The Limitations of Federated Learning in Sybil Settings

Clement Fung*, Chris J.M. Yoon⁺, Ivan Beschastnikh⁺ * Carnegie Mellon University ⁺ University of British Columbia

- Machine learning (ML) is a data hungry application
 - Large volumes of data
 - Diverse data
 - Time-sensitive data

1. Centralized training of ML model

- 1. Centralized training of ML model
- 2. Distributed training over sharded dataset and workers

Centralized Training

Distributed Training

- 1. Centralized training of ML model
- 2. Distributed training over sharded dataset and workers

Centralized Training

Distributed Training

- 1. Centralized training of ML model
- 2. Distributed training over sharded dataset and workers

Centralized Training

Distributed Training

Federated learning (FL)

- Train ML models over network
 - Less network cost, no data transfer [1]
 - Server aggregates updates across clients
- Enables privacy-preserving alternatives
 - Differentially private federated learning [2]
 - Secure aggregation [3]

[1] McMahan et al. Communication-Efficient Learning of Deep Networks from Decentralized Data. AISTATS 2017
[2] Geyer et al. Differentially Private Federated Learning: A Client Level Perspective. NIPS 2017
[3] Bonawitz et al. Practical Secure Aggregation for Privacy-Preserving Machine Learning. CCS 2017.

Federated learning (FL)

• Train ML models over network

- Less network cost, no data transfer [1]
- Server aggregates updates across clients
- Enables privacy-preserving alternatives
 - Differentially private federated learning [2]
 - Secure aggregation [3]
- Enables training over non i.i.d. data settings
 - Users with disjoint data types
 - Mobile, internet of things, etc.

[1] McMahan et al. Communication-Efficient Learning of Deep Networks from Decentralized Data. AISTATS 2017
 [2] Geyer et al. Differentially Private Federated Learning: A Client Level Perspective. NIPS 2017
 [3] Bonawitz et al. Practical Secure Aggregation for Privacy-Preserving Machine Learning. CCS 2017.

Federated learning: new threat model

- The role of the client has changed significantly!
 - Previously: passive data providers
 - Now: perform arbitrary compute

Federated learning: new threat model

- The role of the client has changed significantly!
 - Previously: passive data providers
 - Now: perform arbitrary compute
- Aggregator never sees client datasets, compute outside domain
 - Difficult to validate clients in "diverse data" setting

- Traditional poisoning attack: malicious training data
 - Manipulate behavior of final trained model

- Traditional poisoning attack: malicious training data
 - Manipulate behavior of final trained model

- Traditional poisoning attack: malicious training data
 - Manipulate behavior of final trained model

Old decision boundary

- Traditional poisoning attack: malicious training data
 - Manipulate behavior of final trained model

Old decision boundary

• In federated learning: provide malicious model updates

- In federated learning: provide malicious model updates
- With sybils: each account increases influence in system
 - Made worse in non-i.i.d setting

• A 10 client, non-i.i.d MNIST setting

- A 10 client, non-i.i.d MNIST setting
- Sybil attackers with mislabeled "1-7" data
 - Need at least 10 sybils?

- A 10 client, non-i.i.d MNIST setting
- Sybil attackers with mislabeled "1-7" data
- At only 2 sybils:
 - 96.2% of 1s are misclassified as 7s

• Minimal impact on accuracy of other digits

	Baseline	Attack 1	Attack 2
<pre># honest clients</pre>	10	10	10
# malicious sybils	0	1	2
Accuracy (digits: 0, 2-9)	90.2%	89.4%	88.8%
Accuracy (digit: 1)	96.5%	60.7%	0.0%
Attack success rate	0.0%	35.9%	96.2%

- A 10 client, non-i.i.d MNIST setting
- Sybil attackers with mislabeled "1-7" data
- At only 2 sybils:
 - \circ $\$ 96.2% of 1s are misclassified as 7s

• Minimal impact on accuracy of other digits

	Baseline	Attack 1	Attack 2
# honest clients	10	10	10
# malicious sybils	0	1	2
Accuracy (digits: 0, 2-9)	90.2%	89.4%	88.8%
Accuracy (digit: 1)	96.5%	60.7%	0.0%
Attack success rate	0.0%	35.9%	96.2%

- A 10 client, non-i.i.d MNIST setting
- Sybil attackers with mislabeled "1-7" data
- At only 2 sybils:
 - 96.2% of 1s are misclassified as 7s \bigcirc

honest clients

malicious sybils

Accuracy (digit: 1)

Attack success rate

Accuracy (digits: 0, 2-9)

