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ABSTRACT

Software debugging is a time-consuming and challenging process.
Supporting debugging has been a focus of the software engineering
field since its inception with numerous empirical studies, theories,
and tools to support developers in this task. Performance bugs
and performance debugging is a sub-genre of debugging that has
received less attention.

In this paper we contribute an empirical case study of perfor-
mance bug diagnosis in the WiredTiger project, the default database
engine behind MongoDB. We perform an in-depth analysis of 44
Jira tickets documenting WiredTiger performance-related issues.
We investigate how developers diagnose performance bugs: what
information they collect, what tools they use, and what processes
they follow. Our findings show that developers spend the majority
of their performance debugging time chasing outlier events, such
as latency spikes and throughput drops. Yet, they are not properly
supported by existing performance debugging tools in this task.
We also observe that developers often use tools without knowing
in advance whether the obtained information will be relevant to
debugging the problem. Therefore, we believe developers can ben-
efit from tools that can be used for unstructured exploration of
performance data, rather than for answering specific questions.
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1 INTRODUCTION

Software is becoming increasingly complex and spans mobile de-
vices, data centers, diverse architectures (multi-core, GPUs), etc.
In this world performance is an important software engineering
consideration [35]. In particular, many software products are rou-
tinely compared, rated, and bought or not bought based on their
performance. This includes databases, key-value stores, distributed
computing systems, machine learning frameworks, and more.

Achieving high performance requires performance debugging:
identifying bottlenecks and mitigating them. However, without
understanding the underlying cause, without proper information
and experiments to reproduce the bug, developers are at a loss
of how to fix a performance bug. This process, which we term
performance comprehension, has not been previously detailed.

Existing work on performance debugging develops new tools [12,
13, 25, 34, 37] to complement mainstream commercial and open
source performance debugging tools such as perf. Instead, this
paper asks: what information do developers collect? Do they formu-
late hypothesis, or are they driven by the tool at hand? And, how
do they collaborate to understand system performance? In other
words, we are interested in answering the broad question of: how
do developers approach performance comprehension?

We explore how developers diagnose performance issues with a
case study of WiredTiger (WT)!, an open-source high-performance
storage engine written in C. As of 2014, WT is part of MongoDB?,
a popular NoSQL database. WT developers collaborate in a decen-
tralized manner and use Jira [43] for tracking and for thoroughly
discussing and resolving all performance issues.

In our study we analyzed 44 performance-related tickets in WT’s
Jira repository. We focused on the information that developers do
and do not collect, tools they use and do not use, and processes they
follow. We also considered the relationship between information
and tools: do information needs drive tool usage, or do developers
prefer and use certain tools first, and then sift through the resulting
information? Here are a few of our findings from the study:

Finding 1. WT developers spend most of their performance de-
bugging time chasing latency spikes and throughput drops. Despite
being outliers, these events represent worst-case system behaviour
and are thus of critical importance for performance-oriented groups
such as WT.

Finding 2. When looking for root causes of latency spikes, de-
velopers consider correlated behavior between threads and events
that happen over time. However, developers are not properly sup-
ported by existing performance debugging/comprehension tools.

Lhttp://www.wiredtiger.com/
https://www.mongodb.com/
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Most program profilers aggregate samples and cannot identify oc-
casional latency spikes. The WT developers thus rely on manually
correlated log messages to diagnose tail latencies.

Finding 3. Developers typically do not formulate initial hy-
potheses about the root cause of a performance issue. We found
that developers did not know in advance if the performance data
they plan to collect from running a tool will be relevant to de-
bugging the problem. They often used the tools in an exploratory
fashion.

2 STUDY DESIGN

For our case study, we extracted performance-related tickets from
WT’s Jira repository and analyzed them to answer three research
questions:

RQ1: What information do developers collect during performance
comprehension?

RQ2: What tools do developers use during performance compre-
hension?

RQ3: What processes do developers follow during performance
comprehension?

Next, we give the necessary background on the WiredTiger
project and its software practices. We then describe our data collec-
tion, analysis and validation techniques, and outline threats to the
validity of our study.

2.1 WiredTiger

WiredTiger (WT) is a multi-threaded open-source storage engine,
designed for high performance and scalability. Started in 2008, it
has a team of around 24 developers®, with the core six developers
contributing over 200 commits each. At the time of writing, the
most active developer contributed over 9,000 commits, and the
most active six developers contributed over 13,000 commits in total.
Three of these developers have 30+ years of experience, one has
around 15 years of experience, and the remaining two developers
have around 5 years of experience.

WT is comprised of over 84,000 lines of C code* and runs on
POSIX-compatible systems, including Linux and FreeBSD, as well as
Windows. WT clients include several popular web service providers,
such as Amazon Web Services. In 2014, WT was acquired by Mon-
goDB [31] — the provider of one of the most popular open-source
document-oriented (NoSQL) databases. WT achieves a 7-10x per-
formance increase over MongoDB’s previous storage engine [30].

Why study WT. We use WT to study performance comprehen-
sion because the main goal of WT is to develop a high performance
storage engine [30]. WT is carefully designed to efficiently use all
available CPU cores, large amounts of RAM, and advanced synchro-
nization techniques to enable more efficient parallelism. Developers
thus spend a significant amount of effort understanding and resolv-
ing performance-related issues. Moreover, WT presents a unique
opportunity for our study because its open development makes it
possible to investigate performance comprehension practices of a
successful performance-oriented software team.

3Reported by GitHub’s contributors list: https://github.com/wiredtiger/wiredtiger/
graphs/contributors

4Calculated using cloc on .c, .cc, .h, and .i files in the src and api directories of the WT
repository.
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Development process. WT developers work remotely from around
the world and communicate with each other online. At the time

of writing, there is a significant number of commits from seven

distinct time zones. Developers communicate primarily through

Jira tickets for issue tracking (over 3,700), saying that they used Jira

“as a notebook for debugging sessions”. Other, less significant com-
munication channels are Github [42] pull requests for code reviews

and merges (over 19,000 commits and over 2,900 pull requests),
and mailing lists. Yet, the project conventions are to maintain all

conversations about issues in Jira as opposed to other means, such

as email. The WT team does not use IRC or Slack.

