
The Limitations of Federated Learning in Sybil Settings

Clement Fung
Carnegie Mellon University
clementf@andrew.cmu.edu

Chris J.M. Yoon
University of British Columbia

yoon@alumni.ubc.ca

Ivan Beschastnikh
University of British Columbia

bestchai@cs.ubc.ca

Abstract
Federated learning over distributed multi-party data is an
emerging paradigm that iteratively aggregates updates from a
group of devices to train a globally shared model. Relying on
a set of devices, however, opens up the door for sybil attacks:
malicious devices may be controlled by a single adversary
who directs these devices to attack the system.

We consider the susceptibility of federated learning to
sybil attacks and propose a taxonomy of sybil objectives
and strategies in this setting. We describe a new DoS at-
tack that we term training inflation and present several ways
to carry out this attack. We then evaluate recent distributed
ML fault tolerance proposals and show that these are insuf-
ficient to mitigate several sybil-based attacks. Finally, we
introduce a defense against targeted sybil-based poisoning
called FoolsGold, which identifies sybils based on the diver-
sity of client updates. We show that FoolsGold exceeds state
of the art approaches when countering several types of poison-
ing attacks. Our work is open source and is available online:
https://github.com/DistributedML/FoolsGold

1 Introduction

To train multi-party machine learning (ML) models from
user-generated data, clients share their training data with ser-
vices, which can be computationally expensive and privacy-
violating. Federated learning (FL) [10, 39, 40] is a recent
solution to both problems: data is kept on the client device
and only model parameters are transferred to a central aggre-
gator while training. Clients maintain a basic level of privacy
by computing their model updates locally and independently,
enabling collaborative ML in resource-constrained settings
such as over a mobile network or in IoT(Internet of Things)
deployments [24, 29, 49, 57].

However, FL widens the attack surface of the machine
learning process: clients, who previously acted only as passive
data providers, can now observe intermediate model states
and adaptively contribute arbitrary information as part of de-

centralized training. For example, adversaries posing as hon-
est clients can send erroneous updates to poison the trained
model [3,8,15,19,23,28,36], invert or reconstruct the data of
honest clients [26,41,42,48,54,56], or gain access to models
without usefully contributing [34].

Previous work has shown that adversaries who control
more clients in a federated learning deployment can carry
out poisoning attacks with more damage [52], and they can
mount more elaborate and elusive attacks with coordinated
malicious clients [58]. Such sybil-based attacks [18], in which
an adversary controls multiple malicious clients, have been
mentioned only in passing in existing work on FL [6, 30, 33,
35]. In this paper we focus on sybil attacks and contribute a
taxonomy of sybil strategies that can be used to exacerbate
known attacks against FL. As part of this process we define a
new category of sybil-specific denial of service (DoS) attack
that we term training inflation.

Having defined a space of sybil strategies and correspond-
ing malicious objectives (e.g., model poisoning) in the context
of FL, we consider the defenses. Existing work has explored
several ways to defend the FL training process [9, 50, 60, 61].
We evaluate these defenses in the context of sybil-based at-
tacks. Our results demonstrate that none of these defenses are
effective, particularly against a large number of sybils.

Consequently, we propose a defense called FoolsGold to
counter one class of sybil-based attacks on FL: targeted poi-
soning by sybil clones. In a targeted poisoning attack, these
clones contribute updates towards a specific poisoning objec-
tive. In expectation over the training process, this targeting
reveals sybils through behavior that is more similar to each
other than the similarity observed amongst the honest clients.
FoolsGold’s insight is to use this characteristic behavior to
detect and reject poisoned contributions by adapting client
learning rates based on client contribution similarity.

Our evaluation shows that FoolsGold defends FL from
targeted poisoning by a large number of sybils, with only min-
imal change to the server-side algorithm and no change to the
client-side algorithms. We evaluate FoolsGold on 4 diverse
data sets (MNIST [31], VGGFace2 [14], KDDCup99 [17],

https://github.com/DistributedML/FoolsGold

Amazon Reviews [17]) and 3 model types (1-layer Softmax,
Squeezenet, VGGNet) and find that our approach mitigates
poisoning attacks under a variety of conditions, including dif-
ferent distributions of client data, varying poisoning targets,
and various sybil strategies.
In summary, we make the following contributions:

? We provide a taxonomy of sybil-based attacks on feder-
ated learning, which includes sybil strategies paired with
an objective based on existing work on attacks against
FL. We use this taxonomy to motivate open research
problems in this space, and contribute a new type of DoS
attack that we term training inflation.

? We evaluate existing defenses against malicious sybil-
based attacks on ML (Multi-Krum [9], median [62],
trimmed mean [62]).

? We design, implement, and evaluate a novel defense
against sybil-based targeted poisoning attacks for fed-
erated learning that uses an adaptive learning rate per
client based on inter-client contribution similarity.

? In the context of colluding sybils, we design and evaluate
intelligent poisoning attacks performed across sybils,
and show that FoolsGold can defend against them, while
suggesting strategies for further mitigation.

2 Background

Machine Learning (ML). Many ML problems are the mini-
mization of a loss function in a large Euclidean space. For an
ML classification task that predicts a discrete class; prediction
errors result in a higher loss. Given a set of training data and
a proposed model, ML algorithms train, or find an optimal
set of parameters, for the given training set.
Stochastic gradient descent (SGD). One approach in ML
is to use stochastic gradient descent (SGD) [12], an iterative
algorithm that selects a batch of training examples, uses them
to compute gradients on the parameters of the current model,
and takes gradient steps in the direction that minimizes the
loss function. The algorithm then updates the model param-
eters and another iteration is performed. SGD is a general
learning algorithm that can be used to train a wide variety
of models, including deep neural networks [12]. We assume
SGD as the optimization algorithm in this paper. In SGD, the
model parameters w are updated at each iteration t as follows:

wt+1 = wt −ηt(
1
b ∑
(xi,yi)∈Bt

∇l(wt ,xi,yi)+λ||wt ||p) (1)

where ηt represents a local learning rate, λ is a regularization
parameter on an Lp norm of the parameters that prevents
over-fitting, Bt represents a gradient batch of training data
examples (xi,yi) of size b and ∇l represents the gradient of
the loss function.

Federated learning [39]. We assume a standard federated
learning setting, in which training data is distributed across
multiple clients and the aggregator does not see any training
data.

The distributed learning process is performed by a set of
clients over synchronous update rounds, in which an aggre-
gation of the k client updates, weighted by their proportional
dataset size nk

n , is applied to the model atomically.

wg,t+1 = wg,t +∑
k

nk

n
∆wk,t

Even if the training data is distributed such that it is not in-
dependent and identically distributed (non-IID), federated
learning can still attain convergence. For example, federated
learning can train an MNIST [31] digit recognition classifier
in a setting where each client only holds data of 1 of the digits
(0-9).

Federated learning comes in two forms: FEDSGD, in which
each client sends every SGD update to the server, and FE-
DAVG, in which clients locally aggregate multiple SGD it-
erations before sending updates to the server, which is more
communication efficient [39].

3 Threat model for sybil-based attacks on FL

Setting assumptions. We are focused on FL and therefore
assume that data is distributed across clients and hidden, such
as in an IoT deployment with multiple devices distributed in
people’s homes. The adversary can only access and influence
the model state through the FL API. They cannot observe
the training data of other honest clients. The adversary can
observe the global change in model state to learn the total aver-
aged update across all clients, but they cannot view individual
honest client updates.

We assume that the server is uncompromised and is not
malicious. In general, sybils can also be prevented non-
algorithmically through techniques such as CAPTCHAs or
device-specific asymmetric keys. We assume that such ac-
count or device verification services in the FL system do not
exist, or that the adversary has the means to bypass these
solutions.
Attacker capability. A system like FL, that allows clients to
join and leave, is susceptible to sybil attacks [18] in which an
adversary gains influence by joining a system using multiple
colluding aliases. Sybil attacks are especially prevalent in IoT
sensor networks [44], an emerging use case for FL [13, 33].
In this work, we assume that an adversary leverage sybils to
mount more powerful attacks on FL.

While an attacker’s influence on the system may increase
with more sybils, the information the sybils learn from the
system remains constant: a snapshot of the global model. The
attack strategies are therefore more limited. The same holds
for defenses: since no auxiliary information is assumed, sybil

Poisoner objective

True objectiveRd

Attack
target

Feature space

Figure 1: Targeted poisoning attack in SGD. The dotted red
vectors are sybil contributions that drive the model towards the
poisoner’s objective. The solid green vectors are contributed
by honest clients that drive towards the true objective.

Target

Data inversion [26,48,56]

Increase training time
Increase bandwidth used
by server/clients

Targeted poisoning
[3,6,36,58,§7.3,§7.4]

Increase CPU usage at
server/clients

Utility

Learn data from clients

Access model without
usefully contributing

Attack type Attack objective

Model free riding [34]

Membership inference
[41,42,54]

Resource

CPU inflation

Decrease model accuracy
on target class only

Determine if a client has
certain data

Untargeted poisoning [19,59]

Privacy

Bandwidth inflation

Training time inflation §5.2

Decrease model accuracyModel
quality

Table 1: Types of attacks against Federated Learning.

defenses based on e.g., information from social networks or
peer-to-peer systems are not applicable [22, 53, 55, 63, 64].

