The Limitations of Federated Learning in Sybil Settings

Clement Fung*, Chris J.M. Yoon†, Ivan Beschastnikh‡

* Carnegie Mellon University † University of British Columbia
The evolution of machine learning at scale

- Machine learning (ML) is a data hungry application
 - Large volumes of data
 - Diverse data
 - Time-sensitive data
The evolution of machine learning at scale

1. **Centralized training** of ML model
The evolution of machine learning at scale

1. **Centralized training** of ML model

![Centralized Training Diagram](image)
The evolution of machine learning at scale

1. **Centralized training** of ML model
The evolution of machine learning at scale

1. **Centralized training** of ML model
The evolution of machine learning at scale

1. Centralized training of ML model
2. **Distributed training** over sharded dataset and workers
The evolution of machine learning at scale

1. Centralized training of ML model
2. **Distributed training** over sharded dataset and workers
The evolution of machine learning at scale

1. Centralized training of ML model
2. **Distributed training** over sharded dataset and workers
Federated learning (FL)

- Train ML models **over network**
 - Less network cost, no data transfer [1]
 - Server aggregates updates across clients
- Enables privacy-preserving alternatives
 - Differentially private federated learning [2]
 - Secure aggregation [3]

Federated learning (FL)

- Train ML models **over network**
 - Less network cost, no data transfer [1]
 - Server aggregates updates across clients
- Enables privacy-preserving alternatives
 - Differentially private federated learning [2]
 - Secure aggregation [3]
- Enables training over **non i.i.d. data settings**
 - Users with disjoint data types
 - Mobile, internet of things, etc.

Federated learning: new threat model

- The role of the client has changed significantly!
 - Previously: passive data providers
 - Now: perform arbitrary compute
Federated learning: new threat model

● The role of the client has changed significantly!
 ○ Previously: passive data providers
 ○ Now: perform **arbitrary compute**

● Aggregator never sees client datasets, compute outside domain
 ○ Difficult to validate clients in “diverse data” setting
Poisoning attacks

- Traditional poisoning attack: malicious training data
 - Manipulate behavior of final trained model
Poisoning attacks

- Traditional poisoning attack: malicious training data
 - Manipulate behavior of final trained model
Poisoning attacks

- Traditional poisoning attack: malicious training data
 - Manipulate behavior of final trained model

Old decision boundary

New decision boundary

Malicious poisoning data
Poisoning attacks

- Traditional poisoning attack: malicious training data
 - Manipulate behavior of final trained model

Old decision boundary

New decision boundary

Misclassified example

Malicious poisoning data
Sybil-based poisoning attacks

- In federated learning: provide malicious model updates
Sybil-based poisoning attacks

- In federated learning: provide malicious model updates
- With **sybils**: each account increases influence in system
 - Made worse in non-i.i.d setting
E.g. Sybil-based poisoning attacks

- A 10 client, non-i.i.d MNIST setting
E.g. Sybil-based poisoning attacks

- A 10 client, non-i.i.d MNIST setting
- Sybil attackers with mislabeled “1-7” data
 - Need at least 10 sybils?
E.g. Sybil-based poisoning attacks

- A 10 client, non-i.i.d MNIST setting
- Sybil attackers with mislabeled “1-7” data
- At only 2 sybils:
 - 96.2% of 1s are misclassified as 7s
 - Minimal impact on accuracy of other digits

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Attack 1</th>
<th>Attack 2</th>
</tr>
</thead>
<tbody>
<tr>
<td># honest clients</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td># malicious sybils</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Accuracy (digits: 0, 2-9)</td>
<td>90.2%</td>
<td>89.4%</td>
<td>88.8%</td>
</tr>
<tr>
<td>Accuracy (digit: 1)</td>
<td>96.5%</td>
<td>60.7%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Attack success rate</td>
<td>0.0%</td>
<td>35.9%</td>
<td>96.2%</td>
</tr>
</tbody>
</table>
E.g. Sybil-based poisoning attacks

- A 10 client, non-i.i.d MNIST setting
- Sybil attackers with mislabeled “1-7” data
- At only 2 sybils:
 - 96.2% of 1s are misclassified as 7s
 - Minimal impact on accuracy of other digits

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Attack 1</th>
<th>Attack 2</th>
</tr>
</thead>
<tbody>
<tr>
<td># honest clients</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td># malicious sybils</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Accuracy (digits: 0, 2-9)</td>
<td>90.2%</td>
<td>89.4%</td>
<td>88.8%</td>
</tr>
<tr>
<td>Accuracy (digit: 1)</td>
<td>96.5%</td>
<td>60.7%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Attack success rate</td>
<td>0.0%</td>
<td>35.9%</td>
<td>96.2%</td>
</tr>
</tbody>
</table>
E.g. Sybil-based poisoning attacks