WT developers use the Jenkins [4] continuous integration (CI)
system to monitor the health and performance of the latest product
version. For each new commit, Jenkins automatically runs tests to
evaluate the current quality and performance of the system. Jira
performance issues are created following failures listed in Jenkins’
reports, directly by customers, or by developers who encountered
performance-related issues while working on the project.

2.2 Data Collection

For WT, Jira is a sufficiently complete source of performance debug-
ging activity, which motivated us to perform our study with this
data source. To collect performance-related tickets for our analysis,
we navigated to the MongoDB Jira issue tracker repository” and
selected project WiredTiger. We searched for tickets that satisfy the
following criteria:

o Tickets of any standard type, i.e., bug, documentation, im-
provement, new feature, task, technical debt, or workload.

o Tickets in any state, i.e., open, in progress, in code review,
resolved, closed, waiting for user input, needs reviewer, or
needs merge.

o Tickets containing the keyword “performance” in either the
title or the body of the ticket.

We sampled the repository twice: first in August 2017 and then in
February 2018. Both times, we analyzed the tickets one by one, using
the method described in Section 2.3. We stopped when we reached
conceptual saturation — no new information was obtained from
analyzing further data. As the result of this process, we analyzed
44 tickets updated between April 2016 and December 2017 (34 in
the first round and 8 in the second).

The analyzed tickets contained between 1 and 39 comments
made by developers (median 6.5, mean 8.7), with 1 to 7 distinct
developers contributing to each ticket (median 3, mean 3). Initial
issue descriptions were between 13 and 394 words (median 86.5,
mean 111.6). Developer comments were between 3 and 915 words
(median 60.5, mean 93.3). In total, 16 developers contributed to the
majority of tickets, with each of the top four developers contributing
to more than 10 issues.

2.3 Data Analysis

We used open coding — a technique from grounded theory for deriv-
ing theoretical constructs from qualitative analysis [15, 20]. Two
authors of this paper independently read each selected Jira ticket
and coded ideas contained in the data. We focused on information,

Shttps://jira.mongodb.org
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tools, and processes that developers use to diagnose performance
issues. We did not code the description of the problem or its resolu-
tion.

On a weekly basis, all authors of the paper met to discuss quotes
identified by the two coders, review their grounding in Jira tickets,
merge and refine codes and concepts as necessary, identify emerg-
ing categories, and also refine coding rules and processes. Following
Strauss’s version of grounded theory, where data sampling and data
analysis are seen as interleaved steps that are repeated until one
can describe the researched phenomenon, we continued coding
the tickets until all authors agreed that new data does not change
our understanding of performance diagnosis process. At this stage,
we coded 36 tickets originally sampled in August 2017. To further
validate our results and ensure a stable coding process and set
of concepts, one author of the paper sampled the repository one
more time in February 2018 and coded another eight tickets. The
complete set of codes is available online®.

As a result of this process, we analyzed 44 tickets. We marked
between 1 and 106 quotes per ticket (median 14, mean 25.5), iden-
tifying 36 codes related to information needs, 22 codes related to
tools, and 26 codes related to process (9 for information and tools
inter-relationships, 7 for reproducibility, and 12 for experiments).
The four most senior developers were responsible for comments
corresponding to 71.6% of the codes. These are discussed in detail
in Sections 3 - 5.

2.4 Member Check

To validate our findings, we shared an earlier version of this paper
with the WiredTiger developers whose comments we studied. Three
developers responded; together, the respondents account for 60%
of all comments written across 37 (84%) of the tickets we studied.
Two of the three developers said they read the entire paper.
Comments on findings. We asked if the developers agreed with
our findings. The respondents found our findings accurate; they did
not dispute the findings in any of the sections, offering feedback
on typos and grammatical fixes.
I'm frankly surprised how accurately you managed to capture the
[performance issues] in the paper - it did an excellent job of defin-
ing the categories.
Completeness of studying Jira tickets. We asked developers
whether their comments on Jira tickets accurately reflect the chal-
lenges they faced and the tasks they performed in diagnosing and
fixing performance issues. Two of the three developers responded
in the affirmative (the other developer did not comment on this
question).
Personally, | comment in tickets for a few purposes. Some of it is
so that we have a history and can revisit "why did we do that?"
at a future time after we’ve (or I've) forgotten the details. Some is
so that others can reproduce what I'm doing and see (or not) the
same results. Some is to validate or simply communicate how I'm
attacking a problem.

2.5 Threats to Validity

Internal validity. We might have misinterpreted developers’ in-
tentions or misidentified concepts, introducing researcher bias into

Shttps://goo.gl/DdwU7u
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our analysis. We attempted to mitigate this threat by performing
independent coding and cross-validating each code identified in our
analysis by at least two authors. We also discussed and validated
the results during weekly meetings with all authors of this paper.

Moreover, one member of our team worked as a consultant for
WT and is thoroughly familiar with the WT development processes.
(S)he confirmed that our understanding of the debugging traces in
the tickets we studied are representative of performance debugging
sessions. In addition to the person who consulted for WT, our team
had other members who developed database software for other
companies, so we were well positioned to understand the technical
details in the tickets. We thus believe our analysis is reliable.

In organizations where developers communicate through a vari-
ety of different channels, especially in-person, bug reports or issue
trackers provide incomplete views of a bug’s history [9]. However,
for WT, the Jira database is the main communication channel; we
are thus confident that Jira is a sufficiently complete source of
performance-related debugging information for our study.
External validity. As in other software engineering case studies,
our research might not generalize beyond our subject of study: the
WT system and the sample of tickets we consider. It is possible
that the practices used by other companies and teams may differ
from those used at WT. Our tickets sample includes patterns and
practices followed by 16 experienced software developers, giving
us confidence that our study captures at least some of the best
practices for performance diagnosis.

3 RQ1: INFORMATION USED

The information developers collect during performance compre-
hension (RQ1) is captured by 36 codes extracted from Jira tickets.
Table 1 shows codes that appeared in at least 10% of the tickets,
together with their descriptions, the number of tickets containing
each code, and the total number of occurrences of each code across
all documents. We categorized the codes along three dimensions:
temporal view, execution view, and system stack location, as shown
in Figure 1. The next section describes these categories, followed by
a detailed description of findings derived from the categorization.