Next, we review different adversarial objectives and ex-
amples of attack variants that achieve these objectives in the
context of FL.

4 Attack objectives and strategies in FL

FL is susceptible to a variety of attack objectives and strate-
gies. We now review the attack objectives in Table 1. In Sec-
tion 4.2 we will review the strategies in Table 2 and discuss
their intersection in Table 3.

Swarm Sybils coordinate and weakly
synchronize states

Churn

Coordination

Dimension

Data

Churners Sybils join and leave
Remainers Sybils join and stay

Uncoordinated

Clones

Clowns

Puppets

Sybil strategy

Act-alikes

Sybils coordinate and
synchronize on each round

Sybils act without coordination

Sybils use synthetic gradients
not based on dataset

Sybils perform optimization
steps on different local dataset

Sybils perform optimization
steps on identical local dataset

Description

Table 2: High-level sybil strategies in Federated Learning.

4.1 Attack objectives

Attacking trained model quality. Adversaries may attack
the quality of the model by supplying strategic inputs dur-
ing training. In untargeted poisoning, the adversary aims to
produce a model with low test accuracy that performs poorly
across all classes [19, 59].

In targeted poisoning, the adversary directs the shared
model towards a more specific objective. The adversary’s
goal is to produce a model where a subset of inputs are clas-
sified as a different, incorrect class. For example, this subset
could be a source class (label-flipping attack [5]) or a set of
images with a curated pattern (backdoor attack [3, 23]). To
avoid detection of such poisoning attacks, the prediction ac-
curacy of classes unrelated to the attack should not change. In
FL, each client has an equal share of the aggregated gradient
and attackers can attack any class with enough influence by
generating additional sybils as shown in Figure 1.

Later in the paper we will demonstrate the vulnerability of
FL to targeted poisoning by sybils (Section 5.3) and design
and evaluate a new defense, FoolsGold, to defend against
these types of attacks (Sections 6 and 7).
Attacking privacy of honest clients. Clients in FL possess
a subset of data that is not explicitly shared with other clients.
This enables learning over private datasets [39]. Although
adversaries cannot access the training data at honest clients,
they may attack the model and infer sensitive client informa-
tion from the changes in the model state. An adversary may
even influence the shared model to have it leak more private
information in future iterations.

In a data inversion attack, the adversary reconstructs the
training data of a targeted honest client [27] by generating a
sample that closely represents the training data of a specific
client. Alternatively, in a membership inference attack, the
adversary determines whether or not a client has a specific
datapoint in their dataset [41].

Puppets

[41]

Churners All

Clowns

Coordination

[19,59]

[41,42,54] §5.2

Puppets

Clones

Uncoordinated [3,6,36]

M.InferD.Inversion

[26,48,56]

T.Inflate
Uncoordinated

Data

[34]

Swarm

Act-alikes
Swarm

T.Poison

Swarm

Churn U.Poison

§7.3, §7.4

Remainers

Uncoordinated [58]

§5.2

M.Free

Puppets

All

FoolsGold
§6

Unexplored

Table 1
Attack types

Table 2
Sybil strategies

Table 3: Known combinations of sybil strategies (Table 2) and attacks (Table 1). FoolsGold (Section 6) is highlighted as a
contribution in this paper that defends against remainer clones whose goal is targeteted poisoning. The other highlighted+bolded
sections in this paper are new attack variants we contribute in this paper.

Attacking system utility. FL assumes that the utility of
model contributions is equally distributed amongst partici-
pating clients: all clients contribute data of relative equal
value to the shared model and receive a similar increase in
utility when gaining access to the shared model. In a model
free-riding attack, the adversary participates in the FL process
while providing contributions of negligible value [34]. When
the training process completes, the adversary gains access to
the shared model, despite providing no value to the system.
Attacking resources in the system. Alleviating resource us-
age in FL is an active area of research. Recent work has intro-
duced model compression techniques and dropout schemes
to extend FL to resource constrained settings [13].

With this in mind, we propose a class of attacks against the
FL process itself. The aim of these attacks is to inflate the
training time, used bandwidth, or used compute cycles. These
attack variants can be seen as a form of denial of service,
since they waste resources intended for FL at the server and
honest clients. While the utility and efficacy of these attacks
depend on the configuration of the FL system [13], we show
in Section 5.2 that for some standard heuristic of early stop-
ping criteria, sybils can inflate the training time arbitrarily by
influencing these heuristics.

4.2 Sybil attack strategies

There are many ways in which sybils may be used to imple-
ment the attacks from the previous section. In this section we
provide a preliminary taxonomy of how an adversary may
mount a sybil-based attack (Table 2). We also provide an
intersection of these strategies and their known attack vari-
ants (from Table 1) in Table 3. We consider three dimensions
that we believe are key to understanding sybil attacks (and
defending against them): data distribution among sybils, level

of sybil coordination, and level of sybil churn.
Data distribution among sybils. In FL, clients, whether hon-
est or malicious, provide updates to the shared model. These
updates are assumed to be the result of an optimization algo-
rithm based on client training data. They may be based on
identical datasets at sybils (clones), different datasets (act-
alikes), or may even be generated synthetically by sybils
through an algorithm (clowns). Most known attacks on
FL use synthesized gradients to achieve their attack objec-
tive [3, 19, 59].
Level of sybil coordination. An adversary that generates an
increasing number of sybils, increases their influence on the
system. This influence may be a type of a brute force strategy
(uncoordinated), in which the honest clients are simply over-
powered by the sybils on their desired objective. Alternatively,
sybils may communicate amongst themselves before generat-
ing the next series of model updates. The state shared between
sybils may be weakly consistent (swarm), through infrequent
synchronization, or strongly consistent (puppets) through fre-
quent synchronization, enabling more advanced attacks that
require complex computation and communication.

The majority of attacks on FL use uncoordinated sybils.
While some attacks use synchronized strategies [19,59], these
are limited to untargeted poisoning. In Sections 7.3 and 7.4,
we demonstrate the power of these strategies by designing
novel synchronized attacks against our FoolsGold defense.
Churn level of sybils. Although sybil churn is presently not
used by defenses or attacks on FL, the churn level may im-
pact defenses that rely on stateful client tracking during the
learning process. Sybils that remain in the system (remainers)
for an extended period of time may use their stability to build
up their reputation with the server. Sybils that join, leave, and
re-join the system (churners) may use churn to prevent the
server from linking their activity across sessions.

0
0.1
0.2
0.3
0.4

Va
lid

at
io

n
Er

ro
r Baseline

Adaptive
Adaptive Slow
Attacked

0 2500 5000 7500 10000 12500 15000 17500 20000
FL Iterations

0.005
0.010
0.015
0.020

L2
-N

or
m

Figure 2: Training inflation attack on FL with 5 sybils.

5 Can current defenses handle sybils?

We show next that, even when only assuming attacks from
uncoordinated clones, current defenses are inadequate in de-
fending FL from sybils.

5.1 Existing defenses for FL

In the general ML setting, defenses rely on access to the train-
ing data [4] or access to the training process itself [7, 25, 45]
to defend against adversaries. Since FL does not have access
to these elements, FL defenses are limited to those that use ro-
bust aggregation schemes, as these operate on the server only.
Several such aggregation techniques have been proposed to
defend against Byzantine adversaries in FL, including Multi-
Krum [9], median [62], and trimmed mean [62].

At each iteration of Multi-Krum aggregation, the total
Euclidean distance from the n− f − 2 nearest neighbors is
calculated for each client contribution. The f updates with
the highest distances are removed and the average of the
remaining updates is calculated.

When using the median aggregation technique, the
element-wise median (the global update value for a param-
eter ∆Wj is the median of ∆w j) across all clients is used as
the global update. Similarly, when using the trimmed mean
aggregation technique, the highest and lowest β values for
each feature are removed prior to computing the aggregated
mean.

For all three techniques above, a successful defense requires
an explicit bound on the maximum number of Byzantine
clients. We show that if an adversary can spawn an arbitrarily
large number of sybils, these techniques fail to work.

5.2 Training inflation attacks by sybil clones

Sybils can attack FL training by performing a training infla-
tion attack. In this section, we show that when typical conver-
gence heuristics are used, sybil clones can inflate the training
time for as long as they wish, consuming shared resources on
both the server and clients.

0
0.1
0.2
0.3
0.4

Va
lid

at
io

n
Er

ro
r Baseline

Adaptive
Adaptive Slow
Attacked

0 2500 5000 7500 10000 12500 15000 17500 20000
FL Iterations

0.005
0.010
0.015
0.020

L2
-N

or
m

Figure 3: Training inflation attack with 5 sybils on FL with
Multi-Krum when f = 2.

An ML training process needs a stopping condition, such
as a fixed-length heuristic like the number of iterations or the
number of training epochs. For better training efficiency, the
process may also use a dynamic early stopping heuristic, typi-
cally based on the norm of the gradients [37], or the validation
error [47].