- A 10 client, non-i.i.d MNIST setting
- Sybil attackers with mislabeled “1-7” data
- At only 2 sybils:
 - 96.2% of 1s are misclassified as 7s
 - Minimal impact on accuracy of other digits

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Attack 1</th>
<th>Attack 2</th>
</tr>
</thead>
<tbody>
<tr>
<td># honest clients</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td># malicious sybils</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Accuracy (digits: 0, 2-9)</td>
<td>90.2%</td>
<td>89.4%</td>
<td>88.8%</td>
</tr>
<tr>
<td>Accuracy (digit: 1)</td>
<td>96.5%</td>
<td>60.7%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Attack success rate</td>
<td>0.0%</td>
<td>35.9%</td>
<td>96.2%</td>
</tr>
</tbody>
</table>
Our contributions

● Identify **gap in existing FL defenses**
 ○ No prior work has studied sybils in FL

● Categorize sybil attacks on FL along two dimensions:
 ○ Sybil objectives/targets
 ○ Sybil capabilities

● **FoolsGold:** a defense against sybil-based poisoning attacks on FL
 ○ Addresses targeted poisoning attacks
 ○ Preserves benign FL performance
 ○ Prevents poisoning from 99% sybil adversary
Federated learning: sybil attacks, defenses and new opportunities
Types of attacks on FL

- **Model quality**: modify the performance of the trained model
 - Poisoning attacks [1], backdoor attacks [2]
- **Privacy**: attack the datasets of honest clients
 - Inference attacks [3]
- **Utility**: receive an unfair payout from the system
 - Free-riding attacks [4]
- **Training inflation**: inflate the resources required (new!)
 - Time taken, network bandwidth, GPU usage

Existing defenses for FL are limited

- Existing defenses are aggregation statistics:
 - Multi-Krum [1]
 - Bulyan [2]
 - Trimmed Mean/Median [3]
- Require a bounded number of attackers
 - Do not handle sybil attacks
- Focus on poisoning attacks (model quality)
 - Do not handle other attacks (e.g., training inflation)

Existing defenses for FL

- Cannot defend against an increasing number of poisoners

Existing defenses for FL

- FoolsGold is robust to an increasing number of poisoners

Existing defenses for FL

- FoolsGold is robust to an increasing number of poisoners

Once the number of sybils exceeds defense threshold, defenses are ineffective!

Training inflation on FL

- Manipulate ML stopping criteria to **ensure maximum time/usage**:
 - Validation error, size of gradient norm
 - Coordinated attacks can be **direct**,
Training inflation on FL

- Manipulate ML stopping criteria to **ensure maximum time/usage**:
 - Validation error, size of gradient norm
 - Coordinated attacks can be **direct, timed**,

![Graph showing L2-Norm vs FL Iterations]
Training inflation on FL

- Manipulate ML stopping criteria to **ensure maximum time/usage:**
 - Validation error, size of gradient norm
 - Coordinated attacks can be **direct, timed, or stealthy**
Training inflation on FL

- Manipulate ML stopping criteria to **ensure maximum time/usage**:
 - Validation error, size of gradient norm
 - Coordinated attacks can be **direct, timed, or stealthy**

Coordinated adversary can arbitrarily manipulate the length of federated learning process!
Sybil strategies when attacking FL

● **Attack data diversity:**
 ○ How common is the strategy used between sybils?
 ○ Identical datasets? Diverse datasets?

● **Coordination:**
 ○ How much state do sybils share?
 ○ How often do sybils communicate?

● **Churn:**
 ○ Do sybils benefit when joining/leaving system during the attack?
Sybil strategies when attacking FL

- We categorize existing FL attacks based on these criteria
 - Many can be categorized by their sybil strategies
 - See discussion and table in the paper

<table>
<thead>
<tr>
<th>Churn</th>
<th>Data</th>
<th>Coordination</th>
<th>U.Poison</th>
<th>T.Poison</th>
<th>D.Inversion</th>
<th>M.Infer</th>
<th>M.Free</th>
<th>T.Inflate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remainers</td>
<td>Clones</td>
<td>Uncoordinated Swarm Puppets</td>
<td>FoolsGold §6</td>
<td></td>
<td>[41]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Act-alikes</td>
<td>Uncoordinated Swarm Puppets</td>
<td></td>
<td>[58]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clowns</td>
<td>Uncoordinated Swarm Puppets</td>
<td>[3,6,36]</td>
<td>[26,48,56]</td>
<td>[41,42,54]</td>
<td>[34]</td>
<td>§§5.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Churners</td>
<td>All</td>
<td>All</td>
<td>[19,59]</td>
<td>§§7.3, §7.4</td>
<td>Unexplored</td>
<td></td>
<td></td>
<td>§§5.2</td>
</tr>
</tbody>
</table>
Sybil strategies when attacking FL

- We categorize existing FL attacks based on these criteria
 - Many can be categorized by their sybil strategies
 - See discussion and table in the paper

