
Tolerating Faults in Disaggregated Datacenters
Amanda Carbonari

University of British Columbia
acarb95@cs.ubc.ca

Ivan Beschasnikh
University of British Columbia

bestchai@cs.ubc.ca

ABSTRACT
Recent research shows that disaggregated datacenters (DDCs)
are practical and that DDC resource modularity will benefit
both users and operators. This paper explores the implications
of disaggregation on application fault tolerance. We expect
that resource failures in a DDC will be fine-grained because
resources will no longer fate-share. In this context, we look
at how DDCs can provide legacy applications with familiar
failure semantics and discuss fate sharing granularities that
are not available in existing datacenters. We argue that fate
sharing and failure mitigation should be programmable, spec-
ified by the application, and primarily implemented in the
SDN-based network.

1 INTRODUCTION
Today’s datacenters (DCs) are server-centric: users rent servers
with specific hardware capabilities tailored to their needs (e.g.,
compute-intensive EC2 instances from Amazon). A disag-
gregated datacenter (DDC) disaggregates, or separates, the
resources in a traditional DC into resource blades, with each
resource connected directly to an interconnect (Figure 1). We
use the term blade to describe a 1U server containing one
resource type, and resource for an individual CPU, DIMM,
SSD, etc. in a blade.

The modularity of DDCs benefits both operators and users [20].
By separating resources into blades, a DDC provides effi-
ciency: the operator can upgrade specific hardware blades
without impacting other resources types. Users also expe-
rience an efficiency win: in a DDC, a user can provision
the exact amount of resources they require and dynamically
expand/shrink this set. This flexibility also increases DDC
resource utilization.

We expect DDC designs to make it possible for resource
failures to no longer fate-share [14]. For example, a failure of
a memory resource will not cause the failure of the CPU using
that memory resource. In a traditional DC, applications take
on the responsibility of dealing with server failures, making

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotNets-XVI, November 30–December 1, 2017, Palo Alto, CA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to
Association for Computing Machinery.
ACM ISBN 978-1-4503-5569-8/17/11. . . $15.00
https://doi.org/10.1145/3152434.3152447

……

…

…

Network fabric

Storage
blade

Storage
blade

Memory
blade

Memory
blade

Compute
blade

Compute
blade

App

AppVi
rtu

al
iz

at
io

n

Controller

Figure 1: Simplified representation of a DDC.

them more complex. But, such legacy applications are not
disaggregation-aware, and should not be expected to handle
individual resource failures in a DDC. In a DDC with no fate
sharing, what failures should and should not be exposed to ap-
plications? And, should failures that are visible to applications
be presented as VM failures, resource failures, or something
else? We believe that a key design choice for DDCs is the
granularity, or domain, of resource fate sharing. Figure 2
illustrates two fate sharing granularities that are appropriate
for legacy applications: VM-level (complete fate sharing) and
process-level (partial fate sharing).

A DDC should not, however, merely emulate legacy fate
sharing models; DDCs offer a unique opportunity to design
new fault tolerance approaches, including new fate sharing
models (Figure 2). For example, a file system that prioritizes
strong consistency over availability may want to fate share
a CPU resource that serializes operations with all but one
SSD resource. This system will retain strong consistency
guarantees even if the serializing mechanism fails by retaining
a single (serializing) SSD resource, and failing the other SSD
resources.

Considering a broad diversity of fate sharing models, we ar-
gue that fate sharing granularity and failure mitigation should
be programmable, allowing applications to choose the most
appropriate fate sharing arrangement and recovery model.

This failure programmability can be implemented in the
application or the (software defined) network. We argue that
the network is the right place for this programmability. First,
failure detection and mitigation can be more easily and ef-
ficiently implemented by the network, especially in a DDC,
where the network observes all inter-resource communica-
tion. Second, the network is a natural place to enforce DDC
resource fate sharing.