We show both the average L2 norm of model updates and
the validation error across iterations on both a baseline FL sys-
tem (Figure 2) and an FL system with Multi-Krum (Figure 3).
In evaluating Multi-Krum as a defense, when the parameter f
is greater than the number of sybils, the attack is prevented.
Figure 3 shows that Multi-Krum is ineffective for the case
when an adversary can command more than f sybils.

In this experiment, 10 honest clients with a uniform sam-
ple of the MNIST dataset train a 1-layer softmax classifier;
5 sybils join the system and perform untargeted poisoning
that causes the training to continue indefinitely (“Attacked”).
Since this strategy is likely to be noticed by the server, we
also show that sybils may choose to stop poisoning the model,
either by sending negligibly small gradients (“Adaptive”) or
by slowly reducing their own learning rate (“Adaptive Slow”).
In all attack variants, the model either does not converge, or
only converges when the adversary allows it to.

5.3 Poisoning attacks by sybil clones
We demonstrate the ineffectiveness of prior defenses by per-
forming a targeted poisoning attack with sybil clones in a
non-IID FL setting, where 10 clients train an MNIST 1-layer
softmax classifier; each client holds a distinct digit from the
original training dataset.

We perform the attack against a variety of aggregation
techniques: Multi-Krum (using f = sybils, the best case sce-
nario for the defense), median, trimmed-mean (using β =
[10%,20%]), a baseline evaluation (using the mean across
clients) and FoolsGold, our proposed solution that relies
on client similarity, described in detail in Section 6 (using
FEDSGD and FEDAVG)1.

1In prior work [20], we also performed a targeted sybil-based poisoning
attack against RONI [5], a defense that relies on a validation dataset, but

0 2 4 6 8
Number of Poisoners

0.0

0.2

0.4

0.6

0.8

1.0
At

ta
ck

 R
at

e
Baseline
Multi-Krum
Median
Trimmed Mean (B = 0.1)
Trimmed Mean (B = 0.2)
FoolsGold (FED SGD)
FoolsGold (FED AVG)

Figure 4: Label-flipping attack rate for varying number of
sybils, for FL (Baseline), Multi-Krum, Median, Trimmed
Mean and FoolsGold.

To perform the label-flipped attack, each sybil client holds
the same dataset of 1s, all labeled as 7s. A successful label-
flipping attack would produce a model that incorrectly clas-
sifies all 1s as 7s. To perform the backdoor attack, we use a
single white pixel in the bottom-right corner as the backdoor
pattern [23]. Each sybil client holds a random uniform subset
of the MNIST data, where each image is marked with a white
pixel in the bottom-right corner of the image, and labeled as a
7. A successful backdoor attack results in a model where all
images with the backdoor inserted (white bottom-right pixel)
would be predicted as a 7, regardless of the other information
in the image.

For both attacks, the number of sybils executing the attack
increases from 0 to 9. Figures 4 and 5 show the performance
of the approaches against the label-flipping and backdoor at-
tacks respectively, where the attack rate is defined as the pro-
portion of targeted examples (originally labeled 1s or images
with the backdoor pixel) in the test set that are misclassified
as 7s (the poisoning objective).

As soon as the proportion of sybil-based poisoners for a
single class increases beyond the corresponding number of
honest clients that hold that class (which is 1 in this case), the
attack rate increases significantly for naive averaging (labeled
as “Baseline”).

The performance of Multi-Krum is especially poor in the
non-IID setting. When the variance of updates among honest
clients is high, and the variance of updates among sybils is
lower, Multi-Krum removes honest clients from the system.
Multi-Krum is unsuitable for defending FL against sybils in
its intended non-IID setting. Similarly, both the median and
the trimmed mean are inadequate once the number of sybils
increases. In all cases, a large number of sybils will skew this
summary statistic, causing FL to fail.
Summary statistics are not a viable solution to sybils.
Clearly, when sybils are present in a FL system, relying on
a summary statistic (such as the mean, median, mode or any
distribution-based summarizing technique) is an inadequate
defense. When the number of sybils is high enough, these

found that RONI was trivially beaten by the sybil-based poisoning attack and
we therefore omit these results for space.

0 2 4 6 8
Number of Backdoor Poisoners

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 R

at
e

Baseline
Multi-Krum
Median
Trimmed Mean (B = 0.1)
Trimmed Mean (B = 0.2)
FoolsGold (FED SGD)
FoolsGold (FED AVG)

Figure 5: Backdoor attack rate for varying number of sybils,
for FL (Baseline), Multi-Krum, Median, Trimmed Mean and
FoolsGold.

statistics are manipulated by the adversary and in fact will
cause honest contributions to be labeled as anomalous and
removed.

FoolsGold is a defense that does not require explicit param-
eterization of the number of attackers. The key assumption
in FoolsGold is that: when performing targeted poisoning,
sybils contribute updates that appear more similar than the
expected similarity found between honest clients. When an
abnormally high similarity is observed, those client contri-
butions are penalized with a lower learning rate. We further
discuss the design and motivation of FoolsGold in Section 6.

In contrast to the summary statistics described above, Fools-
Gold penalizes attackers further as the proportion of simi-
lar updates increases, and in Figures 4 and 5 FoolsGold re-
mains robust even with 9 sybils. Since this attack uses client-
contribution similarity, FoolsGold performs the worst when
defending against one poisoner. We mitigate this weakness in
Section 7.7.

In the rest of the paper we focus on targeted poisoning
attacks and defenses in the context of clone-based sybils.

6 FoolsGold: countering targeted sybil poison-
ing attacks

We now describe FoolsGold, a defense that uses client simi-
larity to prevent sybil-based targeted poisoning attacks in FL2.
Unlike other defenses, FoolsGold does not require knowledge
of the number of sybils, does not require modifications to
the client-side protocol, and only uses state from the learning
process itself. The FoolsGold algorithm and motivation are
also described in our prior work [20].

6.1 FoolsGold threat model
In our setting, sybils observe global model state and send
any arbitrary gradient contribution to the aggregator at any
iteration. We assume that some honest clients have unpoi-
soned training data, requiring that every class in the model

2System implementation and experiments are available at https://
github.com/DistributedML/FoolsGold

https://github.com/DistributedML/FoolsGold
https://github.com/DistributedML/FoolsGold

Sybil 1
updates

Sybil 2
updates

Honest client
updates

✓

�

✓ < �

Figure 6: Dashed lines are gradient updates from three clients
(2 sybils, 1 honest). Solid lines are aggregated update vectors.
The angle between the aggregated update vectors of sybil
clients (θ) is smaller than between those of the honest client
and a sybil (γ). Cosine similarity would reflect this similarity.

is represented by at least one honest client’s dataset. Without
these honest clients, no contribution-based defense is possible
since the model would be unable to learn anything about these
classes in the first place.

One possible attack strategy involves scaling malicious
updates to overpower honest clients [3, 61]. However, since
state of the art magnitude-based detection methods succeed
in preventing these attacks [9, 61], we do not consider this
strategy in our work.

Secure-aggregation for FL provides privacy by obfuscating
client updates [11]. For any server-side defense to operate
through observation of malicious updates, we must assume
that these types of obfuscations are not used. We also require
that FL is performed synchronously, as is assumed by most
other attacks and defenses in FL [9, 19, 59, 61, 62].

Client-side differential privacy has also been proposed in
FL [21]: from the server’s perspective, the aggregation rules
are performed in the same way. Furthermore, since the algo-
rithm is performed on the client device, we assume that sybils
are not required to respect this protocol when performing
attacks.

6.2 FoolsGold design
In the FL protocol (Algorithm 1), gradient updates are col-
lected and aggregated in synchronous update rounds3.

When each client’s training data is non-IID and has a
unique distribution, we assume that honest clients can be
distinguished from act-alike sybils by the diversity of their
gradient updates: sybils will contribute updates that appear
more similar to each other than those among honest clients.
Although this assumption is most clear in the federated non-
IID setting, FoolsGold does not rely on the data being non-

3From the aggregator perspective, this is true regardless of FEDAVG or
FEDSGD. We show that FoolsGold can be applied in both settings.

Data: Initial Model w0 and SGD updates ∆i,t from each client i
at iteration t. Confidence parameter κ

1 for Iteration T do
// Per client learning rate for iteration T

2 Initialize α

3 for All clients i do
// Updates history

4 Let Hi be the aggregate historical vector ∑
T
t=1 ∆i,t

// Feature importance
5 Let ST be the weight of important features at iteration

T
6 for All other clients j do
7 Let csi j be the ST -weighted cosine similarity

between Hi and H j

8 end
9 Let vi = max j(csi)

10 end
11 for All clients i do
12 for All clients j do

// Pardoning
13 if v j > vi then
14 csi j ∗= vi/v j
15 end
16 end

// Per-row maximums
17 αi = 1−max j(csi)

18 end
// Normalize learning rates to 0-1 range

19 α = α/maxi(α)
// Element-wise logit function

20 α = κ(ln[(α)/(1−α)]+0.5)
// Federated SGD iteration

21 wT = wT−1 +∑i αi,∆i

22 end
Algorithm 1: FoolsGold learning algorithm.

IID; we also explore FoolsGold’s performance in varying IID
settings in Section 7.2.