3.1 Categorizing Information Codes

Temporal view tells us whether the information about program
execution (typically metrics like throughput, latency, CPU time
breakdown by function) were used as aggregates, e.g., averaged or
summed up across an execution, or in the form of time series. An
example of time-series presentation is where a metric of interest,
e.g., the latency of a function, is presented as a set of measures,
so that the developer has a chance to see how the metric changes
during the execution and correlates with other metrics or events.

Execution view distinguishes between information aggregated
across all execution contexts or threads, vs. when it is presented for
individual threads. For example, latency of a critical function could
be averaged across all threads or could be examined separately
for each thread (or thread type), allowing the developer to learn
whether some threads ran more slowly than others.

System stack location describes the origin of the information:
is the metric related to the behavior of the hardware, such as CPU
utilization or disk throughput? Does the information originate
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Temporal view

Aggregated across execution Time series
Execution view
Aggregated across all Per-thread
threads/processes
System stack location
Hardware Operating Compiler/ Application
system libraries

Figure 1: Dimensions of classification for information codes.

from measuring events in the operating system? Does it come
from measurements related to the compiler or libraries? Or, does it
originate solely from measuring the events in the application, such
as the duration of functions or properties of data structures?

Codes can be labeled along each dimension; a sequence of labels
produces a category for a given code. For example, a code that
describes information in the form of time series that is presented
for each individual thread would fall into Time-series / Per-thread
category. Table 1 organizes our codes into categories using the
first two dimensions (temporal and execution views). In the third
dimension (system stack location), the Application label dominates,
so we do not further split the categories along this dimension (codes
in the table correspond to Application, unless noted otherwise). Only
codes that appeared in at least 10% of the tickets are listed in the
table.

Most of the codes are deterministically labeled along each di-
mension, with two exceptions at the bottom of Table 1 where we
did not have sufficient data to uniquely label the codes. For exam-
ple, the code info-code-behavior, which indicates that the developer
referred to the application source code in order to reason about
a performance anomaly, was difficult to label as either Per-thread
or All threads along the execution view dimension: source code is
static and it is not always clear if a particular code sequence would
be executed by all running threads or by a certain subset.

3.2 Time Series / Per-thread Category

Developers need to understand thread activity over time. Time
Series / Per-thread is the most prominent category, including 8 out
of 17 most frequently occurring codes. That is, developers mostly
looked for information across time and across threads, as opposed
to the aggregated form. This is despite the fact that aggregated
information is much easier to obtain (via tools like CPU profilers);
as we will see in the next section, getting time-series per thread
information required rudimentary and manual methods, such as
manual code instrumentation or stopping the debugger at just the
right time to observe specific events.

We believe that the need for Time Series / Per-thread information
is not unique to developers at WiredTiger. Google’s and IBM’s in-
house performance tools display the execution trace as time series
broken down by execution context [1, 17].

The most frequently occurring code is info-functions-or-activity-
over-time-by-threads. It represents a situation where a developer
learned what threads were doing during different periods in the
execution, e.g., what functions or groups of functions they were
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executing, when, and for how long. In one example the developer
wrote:

There are two checkpoints, the first starts at about (40 total secs)
and it finishes quickly, before the next 10 second stat report. The
next checkpoint starts at about (80 total secs) and continues for
the rest of the test.

In this case, a checkpoint is identified by a group of functions
and is executed by a specially designated checkpoint thread. The
developer observed when the checkpoint started and ended. In
another case, a developer wanted to learn which WT functions the
thread is executing, if any, and when:

Running pmp, | almost never catch any thread in WT during the
1-thread run. With 8 threads, | always see 7 out of 8 yielding in
__wt_page_in_func.

Another group of codes dominating the Time Series / Per-thread
category relates to threads being blocked, delayed, active or inac-
tive. Information about blocked or delayed threads was especially
difficult to piece together and required developers to analyze se-
ries of callstacks obtained via a debugger or by sifting through log
files. Below are the codes in this category and the example quotes
describing them:

info-threads-blocked-delayed-due-to-certain-functions-or-activity:

...the vast majority of the time is spent in application threads in
cond_wait waiting for cache->evict_current to have something.
This means app threads are stuck in the loop in
wt_cache_eviction_worker.

info-threads-waiting-over-time:

There are often periods where most (91/100) threads are waiting
on cache for a full second.

info-threads-being-active-or-inactive-affects-performance:

This drop is due to the async threads that are created for the com-
pact. The rest of the test is not async, only the compact operation
is done using async. Therefore, the async threads spin there look-
ing for work.

Latency spikes and throughput variations are a key concern.
Much of performance debugging is centered around latency spikes
and intermittent drops of throughput. These are rare events that
occur when the duration of certain functions or operations or the
rate of their completion falls far below average.

info-latency-spikes:
| got over 500 instances of slow operations on [branch X] and [com-
mit Y], with maximum reported latencies over 1s.

In running the evict-btree-stress-multi.wtperf workload, | see
a number of multi-second latencies.

info-intermittent-throughput-drop:

The load versus read phases are very distinct and the load phase
shows a 23% drop in performance, taking longer to populate.

This observation is, again, not endemic to WiredTiger. Google’s
Dean and Barroso wrote about how these rare but important events
can wreak havoc in large systems [18]. Latency spikes and drops
of throughput can only be observed when the performance metrics
are presented as time-series; any aggregated metric, such as overall
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Table 1: Information codes that occurred in at least 10% of the issues. Codes relate to the application level of the stack, unless
indicated otherwise. Issues refers to number of issues with code, while Total records the total number of code occurrences.