Minimal impact on accuracy of other digits Ο

90.2%	89.4%	88.8%
96.5%	60.7%	0.0%
0.0%	35.9%	96.2%

Our contributions

- Identify gap in existing FL defenses
 - No prior work has studied sybils in FL
- Categorize sybil attacks on FL along two dimensions:
 - Sybil objectives/targets
 - Sybil capabilities
- FoolsGold: a defense against sybil-based poisoning attacks on FL
 - Addresses targeted poisoning attacks
 - Preserves benign FL performance
 - Prevents poisoning from 99% sybil adversary

Federated learning: sybil attacks, defenses and new opportunities

Types of attacks on FL

- Model quality: modify the performance of the trained model
 - Poisoning attacks [1], backdoor attacks [2]
- Privacy: attack the datasets of honest clients
 - Inference attacks [3]
- Utility: receive an unfair payout from the system
 - Free-riding attacks [4]
- **Training inflation**: inflate the resources required (new!)
 - Time taken, network bandwidth, GPU usage

[1] Fang et al. Local Model Poisoning Attacks to Byzantine-Robust Federated Learning. Usenix Security 2020.

[2] Bagdasaryan et al. How To Backdoor Federated Learning. AISTATS 2020.

[3] Melis et al. Exploiting Unintended Feature Leakage in Collaborative Learning. S&P 2019.

[4] Lin et al. Free-riders in Federated Learning: Attacks and Defenses. arXiv 2019.

Existing defenses for FL are limited

- Existing defenses are aggregation statistics:
 - Multi-Krum [1]
 - Bulyan [2]
 - Trimmed Mean/Median [3]
- Require a bounded number of attackers
 - Do not handle sybil attacks
- Focus on poisoning attacks (model quality)
 - Do not handle other attacks (e.g., training inflation)

Existing defenses for FL

• Cannot defend against an increasing number of poisoners

Existing defenses for FL

• FoolsGold is robust to an increasing number of poisoners

Existing defenses for FL

• FoolsGold is robust to an increasing number of poisoners

- Manipulate ML stopping criteria to ensure maximum time/usage:
 - Validation error, size of gradient norm
 - Coordinated attacks can be **direct**,

- Manipulate ML stopping criteria to ensure maximum time/usage:
 - Validation error, size of gradient norm
 - Coordinated attacks can be direct, timed,

- Manipulate ML stopping criteria to ensure maximum time/usage:
 - Validation error, size of gradient norm
 - Coordinated attacks can be direct, timed, or stealthy

- Manipulate ML stopping criteria to ensure maximum time/usage:
 - Validation error, size of gradient norm
 - Coordinated attacks can be direct, timed, or stealthy

Coordinated adversary can arbitrarily manipulate the length of federated learning process!

Sybil strategies when attacking FL

• Attack data diversity:

- How common is the strategy used between sybils?
- Identical datasets? Diverse datasets?

• Coordination:

- How much state do sybils share?
- How often do sybils communicate?

• Churn:

• Do sybils benefit when joining/leaving system during the attack?

Sybil strategies when attacking FL

- We categorize existing FL attacks based on these criteria
 - Many can be categorized by their sybil strategies
 - See discussion and table in the paper

Table 2 Sybil strategies			Table 1 Attack types					
Churn	Data	Coordination	U.Poison	T.Poison	D.Inversion	M.Infer	M.Free	T.Inflate
Remainers	Clones	Uncoordinated Swarm Puppets		FoolsGold §6		[41]		
	Act-alikes	Uncoordinated Swarm Puppets		[58]				
	Clowns	Uncoordinated Swarm		[3,6,36]	[26,48,56]	[41,42,54]	[34]	§5.2
		Puppets	[19,59]	§7.3, §7.4				§5.2
Churners	All	All			Unexpl	ored		

Sybil strategies when attacking FL

- We categorize existing FL attacks based on these criteria
 - Many can be categorized by their sybil strategies
 - See discussion and table in the paper

FoolsGold: Defending against sybil-based targeted poisoning attacks

FoolsGold threat model and assumptions

- Addresses one section within table
 - Targeted poisoning attacks
 - Sybils with similar datasets
- Assume:
 - Non i.i.d federated learning setting
 - At least one honest client in FL system
 - Server can observe all model updates
 - No secure aggregation

FoolsGold algorithm

- 1. Collect model update history from each client
- 2. Compute feature significance
- 3. Pairwise **cosine similarity** between clients
- 4. Normalize through the inverse logit function
 - Ensures all weights are spread across 0-1 range
- 5. Reduce learning rate of contributions that are highly similar

Effect: highly similar clients will be penalized over time

Evaluating FoolsGold

- Attack scenario:
 - Defined source and target class attacks
 - Sybils join FL system and execute targeted poisoning
 - Uncoordinated attack with same poisoned dataset
 - Single attacker, N attackers, 99% attackers, etc.
- Datasets/models:
 - MNIST softmax (image data)
 - VGGFace2 Squeezenet DNN (multi-channel image data)
- See paper for more datasets and attack variants!