FoolsGold adapts the learning rate αi per client4 based on
(1) the update similarity among indicative features in any
given iteration, and (2) historical information from past itera-
tions.
Cosine similarity. We use cosine similarity to measure the
angular distance between updates. This is preferred to Eu-
clidean distance since sybils can manipulate the magnitude
of a gradient to achieve dissimilarity, but the direction of a
gradient is indicative of the update’s objective.
Feature importance. From the perspective of a poisoning
attack, there are three types of features in the model: (1)
features that are relevant to the correctness of the model, but
must be modified for a successful attack, (2) features that are
relevant to the correctness of the model, but irrelevant for the
attack, and (3) features that are irrelevant to both the attack

4Note that we use α for the FoolsGold assigned learning rate, and η for
the traditional, local learning rate. These are independent of each other.

and the model effectiveness.
Similar to other decentralized poisoning defenses [50], we

look for similarity only in the indicative features (type 1 and
2) in the model. This prevents adversaries from manipulat-
ing irrelevant features while performing an attack, which is
evaluated in Section 7.3.

The indicative features are found by measuring the mag-
nitude of model parameters in the output layer of the global
model, since this maps directly to its influence on the predic-
tion probability [51]. The updates on these features can be
removed based on a threshold (hard) or re-weighed based on
their influence on the model (soft), and are normalized across
all classes.

For deep neural networks, we do not consider the magni-
tude of values in the non-output layers of the model, which do
not map directly to output probabilities and are more difficult
to reason about. Recent work on feature influence in deep
neural networks [1, 16, 32] may better capture the intent of
sybil-based poisoning attacks in deep learning and we leave
this analysis as future work.
Update history. FoolsGold maintains a history of updates
from each client by aggregating the updates over multiple
iterations (line 4). To better estimate client similarity, Fools-
Gold computes the pairwise similarity between aggregated
historical updates instead of the updates from just the current
iteration.

Figure 6 shows that even for two sybils with a common tar-
get objective, updates at a given iteration may diverge due to
the variance of SGD. However, the cosine similarity between
the sybils’ aggregated historical updates tends to converge
towards the malicious objective, providing a more accurate
estimate of the client intent.

We interpret the cosine similarity on the indicative features,
a value between -1 and 1, as a representation of how strongly
two clients are acting as sybils. We define vi as the maximum
pairwise similarity for a client i, ensuring that as long as one
such interaction exists, we can devalue the contribution while
staying robust to an increasing number of sybils.
Pardoning. Since we have weak guarantees on the cosine
similarities between an honest client and sybils, honest clients
may be incorrectly penalized under this scheme. We introduce
a pardoning mechanism that avoids penalizing such honest
clients by re-weighing the cosine similarity by the ratio of
vi and v j (line 14), reducing false positives. The new client
learning rate αi is then found by inverting the maximum
similarity scores along the 0-1 domain. Since we assume at
least one client in the system is honest, we rescale the vector
such that the maximum adaption of the learning rate is 1
(line 19). This ensures that at least one client will have an
unmodified update and encourages that a system with only
honest nodes will not penalize their contributions.
Logit. However, even for very similar updates, the cosine
similarity may be less than one. An attacker may exploit this
by increasing the number of sybils to remain influential. We

Dataset Examples Classes Features Model
MNIST 60,000 10 784 1-layer
VGGFace2 7,380 10 150,528 ImageNet
KDDCup 494,020 23 41 1-layer
Amazon 1,500 50 10,000 1-layer

Table 4: Datasets used in this evaluation.

therefore want to encourage a higher divergence for values
that are near the tails of this function, and avoid penalizing
honest clients with a low, non-zero similarity value. Thus, we
use the logit function (the inverse sigmoid function) centered
at 0.5 (line 20), to encourage these properties. We also expose
a confidence parameter κ that scales the logit function and
show in Appendix A that κ and can be set as a function of the
expected data distribution among clients.

When taking the result of the logit function, any value ex-
ceeding the 0-1 range is clipped and rounded to its respective
boundary value. Finally, the gradient update is calculated by
applying the final re-scaled learning rate to the global model.

7 FoolsGold evaluation

We evaluate FoolsGold on a federated learning prototype
implemented in 600 lines of Python. The prototype includes
150 lines for FoolsGold, implementing Algorithm 1. We use
scikit-learn [46] to compute cosine similarity of vectors. For
each experiment below, we partition the original training data
into disjoint training sets, locally compute SGD updates on
each dataset, and aggregate the updates using the described
FoolsGold method to train a globally shared classifier.

We evaluate our prototype on four classification datasets
(described in Table 4): MNIST [31], a digit classification
problem, VGGFace2 [14], a facial recognition problem, KD-
DCup [17], which contains classified network intrusion pat-
terns, and Amazon [17], which contains text from product
reviews.

Each dataset was selected for one of its particularities.
MNIST was chosen as the baseline dataset for evaluation
since it was used extensively in the original federated learn-
ing evaluation [39]. The VGGFace2 dataset was chosen as
a more complex learning task that requires deep neural net-
works to solve. For simplicity in evaluating poisoning attacks,
we limit this dataset to the top 10 most frequent classes only.
The KDDCup dataset has a relatively low number of features,
and contains a massive class imbalance: some classes have
as few as 5 examples, while some have over 280,000. Lastly,
the Amazon dataset is unique in that it has few examples and
contains text data: each review is one-hot-encoded, resulting
in a large feature vector of size 10,000.

For all the experiments in this section, we perform tar-
geted poisoning attacks that attempt to encourage a source
label/pattern to be classified as a target label while training

through federated learning5. In our baseline experiments, each
class is solely owned by a single client, which is consistent
with the federated learning baseline. In all experiments the
number of honest clients matches the number of classes used
in the dataset: 10 for MNIST and VGGFace2, 23 for KDD-
Cup, and 50 for Amazon. For more-IID settings, we modify
the distribution of client data and consider settings where
classes overlap between clients in Section 7.2.

For MNIST, KDDCup, and Amazon, we train a 1-layer soft-
max classifier. For VGGFace2, we use two popular pre-trained
Imagenet architectures from the torchvision package [38]:
SqueezeNet1.1, a compressed model of 727,000 parameters
designed for edge devices; and VGGNet11, a larger model of
128,000,000 parameters. When comparing client similarity
for FoolsGold, we only use the features in the final output
layer’s gradients (fully connected layer in VGGNet and 10
1x1 convolutional kernels in SqueezeNet).

In MNIST, the data is already divided into 60,000 training
examples and 10,000 test examples [31]. For VGGFace2,
KDDCup and Amazon, we randomly partition 70% of the
total data as training data and 30% as test data. The test data
is used to evaluate two metrics that represent the performance
of our algorithm: the attack rate, which is the proportion
of attack targets (source labels/patterns) that are incorrectly
classified as the target label, and the test accuracy, which is
the proportion of examples in the test set that are correctly
classified.

The MNIST and KDDCup datasets were executed with
3,000 iterations and a batch size of 50 unless otherwise stated.
For Amazon, due to the high number of features and low
number of samples per class, we train for 100 iterations and
a batch size of 10. For VGGFace2, we train for 500 iter-
ations with batch size of 8, momentum 0.9, weight decay
0.0001, and learning rate 0.001. These values were found
using cross validation in the training set. During training,
images were resized to 256x256 and randomly cropped and
flipped to 224x224. During testing, images were resized to
256x256 and a 224x224 center was cropped.

We showed FoolsGold’s effectiveness both when FEDSGD
and FEDAVG are used by the clients. Since the difference
between FEDSGD and FEDAVG was negligible in Figures 4
and 5, we continued to use FEDSGD for all future experi-
ments.

We report the mean across 5 experiments in all cases. For
each experiment, FoolsGold is parameterized with a confi-
dence parameter κ = 1, and does not use the historical gradi-
ent or the significant features filter (we evaluate these design
elements independently in Section 7.3 and 7.5, respectively).

5For the MNIST, VGGFace2, and Amazon datasets, we evaluated all
source/target class pairs and found that the performance difference between
these attacks was marginal.

Attack Description Dataset
A-1 1 sybil attacks. All
A-5 5 sybils attack. All

A-5x5 5 sets of 5 sybils, concurrent
attacks.

MNIST, Amazon,
VGGFaces2

A-OnOne 5 sybils executing 5 attacks
on the same target class.

KDDCup99

A-99 99% sybils, same attack. MNIST

Table 5: Canonical attacks used in our evaluation.

7.1 Canonical attack scenarios
Our evaluation uses a set of 5 canonical attack scenarios
across the four datasets (Table 5). Attack A-1 is a traditional
poisoning attack: a single client joins the federated learning
system with poisoned data. Attack A-5 is the same attack per-
formed with 5 sybil clients in the system. Each client sends
updates for a subset of its data through SGD, meaning that
their updates are not identical. Attack A-5x5 evaluates Fools-
Gold’s ability to thwart multiple attacks at once: 5 sets of
client sybils attack the system concurrently, and we assume
that the classes in these attacks do not overlap6.

Since KDDCup99 is a unique dataset with severe class
imbalance, instead of using an A-5x5 attack we choose to
perform a different attack, A-OnOne. In KDDCup99, data
from various network traffic patterns are provided. Class ‘Nor-
mal’ identifies patterns without any network attack, and is
proportionally large (∼ 20% of the data). When attacking
KDDCup99, we assume that adversaries mislabel malicious
attack patterns, which are proportionally small, (on average
∼ 2% of the data) and poison the malicious class towards
the ‘Normal’ class. A-OnOne is a unique attack for KDDCup
in which 5 different malicious patterns are each labeled as
‘Normal’, and each attack is performed concurrently.

