Coarse Granularity of fate sharing Fine
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In-Network Memory Replication

>

Port mirror CPU operations to memory replicas,
automatically recovers replica during failure

Challenges: coherency, network delay, etc.

Different assumptions than previous work

o Persistent storage backings [Sinfonia SOSP’'07, RAMCloud SOSP’11,
FaRM NSDI’'14, Infiniswap NSDI'17]

Must consider network requirements
o Combined solutions [GFS OSDI'03, Ceph OSDI'06]
o Performance sensitive [Costaet. al. OSDI'96]
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In-Network CPU Checkpointing

>

Controller checkpoints processor state to remote
memory (state attached operation packets)

Challenges: consistent client view, checkpoint
retention, non-idempotent operations, etc.

Different requirements than previous work

o Low tail-latency [Remus NSDI'08, Bressoud et. al. SOSP’95]

Similar trade-offs (application specific vs generality)
o Protocol [DMTCP IPDPS’09, Bronevetskey et. al. PPoPP’03]

o  Workflow [Shenet.al. VLDB 14, Xu et. al. ICDE’16]
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Passive Application

> Defines what information
must be collected during
normal execution

Monitoring

@ Spec E‘
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o Application protocol headers opu_ip memory._ip start | ack
X.X.X.X X.X.X.X t t
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Application Failure Notification

> Spec defines notification semantics
> When controller gets notified of failure —
notifies application
‘ Application

Resource | | Resource
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Failure domain rules
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Active Failure Mitigation

> Defines how to generate a
failure domain and what
rules to install on the
switch

> Compares every domain
entry to failed resource to
build failure domain

> |nstalls rules based on
mitigation action
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In-Network Memory Recovery

Normal Execution
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Under Failure
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