Tickets Total

Category and code

Code description

Time series, Per-thread

> Info-functions-or-activity-over- Developer obtains the functions or groups of functions (i.e., activity) 21 56
time-by-threads that were executed over time by different threads
> Info-threads-blocked-delayed-due- Developer finds when and for how long threads are blocked or delayed 14 22
to-certain-functions-or-activity when executing certain functions or performing certain activity
> Info-latency-spikes Developer observes unusually long latencies seen in the program. 10 47
> Info-intermittent-throughput-drop  Developer observes that throughput occasionally drops during execu- 9 18
tion.
> Info-threads-waiting-over-time Developer finds that threads are waiting on something (e.g., a lock or 8 12
another condition) during particular portions of the execution.
> Info-intermittent-throughput- Developer finds that throughput drops occur when a certain opera- 6 15
drop-tied-to-certain-functions-or-  tion (e.g., checkpoint, cache eviction) is happening or when a certain
operations function is executing.
> Info-latency-spikes-tied-to-certain- Developer observed that a latency spike was observed at the same time 6 11
functions-or-operations as a certain function or group of functions was executing.
> Info-threads-being-active-or- Developer observes that performance varies depending on which 5 18
inactive-affects-performance threads were running (or not) during a particular time in the execution.
Time series, All threads
> Info-correlation-of-data-structure-  Developer observes that the state of a data structure correlates with 16 39
state-with-execution-progress how quickly the code runs.
> Info-data-structure-state-over-time = Developer observes the data structure state (e.g., its size or the presence 10 24
of specific elements) during various periods in the execution.
Aggregated, All threads
> Info-where-time-is-spent-within-a- Developer observed where time is spent in a certain function. 12 16
function
> Info-use-of-synchronization- Developer observes that using synchronization primitives (e.g. fine vs. 9 18
primitives-affects-performance coarse) or using one synchronization primitive over the other, or using
synchronization primitives too often affects performance.
> Info-function-cpu-hotspot Developer obtained a CPU profile of the running program. 6 14
(OS,Lib,App)
Aggregated, Per-thread
> Info-work-accomplished-by- Developer compared different threads or different thread types in terms 6 15
different-threads of how much work they accomplished. Work is a loosely defined as
anything that had to be done in the program.
Aggregated, (Per-thread | All threads)
> Info-code-behavior Developer relied on their knowledge of the application code or specifi- 21 44
cally examined the code.
(Time series | Aggregated), (Per-thread | All threads)
> Info-performance-tied-to-kernel- Developer learned whether the performance correlates with some ac- 7 12
activity-or-state (OS) tivity in the kernel (e.g., paging) or a particular kernel state.
> Info-correlation-of-performance- Developer learned whether performance, either aggregate or during 6 9

and-10 (OS)

specific times in the execution, correlates with reading or writing files.
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throughput or average latency, will conceal them. Profilers do not
sample at high enough resolution to detect rare latency spikes, so
developers at WiredTiger, Google [1] and IBM [17] alike built their
own tools to observe latency spikes in per-thread or per-process
timelines. We were surprised that there was no off-the shelf tool
that the WT developers found suitable for their needs.

The remaining codes in this category describe developers trying
to understand what caused those latency spikes or throughput
drops to occur.

info-intermittent-throughput-drop-tied-to-certain-functions-or-operations:

...what | see in a typical run is that performance drops 95% when

a checkpoint runs.
info-latency-spikes-tied-to-certain-functions-or-operations:

...when | investigated it for $benchmark at the beginning of this

issue, the high latencies always were at the times of merges.

We observed that the WT process of correlating performance
anomalies with various program events was entirely manual.

3.3 Time Series / All Threads Category

Developers need to observe data structure state over time.
Both codes in this category deal with data structures; specifically,
how the state of the data structure changes over time and how it
can explain sudden changes in performance:

info-correlation-of-data-structure-state-with-execution-progress:

When cache utilization hits 95% performance falls off a cliff.

info-data-structure-state-over-time:
The cache is regularly 100% empty (as per the empty score).

This information was obtained entirely via manually-inserted log
messages. While there are tools that automatically track function
calls [2, 7, 11], tracking data structures and especially understanding
the semantics of what is being tracked is more difficult [36, 38].

3.4 Aggregated/ All Threads Category

This category contains three codes; for two of them, the informa-
tion developers need can be trivially delivered by the profiler: info-
function-cpu-hotspot, where developers obtain the CPU profile of
the running program, and info-where-time-is-spent-within-a-function,
where developers observe time spent in a certain function. We no-
ticed that some developers always ran the profiler as the first step
in debugging a performance issue.

Understanding the use of synchronization primitives was more
important than obtaining the CPU profile, but this information was
typically collected from multiple sources and often required under-
standing of the synchronization protocol. The following quote for
the code info-use-of-synchronization-primitives-affects-performance
demonstrates that the developer had to understand a complex syn-
chronization primitive and what it was used for:

Using a read/write lock (to account for direct writes) is the dog
[cause of the performance issue].

3.5 Remaining Information Categories

Application behavior, and not OS or hardware, is the focus.
It is notable that the remaining categories, just like the first three,
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are dominated by codes where the information was obtained at
the application level. Only the codes in the (Time series | Agg.),
(Per-thread | All threads) refer to the information obtained at the
OS level. This finding is surprising as WiredTiger is a key-value
store, so we expected the I/O and virtual memory management
sub-systems to be important for performance.

OS-level information was mostly used to explain latency spikes
or throughput drops (info-correlation-of-performance-and-10):

More runs of this and I've confirmed that there isn’t a 100% rela-
tionship between read or write operations and the delays. | have
instrumented every read and write operation over 250ms and | can
see that there are periods when we report operational latency over
700ms, with no reported slow read and write operations.

Understanding the code base is important, but is no substi-
tute for high-quality performance data. In several cases, infor-
mation was obtained by analyzing the source code or by relying on
existing knowledge of the code, rather than by using a performance
tool (info-code-behavior):

... with the way the code is currently structured, __wt_verbose is

always called even if it is an empty function.

The reason is that the [branch X] is much more cautious at creating
additional eviction workers, and as a result we have less contention
and a higher throughput.

The higher latencies for app threads tend to come when eviction
is needed but there is no work available.

Anecdotally, we noticed that some developers tended to be “ra-
tionalists” in that they more often tried to explain performance
anomalies using their innate knowledge of the code, while others
were “empiricists”: they always gathered experimental data before
forming hypotheses. Perhaps the key observation is that even very
experienced developers could not debug tough performance issues
relying on their knowledge of code alone; having high-quality per-
formance information was crucial.

4 RQ2: TOOLS USED

To understand which tools developers use during performance
comprehension (RQ2), we identified 22 codes related to tools. We
categorized the tools according to the same dimensions as the infor-
mation codes in Section 3. Table 2 shows the codes that appeared
in at least 10% of the tickets, along with their descriptions and cate-
gories. The remainder of this section summarizes our main findings
regarding how WT developers use tools.