Finally, we use A-99 to illustrate the robustness of Fools-
Gold to a massively powerful adversary that generates 990
sybils to overpower a network of 10 honest clients, all of them
performing the same attack against MNIST.

Since we use these canonical attacks throughout this work,
we first evaluate FoolsGold against each attack on their respec-
tive datasets and models. Figure 7 plots the attack rate and
test accuracy for each attack in Table 5. We also show results
for the system without attacks: the original federated learn-
ing algorithm (FL-NA) and the system with the FoolsGold
algorithm (FG-NA).

Figure 7 shows that for most attacks, FoolsGold effectively
prevents the attack while maintaining high test accuracy. As
FoolsGold faces larger groups of sybils, it has more informa-
tion to more reliably detect similarity between sybils. Fools-
Gold performs worst on the A-1 attacks in which only one
malicious client attacks the system. This is expected; without

6We do not perform a 1-2 attack in parallel with a 2-3 attack, since
evaluating the 1-2 attack would be biased by the performance of the 2-3
attack.

FL-NA
FG-NA A-1 A-5 A-5x5 A-99

MNIST

0.0

0.5

1.0

Ra
te

FL-NA
FG-NA A-1 A-5 A-5x5

VGGFace2
FL-NA

FG-NA A-1 A-5
A-OnOne

KDD
FL-NA

FG-NA A-1 A-5 A-5x5

Amazon

Test Accuracy Attack Rate

Figure 7: Test accuracy (blue bars) and attack rate (red ticks) for canonical attacks against the relevant canonical datasets.

0 1000 2000 3000 4000 5000
Parameters (Non-IID)

Client 1
Client 2
Client 3
Client 4
Client 5
Client 6
Client 7
Client 8
Client 9

Client 10
Sybil 1
Sybil 2
Sybil 3
Sybil 4
Sybil 5

0 1000 2000 3000 4000 5000
Parameters (Full-IID)

Figure 8: A visualization of the historical gradient of each
clients on the Squeezenet model, in the non-IID (left) and
IID (right) case. The top 10 rows show the gradient vector
of honest clients; the bottom 5 rows for sybils performing a
targeted 0-1 attack.

multiple colluding sybils, malicious and honest clients are
indistinguishable to FoolsGold.

Another point of interest is the prevalence of false positives.
In A-1 KDDCup, our system incorrectly penalized an honest
client for colluding with the attacker, lowering the prediction
rate of the honest client as the defense was applied. We ob-
serve that the two primary reasons for low test accuracy are
either a high attack rate (false negatives) or a high target class
error rate (false positives). We also discuss false positives
from data similarity in Section 7.2.

7.2 FoolsGold on varying IID settings

By design, FoolsGold relies on the assumption that training
data is sufficiently dissimilar between clients. However, a
more realistic scenario may involve settings where local client
data distributions overlap more significantly.

To understand how FoolsGold handles these situations, we
execute a VGGFace2 A-5 experiment under varying client
distributions. Figure 8 shows each client’s FoolsGold vector
after 3000 training iterations, where each row shows the flat-
tened historical gradient of a client on their final softmax layer.
The top 10 rows correspond to honest clients and the bottom
5 rows correspond to sybils. The left half of Figure 8 shows

0 25 50 75 100
Honest MNIST

 Shared Data Proportion
10

0
75

50
25

0
Sy

bi
l S

ha
re

d
Da

ta
 P

ro
po

rti
on

0.002 0.002 0.002 0.002 0.003

0.003 0.003 0.002 0.002 0.002

0.002 0.003 0.003 0.002 0.003

0.003 0.002 0.003 0.002 0.003

0.003 0.002 0.002 0.003 0.003

0 25 50 75 100
Honest VGGFace2

Shared Data Proportion

0.012 0.000 0.004 0.000 0.004

0.004 0.004 0.004 0.000 0.000

0.000 0.000 0.000 0.000 0.000

0.008 0.000 0.000 0.008 0.000

0.000 0.008 0.004 0.000 0.000
0.0

0.2

0.4

0.6

0.8

1.0

Figure 9: The attack rates on the MNIST (with softmax model)
and VGGFace2 (with SqueezeNet model) datasets for varying
sybil and honest client data distributions. 0 means that the
data is completely disjoint by class; 100 means that the data
is uniformly distributed.

the historical vector ∑
T
t=0 ∆i,T in a non-IID setting. Since each

honest client has data corresponding to a unique class, their
gradients are highly dissimilar, and since the sybils have the
same poisoning dataset for a 0-1 attack, their gradients are
highly similar. Therefore, FoolsGold can easily detect the
sybil gradients.

The right half of Figure 8 shows the historical vector
∑

T
t=0 ∆i,T in a full-IID setting. Despite the honest clients hold-

ing uniform samples of the training data, the stochasticity of
SGD introduces variance between them. The sybil gradients
are still uniquely distinct as a result of their poisoned data, as
seen in the bottom left corners of Figure 8. Even with only
10% poisoned data, executing a targeted poisoning attack pro-
duces fundamentally similar gradient updates in both full-IID
and non-IID settings, enabling FoolsGold to succeed.

To test FoolsGold under diverse data distribution assump-
tions, we conduct an A-5 0-1 attack (with 5 sybils) on
MNIST and VGGFace2 with 10 honest clients while vary-
ing the proportion of shared labels between both the sybils
and honest clients. We varied these proportions over a grid
(Dsybil ,Dhonest ∈ {0,0.25,0.5,0.75,1}), where D refers to the
ratio of disjoint data to shared data. D = 0 refers to a non-IID
setting where each client’s local dataset is composed of a sin-
gle class, and x = 1 refers to a setting where each client’s local

dataset is uniformly sampled from all classes. For all other
cases, clients hold a proportion of Dhonest uniform data and
(1−Dhonest) non-IID data from a single class. For sybils, we
first create an honest client using the above mechanism, and
flip all 0 labels to a 1 to perform a targeted attack. Therefore,
when Dsybil = 0, sybils will hold a full dataset of 0-1 poisoned
data, and when Dsybil = 1, sybils will hold a dataset of 10%
poisoned 0-1 data, and 90% uniform data from classes 1-9.

FoolsGold defends against poisoning attacks for all
(Dsybil ,Dhonest) combinations: the maximum attack rate was
less than 1% for both the MNIST and VGGFace2 datasets, us-
ing both SqueezeNet and VGGNet. We show these results in
Figure 9. In summary, an attacker cannot subvert FoolsGold
by manipulating their malicious data distribution7. Instead,
they must directly manipulate their gradient outputs, which
we explore next.

If an attacker is aware of the FoolsGold algorithm, they may
attempt to send updates in ways that encourage additional
dissimilarity. This is an active trade-off: as attacker updates
become less similar to each other (lower chance of detection),
they become less focused towards the poisoning objective
(lower attack utility).

Next, we consider and evaluate two synchronized sybil
strategies in which attackers may subvert FoolsGold: (1) per-
turbing contributed updates to maximize dissimilarity, and (2)
infrequently and adaptively sending poisoned updates.

7.3 Attacks using intelligent perturbations
A set of intelligent sybils could synchronize and send pairs of
updates with careful perturbations that are designed to sum to
zero. For example, if an attacker draws a perturbation vector
ζ, two malicious updates a1 and a2 could be contributed as v1
and v2, such that v1 = a1 +ζ and v2 = a2−ζ.

Since the perturbation vector ζ has nothing to do with the
poisoning objective, its inclusion will add dissimilarity to the
malicious updates and decrease FoolsGold’s effectiveness in
detecting them. Also note that the sum of these two updates
is still the same: v1 + v2 = a1 + a2. This strategy can also
be scaled beyond 2 sybils by taking orthogonal perturbation
vectors and their negation: for any subset of these vectors, the
cosine similarity is 0 or -1, while the sum remains 0.

As explained in Section 6, this attack is most effective if
ζ is only applied to features of type (3): those which are not
important for the model or the attack. The attack is mitigated
by filtering for indicative features in the model. Instead of
looking at the cosine similarity between updates across all
features in the model, we look at a weighted cosine similarity
based on feature importance.

To evaluate the importance of this mechanism to the poi-
soning attack, we execute the intelligent perturbation attack

7In prior work [20], we also evaluated FoolsGold against other method
for increased SGD diversity: mixing honest data with malicious data and
using settings with a decreased SGD batch size.

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of Indicative Features

0.0
0.2
0.4
0.6
0.8
1.0

%

Attack Rate
Test Accuracy
Soft Attack Rate
Soft Test Accuracy

Figure 10: The performance of the optimal perturbation attack
on MNIST with varying indicative feature ratio.

described above on MNIST, which contains several irrelevant
features (the black background) in each example: a pair of
sybils send v1 and v2 with intelligent perturbation ζ. We then
vary the proportion of model parameters that are defined as
indicative from 0.001 (only top 8 features on MNIST) to 1
(all features).