Moving failure programmability into the network appears
to contradict the end-to-end principle [40]. We are not, how-
ever, proposing to remove application-level failure handling
entirely; for example, our envisioned mechanisms will not

https://doi.org/10.1145/3152434.3152447

Tainted fate sharing

Granularity of fate sharingMore Less

No fate sharing

CPU Mem

CPU Mem

CPU Mem

CPU Mem

CPU Mem

CPU Mem

CPU Mem

CPU Mem

CPU Mem

CPU Mem
C

PU
fa

ilu
re

M
em

or
y

fa
ilu

re

(Complete fate sharing)

CPU Mem

CPU Mem

Mem
u

Mem
v

uCPU

CPU
v

CPU

Mem
v0

v1

v0

Mem

Mem

Traditional fate sharing models Non-traditional fate sharing models

VM(a) Process
(Partial fate sharing)

(b) (c) (d)

Figure 2: The memory (top row) and CPU (bottom row) failure semantics on a fate-sharing spectrum in a DDC context.
A red slash denotes a failed resource. Red bolded boxes are fate-sharing failure(s) induced by the failed resource.

Network fabric
(SDN)

Virtualization

ApplicationFault tolerance

Fate sharingC
o-

de
si

gn

Failure granularity
(e.g., process)

⁃ Fault detection
⁃ Domain computation
⁃ Domain enforcement

⁃ Checkpointing
⁃ Replication
⁃ Logging, etc

Figure 3: Fate sharing and fault tolerance relationship.

handle a broad range of faults such as byzantine failures (these
must still be handled by the application). But we do argue
that, in line with the end-to-end principle, certain resource
faults can be more efficiently dealt with by the network.

2 BACKGROUND AND ASSUMPTIONS
Disaggregation can be partial or full. In partial disaggrega-
tion compute blades have a small amount of local memory,
memory and storage blades have CPUs, and a NIC is attached
to each resource. In full disaggregation each resource is in-
dependent and directly connected to the rack interconnect.
Current research focuses on the practicality of partial disag-
gregation [1, 20, 32, 33].

We consider partial disaggregation at rack-scale: an ap-
plication is restricted to resources in one rack (e.g., a CPU
in rack1 cannot connect to a DIMM in rack2), and layer 1
provides connectivity. The disaggregated rack appears to the
client as a single machine through a virtualization layer. Ap-
plications can request a number of VMs to allocate among the
racks. Distributed applications might then run among several
disaggregated racks, while a single-machine application will
reside in one rack.

We only consider CPU and memory crash failures as these
are the easiest to reason about. We do not consider storage
(e.g., SSDs, NVMes) as it has different requirements. We
assume that individual resources can fail within a blade. For
example, a memory blade might consist of four 8GB DIMMs,
if one of the DIMMs fails, the rest will continue to operate.

A software defined networking (SDN) controller has a
global view of the network and can dynamically reconfigure
routing [19, 25, 41]. Both features are useful in managing
DDC resources. We assume that the controller and the switch
can be implemented such that the controller is notified of
new resources, the health of each resource, etc. Therefore, the
controller can collect information about each resource in the
rack. The dynamic flow rule changes will allow the network
to react to events, such as failures or resource additions.

To recover from failure the DC needs to detect the failure
before the application. On some fabrics failure detection can
be automated [23]. If the fabric does not support automatic de-
tection, heartbeats can be used as in e.g., [8, 13]. This scheme
has been used in other SDN failure recovery work [31].

3 DDC FATE SHARING MODELS
We consider two types of fate sharing models: traditional
models expose failures present in traditional DCs, while non-
traditional models only exist in DDCs. In this section we
detail two models from each category (Figure 2).

In our discussion we consider fate sharing separately from
fault tolerance, although in practice these are co-designed.
We believe it is instructive to consider this co-design from
the bottom up (Figure 3), with fate sharing (implemented in
the network) exposing a certain granularity, or failure domain,
to a fault tolerance mechanism that can reside at different,
higher, levels in the stack.

3.1 Traditional fate sharing models
Popular DC applications like Hadoop and Spark can recover
from server and process failures [17, 46]. DDCs can support

Fate sharing Complete fate sharing Partial fate sharing Tainted fate sharing No fate sharing
Fault tolerance None Mem repl. None Mem repl., CPU checkp.

Modularity Low Medium High High

App.

Cost ($) Traditional DC Increased Traditional DC Increased
Complexity Traditional DC Traditional DC Low Low
Availability Traditional DC Depends on app Depends on app High
Performance Traditional DC Improved Slightly worse Worse

Table 1: Trade-offs for four fate sharing granularities (Figure 2) instantiated with a particular fault tolerance scheme
relative to traditional DC baseline (mem repl. is memory replication and CPU checkp. is CPU checkpointing).

these and other legacy application with traditional fate sharing
models that emulate the failures that can occur in today’s DC:
VM failure and process failure. Table 1 summarizes the trade-
off comparison between these models. We will overview these
models and how SDN can be used to enforce them in a DDC.

