
Tolerating Faults 
in Disaggregated 
Datacenters

Amanda Carbonari, Ivan Beschastnikh

University of British Columbia To appear at HotNets17



Current Datacenters

2



The future: Disaggregation

3

ToR

CPU blade

Memory 
blade

Storage 
Blade



The future: Disaggregation
▷ Intel Rack Scale Design, Ericsson Hyperscale 

Datacenter System 8000

4

The future: Disaggregation is coming

▷ HP The Machine

▷ UC Berkeley Firebox



Disaggregation benefits
▷ Operator benefits 

○ Upgrade improvements [1]
■ 44% reduction in cost
■ 77% reduction in effort

○ Increased density
○ Improved cooling

▷ Users desire similar semantics

5
[1] Krishnapura et. al., Disaggregated Servers Drive Data Center Efficiency and Innovation, Intel 
Whitepaper 2017 https://www.intel.com/content/www/us/en/it-management/intel-it-best-practices/disaggregated-server-architecture-drives-data-center-efficiency-paper.html



Disaggregation Research Space
▷ Flash/Storage disaggregation [Klimovic et. al. 

EuroSys’16, Legtchenko et. al. HotStorage’17, Decibel 
NSDI’17]

▷ Network + disaggregation [R2C2 SIGCOMM’15, 
Gao et. al. OSDI’16]

▷ Memory disaggregation [Rao et. al. ANCS’16, Gu 
et. al. NSDI’17, Aguilera et. al. SoCC’17]

6



Disaggregated Datacenters (DDC)

7

ToR

CPU blade

Memory 
blade

CPU CPU

CPUCPU
Memory

Memory

What happens if a resource fails within a blade?

Storage 
blade

ToR

CPU blade

Memory 
blade

Storage 
blade

ToR

CPU blade

Memory 
blade

Storage 
blade

Rack-scalePartial Disaggregation



A change in fate sharing paradigm
DC: resources fate share

8

Server

DDC: resources do not fate share

Disaggregated Server

How can legacy applications run on DDCs when they do not 
reason about resource failures?

DDC fate sharing should be solved in the network.



Why in the network?
▷ Reasonable to assume legacy applications will run on 

DDCs
▷ All memory accesses are across the rack 

intra-network
▷ Interposition layer = Software Defined Networking 

(SDN)

9

Network solutions should be (at least) explored. 



Fate Sharing+Fault tolerance in DDCs
▷ Fate sharing exposes a failure type to higher layers 

(failure granularity)

10

▷ Fault tolerance scheme 
depends on failure 
granularity

▷ Open research question: 
where should fault 
tolerance be 
implemented?



DDC Fate Sharing Granularities

11



Complete Fate Sharing (VM Failure)
▷ Fail all resources connected to/use the 

failed resource

▷ Enforcement

○ Isolate failure domain

○ SDN controller installs rules to drop failure 
domain packets

○ Similar to previous SDN work [1]

▷ Challenge: atomic failures

12[1] Albatross EuroSys’15 



Complete Fate Sharing
▷ Fault tolerance techniques

○ Mainly implemented in higher layers

○ High-availability VMs [1], distributed systems fault 
tolerance [2]

▷ Trade-offs
○ No legacy application change

○ Does not expose DDC modularity benefits

○ Best for single machine applications (GraphLab)

13

[1] Bressoud et. al. SOSP’95, Remus NSDI’08 
[2] Bonvin et. al. SoCC’10, GFS OSDI’03, Shen et. al. VLDB’14, Xu et. al. ICDE’16



Fate Sharing Granularities

14



Partial Fate Sharing (Process Failure)
▷ Expose process failure semantics

○ Memory failure: fail attached CPU
○ CPU failure: fail memory (remove stale state)

▷ Enforcement: 
○ Same as complete fate sharing
○ Just smaller scale

▷ Fault tolerance techniques
○ Mainly handled at the higher layers

○ Similar to previous fault tolerance work for processes 
or tasks [1]

15[1] MapReduce OSDI’04



Partial Fate Sharing
▷ Trade-offs:

○ Still exposes legacy failure semantics but of smaller 
granularity

○ Still allows for some modularity

○ Best for applications with existing process fault 
tolerance schemes (MapReduce).