Figure 10 shows the attack rate and the test accuracy for
varying proportions of indicative features against an A-5 at-
tack. We first observe that when using all of the features for
similarity (far right), the poisoning attack is successful.

Once the proportion of indicative features decreases below
0.1 (10%), the dissimilarity caused by the intelligent perturba-
tion is removed from the cosine similarity and the poisoning
vector dominates the similarity, causing the intelligent pertur-
bations strategy to fail with an attack rate of near 0. We also
observe that if the proportion of indicative features is too low
(0.01), the test accuracy also begins to suffer. When consider-
ing such a low number of features, honest clients appear to
collude as well, causing false positives.

We also evaluated the soft feature weighing mechanism,
which weighs each contribution proportionally based on the
model parameter itself. The results of the soft weighting
method on the same intelligent MNIST poisoning attack are
also shown in Figure 10. For both the attack rate and test
accuracy, the soft filtering mechanism is comparable to the
optimal performance of the hard filtering mechanism.

7.4 Attacks with adaptive updates

We devised another synchronized attack against FoolsGold
that manipulates its memory component. If an adversary
knows that FoolsGold uses similarity on the update history,
and is able to locally compute its own pairwise cosine simi-
larity among sybils, they can collude and compute this infor-
mation themselves, deciding only to send poisoned updates
when their historical similarity is low. We define a parameter
M for the attack strategy that represents the threshold on inter-
sybil similarity for sybils to send a poisoned update. When
M is lower, sybils are less likely to be detected by FoolsGold
and will send their updates less often; however, this will also
lower the influence the sybils have on the global model.

Poisoning
Failure [detected]

Poisoning
Success

Poisoning
Failure [weak]

Figure 11: Relationship between similarity threshold and ex-
pected ratio of sybils per honest opposing client for the syn-
chronized adaptive attack stategy against FoolsGold with 2
sybils on MNIST.

An adversary could generate an excess number of sybils for
a successful attack, but given that the adversary is uncertain
about the influence needed to overpower the honest clients,
this is a difficult trade-off to predict for an optimal attack.

To demonstrate this, the intelligent perturbation attack
above is executed by 2 sybils on MNIST, with FoolsGold
using the soft weighing of features in its cosine similarity
(the optimal defense for MNIST against the intelligent pertur-
bation attack). Figure 11 shows the relationship between M
and the resulting expected ratio of sybils needed to match the
influence for each honest opposing client.

For instance, if we observed that the sybils only sent poi-
soning gradients 25% of the time, they would need 4 sybils
to induce a comparable influence on the model. Given a pre-
scribed similarity threshold M, the values shown are the ex-
pected number of sybils required for the optimal attack. The
attack is optimal because using less sybils does not provide
enough influence to poison the model, while using more sybils
is inefficient.

This is shown in Figure 11 with three shaded regions: in
the green region to the right (M > 0.27), the threshold is too
high and any poisoning attack is detected and removed. In
the blue region on the bottom left, the attack is not detected,
but there is an insufficient number of sybils to overpower the
honest opposing clients. Lastly, in the top left red region, the
attack succeeds, potentially with more sybils than required.

With a sufficiently large number of sybils and appropri-
ately low threshold, attackers can subvert our current defense
for our observed datasets. Although this strategy can break
FoolsGold, finding the appropriate threshold is challenging as
it is dependent on many other factors: the number of honest

clients in the system, the proportion of indicative features con-
sidered by FoolsGold, and the distribution of data. The exact
number of sybils required to successfully poison the model
is unknown to attackers without knowledge of the number of
honest clients and their honest training data.

7.5 Effects of design elements
Each of the three main design elements (history, pardoning
and logit) described in Section 6 addresses specific challenges.
In the following experiments we disabled one of the three
components and recorded the test error, attack rate, and target
class test error of the resulting model.
History. Attacks with intelligent perturbations and adaptive
updates increase the variance of updates in each iteration.
The increased variance in the updates sent by sybils cause
the cosine similarities at each iteration to be an inaccurate
approximation of a client’s sybil likelihood. Our design uses
history to address this issue, and we evaluate it by comparing
the performance of FoolsGold with and without history using
an A-5 MNIST attack with 80% poisoned data and batch size
of 1 (factors which will induce a high variance).
Pardoning. We claim that honest client updates may be sim-
ilar to the updates of sybils, especially if the honest client
owns the data for the targeted class. To evaluate the necessity
and efficacy of our pardoning system, we compare the per-
formance of FoolsGold on KDDCup with the A-AllOnOne
attack with and without pardoning.
Logit. An important motivation for using the logit function
is that adversaries could otherwise arbitrarily increase the
number of sybils to mitigate any non-zero weighting of their
updates. We evaluate the performance of FoolsGold with and
without the logit function for the A-99 MNIST attack.

Figure 12 shows the overall test error, sybil attack rate,
and target class test error for the six different evaluations. The
attack rate for the A-AllOnOne KDDCup attack is the average
attack rate for the 5 sets of sybils.

Overall, the results align with our claims. For the A-5
MNIST case, we find that history successfully mitigates at-
tacks that otherwise would pass through in the no-history
system. Comparing the results of the A-AllOnOne KDDCup
attack, we find that, without pardoning, the test error of both
the target class and the overall test error increase while the
attack rate was negligible for both cases, indicating a high
rate of false positives for the target class. Finally, for the A-99
MNIST attack, without the logit function, the adversary was
able to mount a successful attack by overwhelming FoolsGold
with sybils, showing that the logit function is necessary to
prevent this attack.

7.6 FoolsGold performance overhead
We evaluate the runtime overhead incurred by augmenting a
federated learning system with FoolsGold. We run the system

MNIST Baseline

MNIST No Memory
KDD Baseline

KDD No Pardoning

MNIST Baseline 99%

MNIST No Logit
0

20

40

60

80

100

%

13.6 17.8

4.10

19.8 15.6

47.3

0.26

35.3

0.57 0 0.18

92.9

13.2 12.3
19.7

99.9

17.1 19.1

Test Error Attack Rate Target Class Test Error

Figure 12: Metrics for FoolsGold with various components
independently removed.

10 20 30 40 50
of Clients

0
0.25

0.5
0.75

1
1.25

1.5
1.75

Re
la

tiv
e

Sl
ow

do
wn

MNIST (CPU) VGGFace2 (GPU)

Figure 13: Running time overhead of FoolsGold as compared
to Federated Learning (baseline of 1), for MNIST (on a CPU)
and VGGFace2 (on a GPU).

with and without FoolsGold with 10 – 50 clients by training
an MNIST classifier on a commodity CPU and a VGGFace2
deep learning model on a Titan V CPU.

Figure 13 plots the relative slowdown added by FoolsGold
for CPU and GPU based workloads. On a CPU, the most
expensive part of the FoolsGold algorithm is computing the
pairwise cosine similarity. Our Python prototype is not op-
timized and there are known optimizations to improve the
speed of computing angular distance at scale [2]. When train-
ing a deep learning model on a GPU, the cost of training is
high enough that the relative slowdown from FoolsGold is
negligible. We profiled micro-benchmarks for the total time
taken to execute the FoolsGold algorithm and found that it
took less than 1.5 seconds, even with 50 clients.

7.7 Combating a single client adversary

We consider the single-shot model replacement attack [3] in
which a single adversarial client sends the direct vector to the
poisoning objective. This attack does not require sybils and
can therefore bypass FoolsGold.

We performed an experiment that augmented FoolsGold
with a properly parameterized Multi-Krum solution, with f =
1. Figure 14 shows the training accuracy and the attack rate

FoolsGold MultiKrum FoolsGold+MultiKrum
0

50

100% 69.9 77.8 91.6

0.10

98.2

0.21

Test Accuracy Attack Rate

Figure 14: The performance of Multi-Krum with FoolsGold
when combating a combination of an A-5 attack and the
model replacement attack [3] on MNIST.

for FoolsGold, Multi-Krum, and the two systems combined
when facing concurrent A-5 and model replacement attacks.

We see that Multi-Krum and FoolsGold do not interfere
with each other. The Multi-Krum algorithm prevents the
model replacement attack, and FoolsGold prevents the sybil
attack. Independently, these two systems fail to defend both
attacks concurrently, either by failing to detect the model re-
placement attack (for FoolsGold) or by allowing the sybils to
overpower the system (for Multi-Krum).

FoolsGold is specifically designed for handling targeted
poisoning attacks from a group of clone-based sybils: we
believe the current state of the art is better suited to mitigate
attacks from single actors.

8 Conclusion

The decentralization of ML is driven by growing privacy and
scalability challenges. Federated learning is a state of the
art proposal adopted in production [40], and is increasingly
being used in mobile and edge networks [33]. However, using
federated learning in such settings has opened the door for
adversaries to attack the system with sybils [44]. We showed
that federated learning is vulnerable to sybil-based attacks
and that existing defenses are ineffective. To defend against
one of these strategies (sybil-based clones that remain in the
system), we proposed FoolsGold, a defense that uses client
contribution similarity. Our results indicate that FoolsGold
mitigates targeted poisoning attacks and is effective even
when sybils overwhelm the honest clients.