3.1.1 Complete fate sharing. Today’s applications ex-
pect fate sharing between resources. Complete fate sharing
(Figure 2(a)) emulates this in a DDC as a VM failure: when a
resource becomes unreachable, it and the resources connected
to it are isolated.

Enforcing fate sharing. Using SDN to isolate failures has
been explored in previous work [31]. A complication for this
model is when other CPU blades in the VM instance are com-
municating with the failed CPU or an external device. These
other blades must fail along with the failed CPU and do so
before a different failure granularity is externally observable.
We believe that a key challenge for this model is providing
such atomic fate sharing.

Fault tolerance techniques. Previous work considers sev-
eral strategies for high-availability (HA) VMs [11, 16], usu-
ally implemented without support from the network. Other
strategies from distributed systems fault tolerance work are
also applicable [9, 21, 42, 45]. If this model is instantiated
without fault tolerance, then the application observes failures
as VM failures.

Summary. Table 1 compares complete fate sharing with
no fault tolerance against a traditional DC along several di-
mensions. We think that single machine applications, such as
GraphLab [35], which do not require high availability benefit
the most from a complete fate sharing model. This model
provides failure semantics that match current application fail-
ure assumptions: full server failure. However, complete fate
sharing does not allow applications to take advantage of DDC
modularity, which reduces DDC benefits.

3.1.2 Partial fate sharing. Partial fate sharing (Fig-
ure 2(b)) exposes “process” failures to the application by
reducing the failure domain to just the CPU and its attached
memory. The main implementation decision in partial fate
sharing is the handling of memory failures, which can ei-
ther fate share with the CPU or be transparently recovered.
Transparent recovery allows application to benefit from the
decoupling of memory and CPU, but has higher overhead.

SDN
Controller

CPU

Mem 1 Mem 2

Switch

(a)

x
2b

12a

Mem 1

CPU

Mem 2

Switch

(b)

Mem 3

x

1

43,5

2

3

Figure 4: RAID-style memory replication. (a) Memory
replication under normal operation. (b) Mem 1 fails,
causing the controller to reroute requests to Mem 2 and
initialize a replacement for Mem 1 (concurrent with CPU
to Mem 2 traffic).

Both implementations require isolation of memory when the
corresponding CPU fails.

Enforcing fate sharing. To expose a process failure, the
system must atomically fail the memory corresponding to a
failed CPU. This ensures that no stale state persists after the
application observes the failure. As in complete fate sharing,
the controller will detect the CPU failure, and install switch
rules to block all traffic to and from the CPU and its corre-
sponding memory (doing this atomically and consistently is,
again, the key challenge).

Fault tolerance techniques. Tolerating memory faults has
been considered in prior work on distributed shared memory
(DSM) [2, 15], remote memory systems [18, 22, 37], and
distributed file systems [21, 43].

These systems use logging and replication to tolerate re-
mote memory failures. These prior approaches can be re-
visited and pushed into the network to provide transparent
memory fault tolerance. For example, we can implement a
RAID-style approach [38] by having the controller provision
replica memory resources to receive identical traffic from the
compute resource with port mirroring (previously used in net-
work monitoring [39]). During normal operation (Figure 4(a)),
the switch mirrors all in-bound memory traffic to a replica.
Each memory resource acknowledges each operation and
the switch drops acknowledgments from the replica. When a
memory resource fails (Figure 4(b)), the switch reroutes to a
replica. While the replica is servicing requests, the controller
is notified of the failure and provisions a new replica and
bootstraps it with the data from the first replica.

The challenges of fault tolerant remote memory in prior
distributed systems work are directly relevant to DDCs. For
instance, some systems forgo fault tolerance because of per-
formance overheads [28, 36]. Prior work has also attempted to
reduce overheads, e.g., with lightweight logging [15]. DDCs
encounter the same issues but at a larger scale since all mem-
ory accesses1 occur over the network. Another concern for
DDCs, which has been considered previously, is replication
cost. Log-based storage and replicas on secondary storage
(i.e., SSDs) [18, 37], are options to improve crash recovery
times and reduce this cost. Further investigation into how
prior remote memory fault tolerance designs can be ported to
DDCs and implemented in the network is necessary.