A manually-generated application log is the most often used
performance debugging tool. The top category, Time series / (Per
thread | All threads), includes the codes related to using the appli-
cation log. Tool-manual-log-existing was used when the previously
instrumented log messages were sufficient to get insight into the
problem. Tool-manual-log-new was used when the developer had to
manually add new log messages to get to the bottom of the issue.
The relative frequency of this code (it occurred in 23% of all tickets)
indicates that obtaining the needed information is largely a manual
process; even in software with established logging, developers often
had to manually add new instrumentation. This is consistent with
prior work that noted the high frequency with which logging code
is modified [45].
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Table 2: Tool codes in our study. Codes relate to the application level of the stack, unless indicated otherwise. Tickets is the

number of tickets with code; Total is the total number of code occurrences.
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Category and code

Code description

Tickets Total

Time series, (Per-thread | All threads)

> Tool-manual-log-existing

> Tool-manual-log-new

> Tool-show-statistics-over-time

The software was previously instrumented to output log messages. The
developer turned logging on to collect information for performance debug-
ging. The log included messages generated over the course of the execution
(hence the time-series temporal view). Depending on the context, each
message identifies the thread that logged it (per-thread execution view), or
can reflect information aggregated over all threads.

This code was used when the developer relied on the same kind of
application-level logging as covered by the tool-manual-log-existing code,
but the existing instrumentation was not sufficient, and the developer had
to add new log messages to the code to obtain the data they wanted.

This code was used for two in-house tools that visualized statistics, collected
via an application log, as time series.

Time series, Per-thread

> Tool-gdb-callstacks (Lib,App)

> Tool-pmp (Lib,App)

Developer used a debugger, gdb in our case, not for program errors/crashes,
but to understand where and when threads spend their time.

Pmp stands for poor man’s profiler [5]. This is a script that periodically
collects gdb callstacks across all threads, and pre-processes them with awk.

Aggregated, All Threads

> Tool-profiler (OS,Lib,App)

This is a typical CPU profiler: a tool that automatically provides per-function
breakdown of CPU cycles and other information. In our case, profilers
included perf, Zoom, and instruments. Developers used profilers to only

20 45
10 18
6 12
9 12
8 10
8 17

look at information aggregated across threads.

Developers have yet to find the right tool for visualizing logs.
To analyze the log files, developers either manually sifted through
them or used visualizations. In our case study, developers used two
different tools, both covered by the code tool-show-statistics-over-
time. Over time one tool was deprecated and replaced. Recently,
WiredTiger has built another in-house tool that specifically tracks
long-running operations [8]. This churn in tools suggests that de-
velopers remain on the lookout for the right log visualization tool.
When the log does not provide per-thread information, de-
velopers seek it by other means. It was surprising to see that
even though developers usually required per-thread information
(see Section 3), the application log provided it in the aggregated
form. In some cases it was possible to distinguish between thread
types, such as application threads vs. internal housekeeping threads,
based on the contents of the log messages. But when this level of
detail was insufficient, the developers resorted to debugger-based
tools to fill in the gaps.

Two codes in the Time series / Per-thread category illustrate
these situations: Tool-gdb-callstacks was used when the developer
manually stopped the debugger and examined the callstacks to infer
where threads spent time, and in particular where they blocked.
Tool-pmp refers to Poor Man’s Profiler [5], which is a set of scripts
around gdb that obtain callstacks periodically and parse them with
awk. Here are examples illustrating how these tools were used to
obtain per-thread detail:
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Looking at the PMP traces we could see that there were 7 threads
sleeping at all times and one thread working.

Running pmp, | almost never catch any thread in WT during the
1-thread run. With 8 threads, | always see 7 out of 8 yielding in
__wt_page_in_func.

When running pmp on mongod with WT and running a single
thread, any time | saw a thread actually in the WT library, it was
in pwrite, via the logging subsystem.

Since these tools were not built specifically for obtaining per-
thread performance information they appeared awkward to use
and often required orchestration, so that the stack traces could be
collected at just the right time. For example:

| do have pmp scheduled to run around the time of the very large
dropoff.

Profilers are not as prevalent as one might expect. The cate-
gory Aggregated / Aggregated contains the code generated when-
ever a profiler was used. We observed three profilers in our data:
Linux’s perf, zoom [6], and MacOS’s instruments. Profilers are easy
to use and impose low overhead, because they use sampling. Un-
fortunately, sampling is unable to capture rare latency spikes, so
profilers are used to obtain time-aggregated information. Although
profilers can provide per-thread breakdown, we did not see them
being used in this way.

We were at first surprised that profilers were not used more often.
As we realized that developers spent the majority of their time
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chasing latency spikes and throughput drops, it became clear why
profilers were not helpful. The following quote from a developer
captures the sentiment:

| would only expect perf to be of limited use here. It is useful in
giving an indication of where time is spent over the entire run which
is good for general performance tuning but | don’t know how to use
the results to find what is causing outlier operations’.

5 RQ3: PROCESS

Besides collecting information and using tools, performance com-
prehension involves many processes. For example, developers share
and discuss information, formulate hypothesis, perform and report
on experiments, etc. We seek to understand the process that WT
developers follow during performance comprehension (RQ3). The
three most dominant types of processes that we observed are: (1)
the relationship between tools used and information gathered, (2)
the process of reproducing a performance issue, and (3) experimen-
tation to gain new insights into an issue.

5.1 Tools and Information Inter-relationships

Tools generate information, but information may also lead to tool
usage. We found substantial evidence that the two are closely linked.
We created a mapping between tools and information using
process codes. A process code was created whenever the text of
the document made it clear that a developer used a specific tool
to obtain a specific piece of information. This produced a large
number of codes (63) because every such process code reflects a
relationship between some tool and some information.

We created process codes by concatenating the tool code with
the code for the information obtained using the tool. If the devel-
oper indicated that (s)he sought a specific type of information and
then used the tool to obtain it, the info- string appears first in the
process code and the tool- string appears second, as in:
process-info-functions-or-activity-over-time-by-threads-tool-pmp.
On the other hand, if the developer appeared to use the tool in an
exploratory fashion, that is, without deciding in advance which
information produced by the tool might end up being useful in
performance debugging, the tool string appears first and the infor-
mation string appears second:
process-tool-pmp-info-functions-or-activity-over-time-by-threads.
The following quote is an example of the information-first process:

| added new stats and turned on statistics logging [...] to see how
many times *wt_Ism_manager_pop_entry is called and how many
times that call results in a manager operation getting executed.