Despite FoolsGold’s performance against targeted poison-
ing attacks, a number of sybil-based strategies are not well
defended by FoolsGold, such as coordinated attacks, some
of which we showed (adaptive attacks, intelligent perturba-
tions) and some of which have been proposed in recent work
(distributed backdoors [58]).

In addition, we suggest that there is a much higher potential
for sybils to be used to execute attacks on distributed multi-
party ML systems such as federated learning. We hope that
our work inspires further research on the implications of sybils
on these systems and leads to other defenses that are robust
to sybils.

Acknowledgments
This work was supported by the Huawei Innovation Research
Program (HIRP), Project No: HO2018085305. We also ac-
knowledge the support of the Natural Sciences and Engi-
neering Research Council of Canada (NSERC), 2014-04870.
Chris contributed to the project while being sponsored by the
NSERC USRA program.

References

[1] M. Ancona, E. Ceolini, A. C. Oztireli, and M. Gross. A Unified
View of Gradient-based Attribution Methods for Deep Neu-
ral Networks. In Workshop on Interpreting, Explaining and
Visualizing Deep Learning, NIPS, 2017.

[2] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razen-
shteyn, and Ludwig Schmidt. Practical and Optimal LSH for
Angular Distance. In Advances in Neural Information Process-
ing Systems 28, NIPS. 2015.

[3] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Es-
trin, and Vitaly Shmatikov. How To Backdoor Federated Learn-
ing. In Proceedings of the Twenty Third International Confer-
ence on Artificial Intelligence and Statistics, AISTATS, 2020.

[4] Nathalie Baracaldo, Bryant Chen, Heiko Ludwig, and Jae-
hoon Amir Safavi. Mitigating Poisoning Attacks on Machine
Learning Models: A Data Provenance Based Approach. In Pro-
ceedings of the 10th ACM Workshop on Artificial Intelligence
and Security, AISec, 2017.

[5] Marco Barreno, Blaine Nelson, Anthony D. Joseph, and J. D.
Tygar. The Security of Machine Learning. Machine Learning,
81(2), 2010.

[6] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and
Seraphin Calo. Analyzing Federated Learning through an
Adversarial Lens. In Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 634–643. PMLR, 2019.

[7] Battista Biggio, Igino Corona, Giorgio Fumera, Giorgio Giac-
into, and Fabio Roli. Bagging Classifiers for Fighting Poison-
ing Attacks in Adversarial Classification Tasks. In Multiple
Classifier Systems, 2011.

[8] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning
Attacks Against Support Vector Machines. In Proceedings of
the 29th International Conference on International Conference
on Machine Learning, ICML, 2012.

[9] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and
Julien Stainer. Machine Learning with Adversaries: Byzantine
Tolerant Gradient Descent. In Advances in Neural Information
Processing Systems 30, NIPS, 2017.

[10] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp,
Dzmitry Huba, Alex Ingerman, Vladimir Ivanov, Chloé M Kid-
don, Jakub Konečný, Stefano Mazzocchi, Brendan McMahan,
Timon Van Overveldt, David Petrou, Daniel Ramage, and Ja-
son Roselander. Towards Federated Learning at Scale: System
Design. In Conference on Systems and Machine Learning,
SysML, 2019.

[11] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marce-
done, H. Brendan McMahan, Sarvar Patel, Daniel Ramage,
Aaron Segal, and Karn Seth. Practical Secure Aggregation for
Privacy-Preserving Machine Learning. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS, 2017.

[12] Léon Bottou. Large-Scale Machine Learning with Stochas-
tic Gradient Descent. In 19th International Conference on
Computational Statistics, COMPSTAT, 2010.

[13] Sebastian Caldas, Jakub Konečny, H Brendan McMahan, and
Ameet Talwalkar. Expanding the Reach of Federated Learning
by Reducing Client Resource Requirements. arXiv preprint
arXiv:1812.07210, 2019.

[14] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman.
VGGFace2: A Dataset for Recognising Faces across Pose and
Age. In International Conference on Automatic Face and
Gesture Recognition, FG, 2018.

[15] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song.
Targeted Backdoor Attacks on Deep Learning Systems Using
Data Poisoning. arXiv preprint arXiv:1712.05526, 2017.

[16] A. Datta, S. Sen, and Y. Zick. Algorithmic Transparency via
Quantitative Input Influence: Theory and Experiments with
Learning Systems. In Proceedings of the 2016 IEEE Sympo-
sium on Security and Privacy, S&P, 2016.

[17] Dua Dheeru and Efi Karra Taniskidou. UCI Machine Learning
Repository, 2017.

[18] John (JD) Douceur. The Sybil Attack. In Proceedings of the
1st International Workshop on Peer-to-Peer Systems, IPTPS,
2002.

[19] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang
Gong. Local Model Poisoning Attacks to Byzantine-Robust
Federated Learning. In 29th USENIX Security Symposium
(USENIX Security 20), 2020.

[20] Clement Fung, Chris JM Yoon, and Ivan Beschastnikh. Miti-
gating Sybils in Federated Learning Poisoning. arXiv preprint
arXiv:1808.04866, 2018.

[21] Robin C. Geyer, Tassilo Klein, and Moin Nabi. Differentially
Private Federated Learning: A Client Level Perspective. NIPS
Workshop: Machine Learning on the Phone and other Con-
sumer Devices, 2017.

[22] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos,
and Nickolai Zeldovich. Algorand: Scaling Byzantine Agree-
ments for Cryptocurrencies. In Proceedings of the 26th Sym-
posium on Operating Systems Principles, SOSP, 2017.

[23] T. Gu, B. Dolan-Gavitt, and S. Garg. BadNets: Identifying
Vulnerabilities in the Machine Learning Model Supply Chain.
arXiv preprint arXiv:1708.06733, 2017.

[24] J. Hamm, A. C. Champion, G. Chen, M. Belkin, and D. Xuan.
Crowd-ML: A Privacy-Preserving Learning Framework for a
Crowd of Smart Devices. In Proceedings of the IEEE 35th
International Conference on Distributed Computing Systems,
ICDCS, 2015.

[25] Bo Han, Ivor W. Tsang, and Ling Chen. On the Convergence
of a Family of Robust Losses for Stochastic Gradient Descent.
In European Conference on Machine Learning and Knowledge
Discovery in Databases - Volume 9851, ECML PKDD, 2016.

[26] Briland Hitaj, Giuseppe Ateniese, and Fernando Pérez-Cruz.
Deep Models Under the GAN: Information Leakage from
Collaborative Deep Learning. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications
Security, CCS, 2017.

[27] Kevin Hsieh, Aaron Harlap, Nandita Vijaykumar, Dimitris
Konomis, Gregory R. Ganger, Phillip B. Gibbons, and Onur
Mutlu. Gaia: Geo-distributed Machine Learning Approaching
LAN Speeds. In Proceedings of the 14th USENIX Conference
on Networked Systems Design and Implementation, NSDI’17,
2017.

[28] Ling Huang, Anthony D. Joseph, Blaine Nelson, Benjamin I.P.
Rubinstein, and J. D. Tygar. Adversarial Machine Learning.
In Proceedings of the 4th ACM Workshop on Security and
Artificial Intelligence, AISec, 2011.

[29] Linshan Jiang, Rui Tan, Xin Lou, and Guosheng Lin. On
Lightweight Privacy-preserving Collaborative Learning for
Internet-of-things Objects. In Proceedings of the International
Conference on Internet of Things Design and Implementation,
IoTDI, 2019.

[30] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien
Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Keith Bonawitz,
Zachary Charles, Graham Cormode, Rachel Cummings, et al.
Advances and Open Problems in Federated Learning. arXiv
preprint arXiv:1912.04977, 2019.

[31] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based
Learning Applied to Document Recognition. Proceedings of
the IEEE, 86(11), 1998.

[32] K. Leino, S. Sen, A. Datta, M. Fredrikson, and L. Li. Influence-
Directed Explanations for Deep Convolutional Networks. In
2018 IEEE International Test Conference, ITC, 2018.

[33] Wei Yang Bryan Lim, Nguyen Cong Luong, Dinh Thai Hoang,
Yutao Jiao, Ying-Chang Liang, Qiang Yang, Dusit Niyato, and
Chunyan Miao. Federated Learning in Mobile Edge Networks:
A Comprehensive Survey. arXiv preprint arXiv:1909.11875,
2019.

[34] Jierui Lin, Min Du, and Jian Liu. Free-riders in Fed-
erated Learning: Attacks and Defenses. arXiv preprint
arXiv:1911.12560, 2019.

[35] Lingjuan Lyu, Han Yu, and Qiang Yang. Threats to Federated
Learning: A Survey. arXiv preprint arXiv:2003.02133, 2020.

[36] Saeed Mahloujifar, Mohammad Mahmoody, and Ameer Mo-
hammed. Multi-party Poisoning through Generalized p-
Tampering. arXiv preprint arXiv:1809.03474, 2018.

[37] Maren Mahsereci, Lukas Balles, Christoph Lassner, and
Philipp Hennig. Early Stopping without a Validation Set. arXiv
preprint arXiv:1703.09580, 2017.

[38] Sébastien Marcel and Yann Rodriguez. Torchvision the
Machine-vision Package of Torch. In Proceedings of the 18th
ACM International Conference on Multimedia, MM, 2010.