Summary. Table 1 compares partial fate sharing with mem-
ory replication to a traditional DC. The benefit of this model
is that it presents the application with familiar process failure
semantics and the option for in-network handling of memory
failures.

By elevating resource failures to process failures, partial
fate sharing reduces the number of failures other parts of
the stack must handle and, consequently, improves perfor-
mance. Many existing applications handle process failures.
For example, MapReduce restarts completed map tasks after
server failure because the results are on disk [17]. With par-
tial fate sharing, only the running tasks will appear as failed,
so MapReduce will only be exposed to task failures and not
restart completed tasks (in contrast with complete fate shar-
ing). Applications with existing and custom fault tolerance
schemes benefit most from this model and will experience
fewer failures.

3.2 Non-traditional fate sharing models
Disaggregation expands fate sharing options compared to
a traditional DC. In particular, it makes new, dynamically
computed, fate sharing domains possible.

3.2.1 Tainted Fate Sharing. Consider the case where
CPU1 writes all zeros to a memory resource (Mem). CPU2
then does some computation and overwrites Mem with val-
ues. CPU1 fails, what should happen to Mem? If the memory
resource must fail with CPU1, since CPU2 uses that memory,
CPU2 must also fail. This raises research questions around
how to determine the boundary at which the network enforces
fate sharing in a dynamic context.

One formulation of the boundary that can help in the above
scenario is fate sharing between tainted resources, or tainted
fate sharing (Figure 2(c)). This model fails a memory resource
only if it has not acknowledged the most recent write from
the failed CPU. In the case above, since CPU1 is not the most
recent write to Mem, Mem will continue to operate and the
failure domain will only include CPU1. If CPU2 dies before
Mem acknowledges the write, then Mem will be included in
the failure domain. At this point, there is a decision, should
the system also failCPU1 because it has used Mem in the past?
A yes answer can create a cascading failure. The application

will need to define a clear point where the “taint” will stop
persisting and recovery can happen.

Enforcing fate sharing. To enforce dynamic fate sharing,
the network must determine the failure domain once a re-
source fails. When a resource fails, the controller is notified
of the failure by the switch. The controller then computes the
failure domain (discussed in Section 4) and creates rules to
isolate all resources in that domain.

Fault tolerance techniques. Fate sharing models with dy-
namically computed domains require new fault tolerance tech-
niques. In the above example, the scope of the fate sharing
domain varies based on the workload of the system (i.e., if
CPU1 touches every memory resource then all will fate share).
Therefore, the recovery scheme must also be dynamic, though
it can still build on existing techniques, such as checkpointing
(described in Section 3.2.2). In this case, the memory and
CPUs can be checkpointed and recovered by the network.
The tainted CPUs and memory will need to be rolled back to
a previous checkpoint and restarted.

Summary. Non-traditional fate sharing models are entic-
ing because of their dynamically-determined failure domains.
The fault tolerance scheme could likewise be dynamic. This
flexibility allows for more expressive designs. But, the im-
plications of dynamically-determined failure domains and
fault tolerance on performance, complexity, human error (i.e.,
poorly written failure domain code), are open questions that
must be investigated. Table 1 captures our attempt at analyz-
ing these trade-offs.

3.2.2 No fate sharing. In a no fate sharing design (Fig-
ure 2(d)), the DDC has two options: recover from both mem-
ory and CPU failures transparently or expose these directly
to the application. We believe this choice should be made by
the application.

Enforcing fate sharing. The DDC plays a minimal role
in enforcing no fate sharing since this is the most natural
fate sharing model for disaggregation. The network enforces
isolation of the failed resource as in previous models, by
dropping all packets to and from the failed resource. The
network does, however, play a key role in recovery if the
application elects to have network-based fault tolerance.

Fault tolerance techniques. For this discussion, we as-
sume the same memory failure recovery scheme as partial fate
sharing (Section 3.1.2). To recover from CPU failures, each
CPU will asynchronously checkpoint its state, such as the
program counter and registers, to a remote memory resource,
as in prior work on transparent checkpointing libraries [5, 12],
HA VMs [11, 16], and application checkpointing [42, 45].