And, this quote exemplifies the tool-first process:

| collected WT statistics for all runs too. Maybe there is some trend
we can see that can help skew the conditional. Here are the %-
ages of [...] how often the server thread helped evict pages.

In Section 3 we described the categories we used to group in-
formation and tool codes. The category for a process code is a
concatenation of the categories corresponding to the tool and to
the information. We further grouped these categories into concepts,
reflecting whether the tool or the information was time-series, ag-
gregate, per-thread or across threads. Since both the tool and the

7This refers to unusually long-running function invocations
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Table 3: Process concepts accounting for at least 10% of all
tickets. In each concept the developers used a tool first, with-
out looking for specific information.

Tool category Information category Tickets
Time series / Per-thread Time series / Per-thread 30 (68%)
Time series / Per-thread Time series / All threads 5 (11%)
Time series / All threads Time Series / All threads 14 (31%)
Time series / All threads Time Series / Per-thread 5 (11%)
Aggregated / All threads Aggregated / All threads 9 (20%)

information could correspond to these four concepts, there was a
total of 4x4=16 possible concepts for process codes. Of these, only
five concepts listed in Table 3 appeared in at least 10% of all tickets:
(1) a time-series per-thread tool was used to obtain the time-series
per-thread information, (2) a time-series per-thread tool was used
to obtain time-series information aggregated across all threads, (3)
a time-series tool that aggregates data across threads was used
to obtain time-series information aggregated across threads, (4) a
time-series tool that aggregates data across threads was shoehorned
into obtaining time-series per-thread information, and (5) a tool
that produced data aggregated across time and across threads was
used to obtain the same kind of information.

Using these concepts we identified three key patterns in how
developers relate tools and information:

Developers use tools first, without looking for specific infor-
mation. All 5 concepts reflected developers using a tool first. Out
of 63 process codes that we created only seven codes (in four tick-
ets) matched the “information-first” scenario, indicating that the
process of performance debugging is for the most part exploratory.
We found that even experienced developers often do not know
where to begin in resolving a performance problem.

Developers use tools to observe time series information. Four
of these process categories were related to the way developers
acquired time series information, either per-thread or across all
threads. Developers mainly used manual logs and gdb-based tools to
collect time series information. Manual logging was used to collect
time series behaviour for specific threads in 27 tickets (61% of all
tickets), and used to collect time series behaviour of all threads in
12 tickets (27% of all tickets). GDB-based tools (gdb, gdbmon, pmp)
were used to collect per-thread time series behaviour in 12 tickets
(27% of all tickets).

Classic CPU profilers are not frequently used. Only one of
our process categories reflected developers using standard CPU
profilers like perf. These tools were used to observe aggregate
program behaviour in 5 tickets (11% of all tickets).

Overall, this suggests that the process of performance compre-
hension is mostly about obtaining time series per-thread informa-
tion using simple tools, such as application logging or gdb, in an
exploratory fashion, without knowing first what to look for.

5.2 Reproducibility

Being able to reproduce a performance bug on a machine that has
tools to diagnose and trace the issue is critical to root cause analysis
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and debugging. As we studied performance debugging processes
when answering RQ3, we learned that reproducability was a con-
cern. Overall, we created 7 codes relating to reproducibility, with
at least one code appearing in 27 tickets (61%). Of these repro-
ducibility tickets, 10 (37%) had instances where a developer tried to
reproduce an issue but failed. This resulted in 13 (48%) of tickets
coded with reproducibility containing directions or guidance on
how to generally reproduce the performance problem. A common
solution to reproducibility problems is to share a configuration
file with other developers. However, only 7 (25%) tickets coded
with reproducibility problems required sharing configuration files.
Instead most reproducibility discussion centered around the right
hardware/software versions to reproduce the issue. The importance
and difficulty of reproducing performance issues in heterogeneous
environments has been also noted in prior work [19, 46].
Difficulty reproducing the software version. In 18 (66%) of the
tickets that had reproducibility challenges developers struggled to
find the code exhibiting the problem. Developers often had sev-
eral concurrent versions of their own or supporting software (i.e.,
MongoDB), and ensuring a developer had the right versions of all
software that exhibited the performance problem was not trivial.
For example:

Could you confirm whether the version of MongoDB you are using

includes that change?

The version of master+develop was WT [commit X] on top of mongo
[commit Y].

Difficulty reproducing the hardware. 10 tickets (37%) with re-
producibility issues dealt with hardware conditions. WT developers
primarily use cloud-based instances for development. Some hard-
ware challenges were related to cloud use. For example:
| would appreciate any tips on how to reproduce that behaviour.
Perhaps | should run on the same AWS instance?

What workloads and under what circumstances (like hardware)
have you seen performance increases? My AWS box and the Jenk-
ins have 8 cores and 32Gb.

Developers seemed reticent to re-use instances unless absolutely
necessary. The reasons behind this is not clear to us, though the
long time to setup a new environment might be a cause. Often, a
developer ‘lives in’ a single development environment for a long
time because they have added a number of customizations and it
would be time consuming to transfer to a new instance. Instead,
developers asked each other to run tests on instances they could
not access, for example:

Could you please retest on your instance again?

Difficulty reproducing the configuration. In 7 tickets (25%) de-
velopers manually shared configuration settings with each other.
This involved developers copy/pasting details of their configura-
tions and can be an error prone process because developers may
not understand the necessary configuration settings required to
reproduce an issue. However, we hesitate to say that this is a prob-
lem, as discovering that a little-known configuration detail has an
effect on performance can be a significant step in diagnosing the
problem. Another form of manual sharing was developers sharing
code between each other by including it as a comment on a ticket.
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Dependency on cloud-based tools, such as CI systems. One
complex reproducibility ticket (in WT-2898) stood out to us. The
issue was a hang during a performance benchmark run by Jenkins
on a cloud instance. Reproduction was challenging in two ways: (1)
The Jenkins server itself was not set up to easily debug benchmarks
in situ; developers instead tried to set it up on their own machines.
(2) The benchmark was challenging to configure and set up on
the developer’s machines, which caused spurious conclusions part-
way through debugging. This ticket was eventually solved through
substantial effort, by reproducing the issue on the Jenkins cloud
instance, where it was discovered to be a race condition.