16



Fate Sharing Granularities

17



Motivating Example

1. CPU1 clears Mem
2. CPU2 write to Mem
3. CPU1 fails

18

Should Mem fail too?

If Mem fails, should 
CPU2 fail as well?

?



Fate Sharing Granularities

19



Tainted Fate Sharing

▷ Memory fails → CPU reading/using 
memory fails with

▷ CPU fails while writing to one replica→ 
inconsistent memory fails (v1)

▷ Enforcement: 
○ Must compute failure domain on per failure basis

○ Introduces an overhead and delay

○ Challenge: race condition due to dynamic  failure 
domain computation

20



Tainted Fate Sharing
▷ Fault tolerance techniques

○ Can also be dynamically determined
○ Leverage previous work in fault tolerance

▷ Trade-offs
○ Dynamic determination of failure domain 

maximizes modularity
○ Increased overhead for determination

▷ Open research question: implications of 
dynamically computed fate sharing on 
performance, complexity, etc.

21



Fate Sharing Granularities

22



No Fate Sharing
▷ When memory or CPU fails, nothing fails 

with it
▷ Enforcement: isolate failed resource
▷ Key question: 

○ Recover in-network or expose resource failure?

▷ In-network recovery:
○ Memory replication
○ CPU checkpointing

23



In-Network Memory Recovery
Normal Execution

24



In-Network Memory Recovery

25

Under Failure



In-Network Memory Recovery
▷ Utilizes port mirroring for replication

▷ In-network replication similar to previous 
work [1]

▷ Challenge: coherency, network delay, etc.

26

[1] Sinfonia SOSP’07, Costa et. al. OSDI’96, FaRM NSDI’14, GFS OSDI’03, Infiniswap NSDI’17, 
RAMCloud SOSP’11, Ceph OSDI’06



In-Network CPU Checkpointing
▷ Controller checkpoints processor state to 

remote memory (state attached operation 
packets)

▷ Similar to previous work [1]
▷ Challenges: consistent client view, 

checkpoint retention, non-idempotent 
operations, etc.

27
[1] DMTCP IPDPS’09, Bressoud et. al. SOSP’95, Bronevetsky et. al. PPoPP’03, Remus NSDI’08, 
Shen et. al. VLDB’14, Xu et. al. ICDE’16



No Fate Sharing
▷ Trade-offs

○ Exposes DDC modularity
○ Increased overhead and resource usage
○ With recovery: best for applications with no fault 

tolerance but benefit high availability (HERD).
○ Without recovery: best for disaggregation aware 

applications

28



29

DDC fate sharing should be both solved by the network 
and programmable.



Programmable Fate Sharing - Workflow

30



Fate Sharing Specification
▷ Provides interface between the switch, 

controller, and application
▷ High-level language →  high-level networking 

language [1] → compiles to switch
▷ Requirements:

○ Application monitoring
○ Failure notification
○ Failure mitigation

31[1] FatTire HotSDN’13, NetKAT POPL’14, Merlin CoNEXT’14, P4 CCR’14, SNAP SIGCOMM’16



▷ Defines what information 
must be collected during 
normal execution

○ Domain table

○ Context information

○ Application protocol headers

Passive Application Monitoring

32

cpu_ip memory_ip start ack

x.x.x.x x.x.x.x ts ta

src IP src port dst IP dst port rtype op tstamp



Application Failure Notification
▷ Spec defines notification semantics
▷ When controller gets notified of failure → 

notifies application

33



Active Failure Mitigation
▷ Defines how to generate a 

failure domain and what 
rules to install on the 
switch

▷ Compares every domain 
entry to failed resource to 
build failure domain

▷ Installs rules based on 
mitigation action

34



Vision: programmable, in-network fate sharing

35

▷ Failure semantics for GPUs? 
Storage?

▷ Switch or controller failure?

▷ Correlated failures?

▷ Other non-traditional fate 
sharing models?

Open research questions

Thank you!



Backup slides

36



37