In a partially disaggregated setting most remote memory
operations must traverse the network1. In the case of local
memory data modification, we assume that the change will
eventually be paged out to remote memory as the local address
space is a cache. Therefore, the network can record a sequence
of operations that a CPU resource has performed by observing

its traffic. Certain metadata must be included in the packets,
such as the program counter and the running process.

Checkpointing state has been used in prior work. Transpar-
ent checkpointing libraries such as [5, 12] implement check-
pointing protocols at the network layer (TCP) or message
passing layer (MPI). These solutions naturally integrate into
the network layer for disaggregation and can be improved
with more information about process state that traverses the
network in a DDC.

The combination of both memory and CPU failure recovery
at a lower level is similar to work on HA VMs [11, 16, 34],
which transparently handle failures for applications; however,
in a DDC context, the virtual layer would also be unaware of
the failure.

Summary. As compared to traditional DCs (Table 1) the
no fate sharing model allows the application to take full ad-
vantage of DDC modularity. The cost to applications depends
on how they handle resource failures (i.e., replication incurs
more cost for extra memory). For comparison Table 1 consid-
ers no fate sharing with complete recovery.

More broadly, no fate sharing with recovery obviates the
need to write and maintain application-specific fault tolerance
and recovery code. For example, HERD has no fault tolerance
scheme and cannot handle any type of crash failure [26]. If
it were to run in a no fate sharing DDC with recovery, it will
continue to operate in the case of failure because the network
transparently handles all recovery. This makes applications
less complex and more available. But it poses a challenge for
legacy applications that come with fault tolerance built-in.

4 PROGRAMMABLE FATE SHARING
We previously noted several applications that benefit from
a particular choice of a fate sharing model. For example,
MapReduce would perform better with partial fate sharing,
whereas HERD would perform better with no fate sharing
and in-network recovery. We argue that a fate sharing model
should not be chosen for the entire DDC. Instead, fate sharing
should be programmable and selected by the application. We
review a high-level workflow that describes one way this
programmability can work in practice:
(1) When a user provisions machines for an application,

they submit a partly compilable fate sharing specifica-
tion (spec). This spec defines the kind of fate sharing
and failure mitigation the application expects from the
network.

(2) The spec is passed to the SDN controller, which uses it to
provision resources for the VMs and the fault tolerance
scheme, if any. The controller then compiles the spec and
installs it on the switch. The controller also adds basic
forwarding and failure detection rules that implement a
base DDC policy.

(3) The switch monitors the running application, when it
detects a failure it forwards the relevant information about

1In partial disaggregation, memory accesses only traverse the network if local
memory is saturated. In full disaggregation, all accesses traverses network.

the failure to the controller. The controller determines the
correct fate sharing failure domain and installs proper
rules based on the spec.

The spec should be checked for basic correctness. But, a
more complex research question is to verify that the spec pro-
vides what the application expects (that the model in the spec
satisfies certain safety/liveness properties). This may build on
existing techniques for verifying network configurations [6]
and distributed systems with pluggable failure models [44].

4.1 Failure specification requirements
The fate sharing spec provides an interface between the switch,
controller, and application to describe the failure domain.
We propose that this spec should be written in a high-level
language which compiles down to a flexible protocol for
the switch. Flexible protocols and high-level languages for
switches exist [4, 10], so we do not discuss the details of the
language here, just the requirements of the spec.

Applications must provide enough information to the DDC
network for the network to enforce the chosen fate sharing
granularity. A key way to characterize fate sharing is the
failure domain for each resource: what other resources fail
when a particular resource fails.

The spec must define the behavior of both the controller
and the switch during three scenarios: monitoring, notifica-
tion, and failure mitigation.

Passive application monitoring. Passive application mon-
itoring defines what information must be collected during
normal execution to inform failure recovery. This portion of
the program must define a domain table, application protocol
headers, and context information. The domain table maps
a resource to context information. The program defines the
format for this table as well as the logic to match entries when
building a failure domain. The application headers expose ap-
plication protocol information to the switch, which sends that
information to the controller. The context information con-
tains what is necessary to determine the fate sharing domain
and, if required, carry out failure mitigation; this is highly
dependent on the application.