• FoolsGold does not interfere with benign setting

	Test Accuracy	Attack Rate
MNIST No Attack	0.92 (0.91 on FL)	n/a
VGGFace2 No attack	0.78 (0.75 on FL)	n/a

- FoolsGold does not interfere with benign setting
- FoolsGold defends against increasing number of sybils

	Test Accuracy	Attack Rate
MNIST No Attack	0.92 (0.91 on FL)	n/a
MNIST 5 sybils (33%)	0.91	0.001
VGGFace2 No attack	0.78 (0.75 on FL)	n/a
VGGFace2 5 sybils (33%)	0.78	0.001

- FoolsGold does not interfere with benign setting
- FoolsGold defends against increasing number of sybils

	Test Accuracy	Attack Rate
MNIST No Attack	0.92 (0.91 on FL)	n/a
MNIST 5 sybils (33%)	0.91	0.001
MNIST 990 sybils (99%)	0.91	0.001
VGGFace2 No attack	0.78 (0.75 on FL)	n/a
VGGFace2 5 sybils (33%)	0.78	0.001

- FoolsGold does not interfere with benign setting
- FoolsGold defends against increasing number of sybils
- Performance against single attacker is worst

	Test Accuracy	Attack Rate
MNIST No Attack	0.92 (0.91 on FL)	n/a
MNIST 5 sybils (33%)	0.91	0.001
MNIST 990 sybils (99%)	0.91	0.001
MNIST 1 sybil	0.74	0.23
VGGFace2 No attack	0.78 (0.75 on FL)	n/a
VGGFace2 5 sybils (33%)	0.78	0.001
VGGFace2 1 sybil	0.62	0.44

- How similar are model updates over VGGFace2 training process?
 - For each client/sybil, plot weights of final update

- How similar are model updates over VGGFace2 training process?
 - For each client/sybil, plot weights of final update

- How similar are model updates over VGGFace2 training process?
 - For each client/sybil, plot weights of final update

- How similar are model updates over VGGFace2 training process?
 - For each client/sybil, plot weights of final update

50

- How similar are model updates over VGGFace2 training process?
 - For each client/sybil, plot weights of final update

51

Can an intelligent attacker defeat FoolsGold?

- What if the attacker is stronger?
 - They know the FoolsGold algorithm
 - They can coordinate at each iteration
- Bypass FoolsGold by increasing dissimilarity amongst sybils
 - Modify model updates with orthogonal perturbations
 - Withhold poisoning attacks to avoid detection

Coordinated sybils can bypass FoolsGold

- Limiting malicious model update frequency
 - Monitor FoolsGold similarity
 - Only poison when similarity is below M
- Too often: Detected by FoolsGold (M>0.25)
- Too infrequent: Cannot overpower honest clients in system
- With lower M, success requires more sybils
 - Also requires estimate of honest client data distribution

The bigger picture

- FoolsGold can be defeated by increasing coordinated attackers
- Attacks extend beyond model quality attacks
- As future defenses are designed for federated learning:
 - Consider sybil capabilities when defining attacker

Table 2 Sybil strategies			Table 1 Attack types					
Churn	Data	Coordination	U.Poison	T.Poison	D.Inversion	M.Infer	M.Free	T.Inflate
Remainers	Clones	Uncoordinated Swarm Puppets		FoolsGold §6	li)	[41]		
	Act-alikes	Uncoordinated Swarm Puppets		[58]				
	Clowns	Uncoordinated Swarm		[3,6,36]	[26,48,56]	[41,42,54]	[34]	§5.2
	1.000	Puppets	[19,59]	§7.3, §7.4				§5.2
Churners	All	All			Unexpl	ored		

Contributions

- Federated learning: new threat model
 - Adversaries perform **arbitrary compute**
- New attacks are possible/stronger with sybils
 - Categorize sybil strategies/capabilities
 - New training inflation attacks on FL
- FoolsGold: defending against sybil-based poisoning attacks
 - Detect sybils based on client similarity

Contact: <u>clementf@andrew.cmu.edu</u> Our code can be found at: https://github.com/DistributedML/FoolsGold

Table 2 Sybil strategies			Table 1 Attack types					
Churn	Data	Coordination	U.Poison	T.Poison	D.Inversion	M.Infer	M.Free	T.Inflate
Remainers	Clones	Uncoordinated Swarm Puppets		FoolsGold §6		[41]		
	Act-alikes	Uncoordinated Swarm Puppets		[58]				
	Clowns	Uncoordinated Swarm		[3,6,36]	[26,48,56]	[41,42,54]	[34]	§5.2
	5 mm 10	Puppets	[19,59]	§7.3, §7.4				§5.2
Churners	All	All			Unexpl	lored		