[39] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, and Blaise Aguera y Arcas. Communication-
Efficient Learning of Deep Networks from Decentralized Data.
In Proceedings of the 20th International Conference on Artifi-
cial Intelligence and Statistics, 2017.

[40] H. Brendan McMahan and Daniel Ramage. Federated
Learning: Collaborative Machine Learning without Central-
ized Training Data. https://research.googleblog.com/
2017/04/federated-learning-collaborative.html,
2017.

[41] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov. Exploit-
ing Unintended Feature Leakage in Collaborative Learning.
In Proceedings of the 2019 IEEE Symposium on Security and
Privacy, S&P, 2019.

[42] Milad Nasr, Reza Shokri, and Amir Houmansadr. Compre-
hensive Privacy Analysis of Deep Learning: Stand-alone and
Federated Learning under Passive and Active White-box Infer-
ence Attacks. arXiv preprint arXiv:1812.00910, 2018.

[43] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust
Stochastic Approximation Approach to Stochastic Program-
ming. SIAM J. on Optimization, 19:1574–1609, 2009.

[44] J. Newsome, E. Shi, D. Song, and A. Perrig. The Sybil attack in
Sensor Networks: Analysis & Defenses. In Third International
Symposium on Information Processing in Sensor Networks,
IPSN, 2004.

[45] Olga Ohrimenko, Felix Schuster, Cedric Fournet, Aastha
Mehta, Sebastian Nowozin, Kapil Vaswani, and Manuel Costa.
Oblivious Multi-Party Machine Learning on Trusted Proces-
sors. In 25th USENIX Security Symposium (USENIX Security
16), 2016.

[46] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine Learning in Python. Journal of Machine Learning Re-
search, 12:2825–2830, 2011.

[47] Lutz Prechelt. Early stopping-but when? In Neural Networks:
Tricks of the trade, pages 55–69. Springer, 1998.

[48] Ahmed Salem, Apratim Bhattacharya, Michael Backes, Mario
Fritz, and Yang Zhang. Updates-leak: Data Set Inference and
Reconstruction Attacks in Online Learning. arXiv preprint
arXiv:1904.01067, 2019.

[49] Sumudu Samarakoon, Mehdi Bennis, Walid Saad, and Mer-
ouane Debbah. Distributed Federated Learning for Ultra-
Reliable Low-Latency Vehicular Communications. arXiv
preprint arXiv:1807.08127, 2019.

[50] Shiqi Shen, Shruti Tople, and Prateek Saxena. Auror: Defend-
ing Against Poisoning Attacks in Collaborative Deep Learning
Systems. In Proceedings of the 32Nd Annual Conference on
Computer Security Applications, ACSAC, 2016.

[51] Reza Shokri and Vitaly Shmatikov. Privacy-Preserving Deep
Learning. In Proceedings of the 2015 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS, 2015.

[52] Ziteng Sun, Peter Kairouz, Ananda Theertha Suresh, and
H. Brendan McMahan. Can You Really Backdoor Federated
Learning? In 2nd International Workshop on Federated Learn-
ing for Data Privacy and Confidentiality, FL - NeurIPS, 2019.

[53] Nguyen Tran, Bonan Min, Jinyang Li, and Lakshminarayanan
Subramanian. Sybil-resilient Online Content Voting. In Pro-
ceedings of the 6th USENIX Symposium on Networked Systems
Design and Implementation, NSDI, 2009.

https://research.googleblog.com/2017/04/federated-learning-collaborative.html
https://research.googleblog.com/2017/04/federated-learning-collaborative.html

[54] Stacey Truex, Ling Liu, Mehmet Emre Gursoy, Lei Yu, and
Wenqi Wei. Towards Demystifying Membership Inference
Attacks. arXiv preprint arXiv:1807.09173, 2018.

[55] Bimal Viswanath, Muhammad Ahmad Bashir, Muhammad Bi-
lal Zafar, Simon Bouget, Saikat Guha, Krishna P. Gummadi,
Aniket Kate, and Alan Mislove. Strength in Numbers: Robust
Tamper Detection in Crowd Computations. In Proceedings of
the 3rd ACM Conference on Online Social Networks, COSN,
2015.

[56] Lixu Wang, Shichao Xu, Xiao Wang, and Qi Zhu. Eavesdrop
the Composition Proportion of Training Labels in Federated
Learning. arXiv preprint arXiv:1910.06044, 2019.

[57] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He,
and K. Chan. Adaptive Federated Learning in Resource Con-
strained Edge Computing Systems. IEEE Journal on Selected
Areas in Communications, 37(6):1205–1221, 2019.

[58] Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. DBA: Dis-
tributed Backdoor Attacks against Federated Learning. In
International Conference on Learning Representations, ICLR,
2020.

[59] Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Fall of
Empires: Breaking Byzantine-tolerant SGD by Inner Product
Manipulation. In Proceedings of the 35th Conference on Un-
certainty in Artificial Intelligence, UAI, 2019.

[60] Cong Xie, Sanmi Koyejo, and Indranil Gupta. SLSGD: Secure
and Efficient Distributed On-device Machine Learning. In
European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases, ECMLPKDD,
2019.

[61] Cong Xie, Sanmi Koyejo, and Indranil Gupta. Zeno: Dis-
tributed Stochastic Gradient Descent with Suspicion-based
Fault-tolerance. In Proceedings of the 36th International Con-
ference on Machine Learning, ICML, 2019.

[62] Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter
Bartlett. Byzantine-Robust Distributed Learning: Towards Op-
timal Statistical Rates. In Proceedings of the 35th International
Conference on Machine Learning, ICML, 2018.

[63] Haifeng Yu, Phillip B. Gibbons, Michael Kaminsky, and Feng
Xiao. SybilLimit: A Near-optimal Social Network Defense
Against Sybil Attacks. TON, 2010.

[64] Haifeng Yu, Michael Kaminsky, Phillip B. Gibbons, and Abra-
ham Flaxman. SybilGuard: Defending Against Sybil Attacks
via Social Networks. In SIGCOMM, 2006.

A Convergence analysis

Theorem: Given the process in Algorithm 1, the convergence
rate of the participants (malicious and honest) is O(1

T 2) over
T iterations.

Proof of theorem: We know from the convergence analysis
of SGD [43] that for a constant learning rate, we achieve a
O(1

T 2) convergence rate.
Let M be the set of malicious clients in the system and G

be the set of honest clients in the system. Assume that the

adapted learning rates provided at each iteration αi are pro-
vided by a function h(i, t), where i is the client index and t
is the current training iteration. As long as h(i, t) does not
modify the local learning rate of the honest clients and re-
moves the contributions of sybils, the convergence analysis of
SGD applies as if the training was performed with the honest
clients’ data.

∀i ∈M,h(i, t)→ 0 (cond1)
∀i ∈ G,h(i, t)→ 1 (cond2)

We will show that, under certain assumptions, FoolsGold
satisfies both conditions of h(i, t). We prove each condition
separately.

Condition 1: Let vi be the ideal gradient for any given client
i from the initial shared global model w0, that is: w0+vi = w∗i
where w∗i is the optimal model relative to any client i’s local
training data. Since we have defined all sybils to have the same
poisoning goal, all sybils will have the same ideal gradient,
which we define to be vm.

As the number of iterations in FoolsGold increases, the
historical gradient Hi,t for each sybil approaches vm, with
error from the honest client contributions ε:

∀i ∈M : lim
t→∞

Hi,t = vm + ε

Since the historical update tends to the same vector for all
sybils, the expected pairwise similarity of these updates will
increase as the learning process continues. As long as the
resulting similarity, including the effect of pardoning between
sybils, is below βm, FoolsGold will adapt the learning rate to
0, satisfying (cond1).

βm is the point at which the logit function is below 0 and is
a function of the confidence parameter κ:

βm ≥ 1− e−0.5κ

1+ e−0.5κ

Condition 2: Regarding the ideal gradients of honest clients,
we assume that the maximum pairwise cosine similarity be-
tween the ideal gradient of honest clients is βg. As long as βg
is sufficiently low such that FoolsGold assigns a learning rate
adaptation of 1 for all honest clients, the second condition
of h(i, t) is met. βg is the point at which the logit function
is greater than 1 and is also a function of the confidence
parameter κ:

βg ≤ 1− e0.5κ

1+ e0.5κ

If the above condition holds, FoolsGold will classify these
clients to be honest and will not modify their learning
rates. This maintains the constant learning rate and satis-
fies (cond2).

	Introduction
	Background
	Threat model for sybil-based attacks on FL
	Attack objectives and strategies in FL
	Attack objectives
	Sybil attack strategies

	Can current defenses handle sybils?
	Existing defenses for FL
	Training inflation attacks by sybil clones
	Poisoning attacks by sybil clones

	FoolsGold: countering targeted sybil poisoning attacks
	FoolsGold threat model
	FoolsGold design

	FoolsGold evaluation
	Canonical attack scenarios
	FoolsGold on varying IID settings
	Attacks using intelligent perturbations
	Attacks with adaptive updates
	Effects of design elements
	FoolsGold performance overhead
	Combating a single client adversary

	Conclusion
	Convergence analysis