For example, the tainted fate sharing model described in
Section 3.2.1 will define the domain table to be a mapping
between CPU resources and used memory, with the time
the write started and the time the memory acknowledged a
completed write:
domain: {cpu_ip, memory_ip , start, ack}

The application protocol headers will expose the type of re-
quest to the switch (read or write). Based on the headers, the
switch will send the context information to the controller:
if (req.rtype == CPU && req.op == WRITE):
ctl.notify(req.src, req.dst, req.tstamp, 0)

else if (req.rtype == MEMORY && req.request == ACK)
ctl.notify(req.src, req.dst, 0, req.tstamp)

The switch will continue to forward information to the con-
troller, allowing it to keep track of the context information for

each resource. The controller will update each entry accord-
ingly as it receives new information from the switch. In the
case of tainted fate sharing, this allows the controller to keep
a record of memory tainted by CPUs.

Application failure notification. The fate sharing spec can
also define notification semantics, e.g. [30]. Since the net-
work already performs failure detection on resources, the
application can simply request to be notified of failure. This
eliminates the need for the application to write failure detec-
tion code. For example, the distributed memory system using
the tainting fate sharing spec may want to be notified about
memory failures so it can perform its own failure recovery. In
this case, it will add a notification action to the fate sharing
spec:

def on_failure():
if (failure_resource.rtype == MEMORY):
app.notify("Memory " + i + " failure.")

The controller will provide an API for notification (i.e., app.notify
call). The application will then listen for that notification on a
predetermined port.

Active failure mitigation. When failure occurs, the active
failure mitigation portion of the program initiates. It defines
how to generate a failure domain and what action to take. The
failure domain is created by the controller by comparing every
domain entry to the failed resource. The comparator function
determines if the domain entry should be considered a part of
the domain or not.

In the tainted fate sharing example, the program will define
the failure domain to be the failed CPU and every memory
the CPU wrote to before failure that has not acknowledged
the completed write:

def comparator(fResource , domain_entry):
if (fResource.src == domain_entry.cpu_ip):
if (fResource.tstamp < domain_entry.ack &&

fResource.tstamp > domain_entry.start):
fDomain.add(domain_entry.memory_ip)

The mitigation action can either isolate the failed resources
(fDomain), for example by dropping all traffic to and from the
resource, or can be a program-defined action. The tainted
fate sharing example isolates the resources for CPU failure,
therefore it will drop packets for the match entry. When a
failure occurs, the controller adds all domain entries that match
to a domain list using the comparator function. For each IP
in the domain list, it creates a new rule which performs the
mitigation_action on the exact match.

5 OPEN RESEARCH QUESTIONS
Programmable fate sharing in DDCs opens up several direc-
tions for research.

Other resource types. We do not address other server com-
ponents in this paper such as GPUs and storage devices. As
with CPU and memory we believe that in a DDC setting these

devices can also benefit from a reevaluation of fate sharing
and failure semantics.

What are the appropriate failure semantics for GPUs?
The failure semantics for GPUs can conform to the same
failure semantics as CPUs. But can it be more advantageous
to have more GPU-specific failure semantics and options?
GPUs have different performance and bottlenecks (such as
memory copying) than CPUs.

What are the appropriate failure semantics for storage?
Unlike volatile memory, data in storage persists after restart.
This requires different failure recovery schemes and compli-
cates fate sharing. For example, applications often layer their
storage, and each layer might assume a different granularity
of fate sharing and use a distinct fault tolerance scheme.

Other failures. Our focus so far has been on crash failures,
but other failures must be considered and mitigated for DDCs
to be viable, particularly at scale.

What happens if the switch or the controller fails? Switch or
controller failure will render the system inoperable (Figure 1).
There has been research on switch fault tolerance in datacen-
ters [3, 24]. These techniques can be applied to DDCs. There
has also been work on fault tolerant controllers [7, 27, 29].
Future research should consider how a controller can provide
fault tolerance and itself remain fault tolerant.

How to handle correlated failures? Programmable fate shar-
ing offers an opportunity for the DDC to expose correlated
failures more gracefully to applications. However, this places
a new burden on the application, which must now define a
fate sharing domain and failure semantics under a variety of
circumstances. This is a broad challenge to our proposal and
requires further research in tools, languages, and libraries that
lower the programmability complexity bar for applications.