5.3 Experiments

Developers run experiments to help identify the cause and po-
tential solutions to a performance issue. As we were analyzing
performance debugging processes, we found that much of them
revolved around experimental details. We created 12 experiment-
related codes with at least one appearing in 36 tickets (81%).
Experimental comparisons. Comparing code, workloads, hard-
ware instances, or configurations to identify a performance issue
was a common activity. Of tickets with some experiment, 29 (80%)
contained a comparison. We classified experiments as comparisons
when we saw at least two different versions of some artifact being
compared, in contrast to e.g., experiments in which a program was
tested with a given input (see workloads).

The most common experiment was a comparison between two
different versions of code that already exists, such as a comparison
between two branches or commits in git. This appeared in 20 tickets
(55% of all tickets where an experiment was performed). This type
of experiment helps with performance regressions in which the
developer wants to narrow down what affected performance.

When | was looking at differences between versions | found a good
starting place.

| compared changeset [commit X] (good performance) to [commit
Y] (post-merge, bad performance).

The next most common experiment was a comparison between
existing code, and a modified version of this code that the developer
wrote. This appeared in 18 tickets (50% of all tickets that contained
experiments). Developers used these experiment to determine if the
bug was present after the change. The code change was sometimes a
solution attempt, but it was also used to disable an (often necessary)
component to help isolate the cause. For example:

| made a small experimental change to the develop code to start

all eviction threads in wt_evict_create.

| ran [workload] with sweeps turned off comparing it to an identical
run yesterday with sweeps on.

Comparisons between different software configurations (includ-
ing changing the number of threads) appeared in 16 tickets (44%
of tickets with experiments). Changing the number of threads was
a common experiment, appearing in 8 tickets, while changing all
other kinds of configurations, except threads, appeared in 11 tick-
ets (some tickets used both kinds of experiments). Other kinds of
comparisons occurred less frequently. Comparisons between differ-
ent workloads (test cases) appeared in 11 tickets (30% of all tickets



ESEC/FSE ’18, November 4-9, 2018, Lake Buena Vista, FL, USA

with experiments), comparisons between hardware configurations
appeared in 7 tickets (19%).

Experiments with workloads. Experiments involving running
workloads to evaluate programs appeared in 22 tickets (61% of
all tickets with experiments). Previously established workloads
were the most popular, appearing in 19 tickets (52% of all tickets
with experiments). A wide collection of workloads are often kept
to help test the program in different ways, such as correctness
or performance. These workloads are often automatically run by
the CI system but were also run by WT developers manually to
investigate an issue. These were used as well understood input
and helped developers to validate theories about less understood
program behaviour. For example:

I've run the medium-btree.wtperf test on several changesets, both
diagnostic and production builds and do not see any change in
performance

In case it is 'the other side of the same coin’, the multi-btree-zipfian
workload read throughput shows a similar 36% performance in-
crease with those changes.

| have started a [populate] and [workload] run on the SSD with
mmap turned back on but no block compressor specified. We'll
see what that looks like tonight.

Developers only developed new workloads in 4 tickets, drawing
on the YCSB[14] benchmarks in 3 of these, and re-used workloads
introduce by another ticket in 2 tickets. For example:

[I am] constructing a workload that: — Inserts 16MB values from
10 threads in parallel — Configures a memory_page_max of 5SMB
— Does not do checkpoints — Does not use explicit transactions

| am going to run this branch with MongoDB with some of the re-
cent workloads that were having eviction issues. In particular the
standalone version of the insert test from SERVER-23622

The final experiment that we noted was a measurement of how
performance of a given benchmark varies. This appeared in 4 tickets
(11% of all tickets with experiments). Developers used this to deter-
mine how consistently the program behaves across repeated runs
on the same machine. Frequently this was used to dismiss or accept
as valid an observed performance drop (or increase) in the context
of the program’s historical behaviour (often this information was
not known to all developers). For example:

Developer A: Is fruit_pop usually stable?

Developer B: | would say fruit_pop is generally stable. I'd say 1%

variation may be normal (which on a run of 4000 seconds is 40

seconds on either side), but over 3% feels outside that.

When | started testing | realized that this workload has a lot of
variance.

6 DISCUSSION AND IMPLICATIONS

Profilers do not do the job. Our case study uncovered that WT
developers spent most effort on understanding how latency spikes
and intermittent throughput drops relate to other events in the pro-
gram. Off-the-shelf performance tools, namely profilers, were not
helpful because developers relied on time series per-thread view of
the execution, which profilers do not provide. Although the sample
data collected by profilers could, in theory, be displayed across
time/threads, the profiler sampling resolution is not fine enough
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to capture rare latency spikes. To obtain the needed information,
developers used rudimentary tools, such as a debugger outfitted
with shell scripts, but mostly application-level logging: a battery of
log messages manually inserted in the code.

Log analysis is often manual and exploratory. For the most
part developers manually sifted through raw log files. Manual log
analysis works as long as the logs are not too big or if the developer
knows what to search for. Unfortunately, as our analysis revealed,
developers seldom know what to look for. Instead of starting with a
concrete hypothesis and looking for a specific piece of information,
developers usually just “throw” a tool at the problem to see what
information turns up.

Tools should support free exploration of execution traces.
Future performance tools must support the “exploratory” process
of performance debugging. Requiring a developer to decide a priori
which information to log is not productive, because developers do
not know in advance what information they need. That is why,
almost a quarter of issues in our case study necessitated new log
messages, instead of using existing ones. Ideally, a performance tool
would log, in a non-discriminating fashion, a wealth of information
about functions, data structures and their timing, so that developers
can freely explore the execution trace and discover new phenomena.

Designing such exploratory tools poses two challenges: large
runtime overhead and an overwhelming amount of information to
process. Overhead can be addressed with hardware support, such
as Intel Processor Trace (PT) [3], or software techniques, such as
Log20 [47] or Google’s efficient tracing tools [1].