6 CONCLUDING REMARKS
For DDCs to gain adoption they must provide usable notions
of fault tolerance to applications. DDCs can do this by trans-
parently recovering from resource failures or by exposing
these to the application in a form that it can handle. We be-
lieve a key design criteria for DDCs to consider is the resource
fate sharing granularity.

To provide the full benefit of disaggregation to a range of
applications we argue that fate sharing granularity and failure
mitigation should be (1) programmable, allowing applications
to choose the most appropriate fate sharing arrangement and
recovery model, and (2) primarily implemented in the net-
work. We hope that this paper will inspire further discussion
about failure abstractions in DDCs.

Acknowledgments. This research is supported by an NSERC
discovery grant. We would like to thank Rachit Agarwal, Mi-
hir Nanavati, and the anonymous reviewers whose feedback
helped to refine our ideas and improved the paper.

REFERENCES
[1] Intel, Facebook Collaborate on Future Data Center Rack Techolo-

gies, 2013. https://newsroom.intel.com/news-releases/intel-facebook-
collaborate-on-future-data-center-rack-technologies/.

[2] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and C. Karamanolis.
Sinfonia: A New Paradigm for Building Scalable Distributed Systems.
In SOSP, 2007.

[3] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable, Commodity
Data Center Network Architecture. In SIGCOMM, 2008.

[4] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,
C. Schlesinger, and D. Walker. NetKAT: Semantic Foundations for
Networks. In POPL, 2014.

[5] J. Ansel, K. Arya, and G. Cooperman. DMTCP: Transparent Check-
pointing for Cluster Computations and the Desktop. In Proceedings
of the 2009 IEEE International Symposium on Parallel&Distributed
Processing, 2009.

[6] R. Beckett, A. Gupta, R. Mahajan, and D. Walker. A General Approach
to Network Configuration Verification. In SIGCOMM, 2017.

[7] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar.
ONOS: Towards an Open, Distributed SDN OS. In HotSDN, 2014.

[8] M. Bertier, O. Marin, and P. Sens. Implementation and Performance
Evaluation of an Adaptable Failure Detector. In DSN, 2002.

[9] N. Bonvin, T. G. Papaioannou, and K. Aberer. A self-organized, fault-
tolerant and scalable replication scheme for cloud storage. In SoCC,
2010.

[10] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker. P4:
Programming Protocol-independent Packet Processors. CCR, 2014.

[11] T. C. Bressoud and F. B. Schneider. Hypervisor-based Fault Tolerance.
In SOSP, 1995.

[12] G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill. Automated
Application-level Checkpointing of MPI Programs. In Proceedings of
the Ninth ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, 2003.

[13] T. D. Chandra and S. Toueg. Unreliable Failure Detectors for Reliable
Distributed Systems. J. ACM, 1996.

[14] D. Clark. The Design Philosophy of the DARPA Internet Protocols. In
SIGCOMM, 1988.

[15] M. Costa, P. Guedes, M. Sequeira, N. Neves, and M. Castro. Light-
weight Logging for Lazy Release Consistent Distributed Shared Mem-
ory. In OSDI, 1996.

[16] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and
A. Warfield. Remus: High Availability via Asynchronous Virtual Ma-
chine Replication. In NSDI, 2008.

[17] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. In OSDI, 2004.

[18] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson. FaRM: Fast
Remote Memory. In NSDI, 2014.

[19] N. Feamster, J. Rexford, and E. Zegura. The Road to SDN: An Intellec-
tual History of Programmable Networks. CCR, 2014.

[20] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han, R. Agarwal,
S. Ratnasamy, and S. Shenker. Network Requirements for Resource
Disaggregation. In OSDI, 2016.

[21] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File System.
In OSDI, 2003.

[22] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin. Efficient
Memory Disaggregation with Infiniswap. In NSDI, 2017.

[23] W. L. Guay, S. A. Reinemo, O. Lysne, T. Skeie, B. D. Johnsen, and
L. Holen. Host Side Dynamic Reconfiguration with InfiniBand. In
ICCC, 2010.

[24] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu. DCell: A Scalable
and Fault-Tolerant Network Structure for Data Centers. In SIGCOMM,
2008.

[25] M. Jarschel, T. Zinner, T. Hoßfeld, P. Tran-Gia, and W. Kellerer. Inter-
faces, attributes, and use cases: A compass for SDN. IEEE Communi-
cations Magazine, 52(6):210–217, 2014.

[26] A. Kalia, M. Kaminsky, and D. G. Andersen. Using RDMA Efficiently
for Key-value Services. In SIGCOMM, 2014.

[27] N. Katta, H. Zhang, M. Freedman, and J. Rexford. Ravana: Controller
Fault-tolerance in Software-defined Networking. In SOSR, 2015.

[28] P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel. TreadMarks:
Distributed Shared Memory on Standard Workstations and Operat-
ing Systems. In Proceedings of the USENIX Winter 1994 Technical
Conference on USENIX Winter 1994 Technical Conference, 1994.

[29] H. Kim, M. Schlansker, J. R. Santos, J. Tourrilhes, Y. Turner, and
N. Feamster. CORONET: Fault Tolerance for Software Defined Net-
works. In ICNP, 2012.

[30] J. B. Leners, T. Gupta, M. K. Aguilera, and M. Walfish. Improving
Availability in Distributed Systems with Failure Informers. In NSDI,
2013.

[31] J. B. Leners, T. Gupta, M. K. Aguilera, and M. Walfish. Taming
Uncertainty in Distributed Systems with Help from the Network. In
EuroSys, 2015.

[32] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt, and T. F.
Wenisch. Disaggregated Memory for Expansion and Sharing in Blade
Servers. In ISCA, 2009.

[33] K. Lim, Y. Turner, J. R. Santos, A. AuYoung, J. Chang, P. Ranganathan,
and T. F. Wenisch. System-level Implications of Disaggregated Memory.
In HPCA, 2012.

[34] J. R. Lorch, A. Baumann, L. Glendenning, D. T. Meyer, and A. Warfield.
Tardigrade: Leveraging Lightweight Virtual Machines to Easily and
Efficiently Construct Fault-tolerant Services. In NSDI, 2015.

[35] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein. GraphLab: A New Framework for Parallel Machine Learn-
ing. In UAI, 2010.

[36] J. Nelson, B. Holt, B. Myers, P. Briggs, L. Ceze, S. Kahan, and M. Oskin.
Latency-Tolerant Software Distributed Shared Memory. In USENIX
ATC, 2015.

[37] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and M. Rosen-
blum. Fast Crash Recovery in RAMCloud. In SOSP, 2011.

[38] D. A. Patterson, G. Gibson, and R. H. Katz. A Case for Redundant
Arrays of Inexpensive Disks (RAID). In SIGMOD, 1988.

[39] J. Rasley, B. Stephens, C. Dixon, E. Rozner, W. Felter, K. Agarwal,
J. Carter, and R. Fonseca. Planck: Millisecond-scale Monitoring and
Control for Commodity Networks. In SIGCOMM, 2014.

[40] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in
system design. ACM Transactions on Computer Systems, 1984.

[41] S. Sezer, S. Scott-Hayward, P. Kaur Chouhan, B. Fraser, D. Lake,
C. Systems Jim Finnegan, N. Viljoen, N. Marc Miller, N. Rao, and
S.-h. Layout. Are We Ready for SDN? Implementation Challenges for
Software-Defined Networks. Future Carrier Networks, 51(7), 2013.

[42] Y. Shen, G. Chen, H. V. Jagadish, W. Lu, B. C. Ooi, and B. M. Tudor.
Fast Failure Recovery in Distributed Graph Processing Systems. VLDB,
2014.

[43] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn.
Ceph: A Scalable, High-performance Distributed File System. In OSDI,
2006.

[44] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. D. Ernst,
and T. Anderson. Verdi: A Framework for Implementing and Formally
Verifying Distributed Systems. In PLDI, 2015.

[45] C. Xu, M. Holzemer, M. Kaul, and V. Markl. Efficient fault-tolerance
for iterative graph processing on distributed dataflow systems. In ICDE,
2016.

[46] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica. Resilient Distributed Datasets: A
Fault-tolerant Abstraction for In-memory Cluster Computing. In NSDI,
2012.

	Abstract
	1 Introduction
	2 Background and assumptions
	3 DDC fate sharing models
	3.1 Traditional fate sharing models
	3.2 Non-traditional fate sharing models

	4 Programmable fate sharing
	4.1 Failure specification requirements

	5 Open research questions
	6 Concluding remarks
	References