Examining massive amounts of information that tracing can
produce is a challenge in and of itself. From conversations with
Google engineers we learned that their performance traces are
petabytes in size! There are many visual analysis tools for large
execution traces, such as ExtraVis [16], SyncTrace [26], Revel [22]
and Tramper’s thread overview / sequence view [40], TraceDiff [41]
and Lvis [44]. IBM’s Zinsight [17] and Google’s in-house tools [1]
are performance debugging tools used in practice that explicitly
track outlier events. However, they do not support completely free
exploration, requiring the developer to specify an execution window
to look at. This concern was related to us by one WT developer:

Identifying interesting time periods is a definite issue with the ABC
tool®. We generally rely on users to indicate a relatively small time
window to facilitate investigation. | dream of being able to do some
automated pattern matching on the data in order to isolate inter-
esting time periods in the future.

Developers could take better advantage of cloud resources.
Despite running a cloud-based CI system and working primarily
on cloud instances, WT developers still only used a few personal
instances for development and testing. When an issue appeared on
a specific hardware configuration, it was often left up to a particular
user to re-run the experiment after others have pushed changes.
Essentially, developers treated their cloud instances as personal
development machines. Even the WiredTiger CI system in this case
was apparently only able to to test one branch of code at a time.
We think developers could take better advantage of the immedi-
ate availability of cloud resources, assuming they have a sufficient
budget. For example, to dissuade developers from local and personal

8The developer referred to a specific in-house tool that shows statistics over time.
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customizations, developers could maintain environment configura-
tion as part of version control. To reduce hardware-related repro-
ducibility challenges: developers should be able to easily start new
instances with the standardized environment. And, to enable easier
instance sharing, developers can maintain common authentication
between all of their instances.
Supporting performance experimentation. Experiments yield
valuable information, but only when the workloads are well un-
derstood. In WT’s case a common catalog of workloads with well-
documented properties and behaviors seemed to improve repro-
ducibility and accuracy of interpretation. But, developers often
manually re-ran and cataloged experimental output. We believe
that existing CI systems can provide better support, potentially
running experiments pre-emptively and along different dimensions
to establish baselines for interpreting performance degradations
(similar to what was described by Nguyen et al. [32]).

We hope that our findings on how developers work to address
performance issues will spur new ideas for tools in this area.

7 RELATED WORK

Several studies characterize performance bugs. For example, Zaman
et al. [46] compare the qualitative difference between performance
bugs and non-performance bugs in Mozilla and Google Chrome
along four dimensions: impact, context, fix, and fix validation. The
study finds that developers and users face problems in reproduc-
ing performance bugs and have to spend more time discussing
performance bugs than other kinds of bugs.

Likewise, Nistor et al. [33] study how performance bugs are
discovered, reported to and fixed by developers, and compare the
results with those for non-performance bugs. The authors consider
bugs from Eclipse JDT, Eclipse SWT, and Mozilla. They find that fix-
ing performance bugs is more difficult than fixing non-performance
bugs and that, compared with non-performance bugs, a larger per-
centage of performance bugs are discovered through code reasoning
than by users observing the negative effects of the bugs.

Song et al. [39] follow up on these findings and find that user-
reported performance problems are observed through comparison,
including comparisons within one code base with different inputs
and comparisons across multiple code bases. Performance problems
are also often reported as comparisons, including both good and
bad inputs. In addition, like Nistor et al. [33], this study also finds
that performance problems take a long time to diagnose.

To better understand how developers locate performance bugs,
navigate through the code, understand the program, and communi-
cate the detected issues, Baltes et al. [10] perform an observational
study with twelve developers who are trying to fix performance
bugs in two open source projects. The developers worked with a
specific profiling and analysis tool that visually depicts runtime
information in a list representation and is embedded into the source
code view. The study concludes that fixing a performance bug is
a code comprehension and navigation problem and that flexible
navigation features are needed. Program comprehension implicates
several of our information codes (Table 1). However, our study
considers performance information more broadly (e.g., relation of
program activity and OS activity) and also reports on tools and
processes that are implicated in performance comprehension.
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Jin et al. [23] study 109 performance bugs that are randomly sam-
pled from five large software projects. They discover that more than
one quarter of the bugs are caused by developers misunderstand-
ing the workload or performance-related characteristics of certain
functions and almost half of the bugs require large-scale input to
be reproduced. We also observed the importance of reproducibility
in our dataset, and we characterized several corresponding difficul-
ties (Section 5.2). They also found that developers employed one
of three bug-tracing strategies: changing a function-call sequence,
conditionally skipping code units which do not always perform
useful work, and changing program parameters.

Similarly, Liu et al. [29] study 70 performance bugs from eight
popular Android apps, focusing on bug characteristics, such as GUI
lagging and memory bloat. They found that over a third of these
bugs manifest themselves only after special user interactions and
that performance bug detection requires manual effort. This is con-
sistent with our findings (Section 4): we found that WT developers
expended substantial manual effort on performance comprehension,
frequently using custom and manual tools, such as logging.

Our work complements these prior studies: instead of contrasting
performance and non-performance debugging, how performance
bugs are identified and reported, and what are the code patterns
that can help identify performance bugs, we investigate what kind
of information developers need to locate performance bugs, what
tools they use in practice, and what processes they follow.

An extensive body of prior work considers developers’ infor-
mation needs [27, 28], adoption of certain tools [24], and software
processes [21] more generally. By contrast, our focus is specifically
on performance comprehension. To the best of our knowledge, this
is the first study of this kind.

8 CONCLUSION

Performance debugging is a task with its own processes, tools, and
information requirements [35]. We presented an empirical case
study of performance-related issues in the WiredTiger project, a
high-performance database engine. We studied developer discus-
sions threads in 44 issues and used grounded theory to characterize
the concepts related to information collected, tools used, and the
process the developers followed in their investigations.

Overall, we found that these performance-focused developers
spend a lot of their time chasing latency spikes and throughput
drops, but are not supported by existing tools. Instead, they ex-
amine manual logs or the raw output of rudimentary call stack
samplers. Developers keep a number of workloads to help monitor
the performance of their system, but often have difficulty repro-
ducing performance issues in a cloud environment. To diagnose
performance issues, developers perform exploratory differential
experiments to understand what recent changes to code could have
caused the problem. They also frequently use tools without know-
ing what information might be relevant to the problem.
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