<table>
<thead>
<tr>
<th>Churners</th>
<th>Data</th>
<th>Coordination</th>
<th>U.Poison</th>
<th>T.Poison</th>
<th>D.Inversion</th>
<th>M.Infer</th>
<th>M.Free</th>
<th>T.Inflate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remainers</td>
<td>Clones</td>
<td>Uncoordinated Swarm Puppets</td>
<td></td>
<td></td>
<td>[41]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Act-alikes</td>
<td>Uncoordinated Swarm Puppets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clowns</td>
<td>Uncoordinated Swarm Puppets</td>
<td>[3,6,36]</td>
<td>[26,48,56]</td>
<td>[41,42,54]</td>
<td>[34]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Churners</td>
<td>All</td>
<td>All</td>
<td>Unexplored</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FoolsGold: Defending against sybil-based targeted poisoning attacks
FoolsGold threat model and assumptions

- Addresses one section within table
 - Targeted poisoning attacks
 - Sybils with similar datasets
- Assume:
 - Non i.i.d federated learning setting
 - At least one honest client in FL system
 - Server can observe all model updates
 - No secure aggregation
FoolsGold algorithm

1. Collect model update history from each client
2. Compute feature significance
3. Pairwise cosine similarity between clients
4. Normalize through the inverse logit function
 • Ensures all weights are spread across 0-1 range
5. Reduce learning rate of contributions that are highly similar

Effect: highly similar clients will be penalized over time
Evaluating FoolsGold

- **Attack scenario:**
 - Defined source and target class attacks
 - Sybils join FL system and execute targeted poisoning
 - Uncoordinated attack with same poisoned dataset
 - Single attacker, N attackers, 99% attackers, etc.

- **Datasets/models:**
 - MNIST - softmax (image data)
 - VGGFace2 - SqueezeNet DNN (multi-channel image data)

- See paper for more datasets and attack variants!
Baseline results

- FoolsGold does not interfere with benign setting

<table>
<thead>
<tr>
<th></th>
<th>Test Accuracy</th>
<th>Attack Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNIST No Attack</td>
<td>0.92 (0.91 on FL)</td>
<td>n/a</td>
</tr>
<tr>
<td>VGGFace2 No attack</td>
<td>0.78 (0.75 on FL)</td>
<td>n/a</td>
</tr>
</tbody>
</table>
Baseline results

- FoolsGold does not interfere with benign setting
- FoolsGold defends against increasing number of sybils

<table>
<thead>
<tr>
<th></th>
<th>Test Accuracy</th>
<th>Attack Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNIST No Attack</td>
<td>0.92 (0.91 on FL)</td>
<td>n/a</td>
</tr>
<tr>
<td>MNIST 5 sybils (33%)</td>
<td>0.91</td>
<td>0.001</td>
</tr>
<tr>
<td>VGGFace2 No attack</td>
<td>0.78 (0.75 on FL)</td>
<td>n/a</td>
</tr>
<tr>
<td>VGGFace2 5 sybils (33%)</td>
<td>0.78</td>
<td>0.001</td>
</tr>
</tbody>
</table>
Baseline results

- FoolsGold does not interfere with benign setting
- FoolsGold defends against increasing number of sybils

<table>
<thead>
<tr>
<th></th>
<th>Test Accuracy</th>
<th>Attack Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNIST No Attack</td>
<td>0.92 (0.91 on FL)</td>
<td>n/a</td>
</tr>
<tr>
<td>MNIST 5 sybils (33%)</td>
<td>0.91</td>
<td>0.001</td>
</tr>
<tr>
<td>MNIST 990 sybils (99%)</td>
<td>0.91</td>
<td>0.001</td>
</tr>
<tr>
<td>VGGFace2 No attack</td>
<td>0.78 (0.75 on FL)</td>
<td>n/a</td>
</tr>
<tr>
<td>VGGFace2 5 sybils (33%)</td>
<td>0.78</td>
<td>0.001</td>
</tr>
</tbody>
</table>
Baseline results

- FoolsGold does not interfere with benign setting
- FoolsGold defends against increasing number of sybils
- Performance against single attacker is worst

<table>
<thead>
<tr>
<th></th>
<th>Test Accuracy</th>
<th>Attack Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNIST No Attack</td>
<td>0.92 (0.91 on FL)</td>
<td>n/a</td>
</tr>
<tr>
<td>MNIST 5 sybils (33%)</td>
<td>0.91</td>
<td>0.001</td>
</tr>
<tr>
<td>MNIST 990 sybils (99%)</td>
<td>0.91</td>
<td>0.001</td>
</tr>
<tr>
<td>MNIST 1 sybil</td>
<td>0.74</td>
<td>0.23</td>
</tr>
<tr>
<td>VGGFace2 No attack</td>
<td>0.78 (0.75 on FL)</td>
<td>n/a</td>
</tr>
<tr>
<td>VGGFace2 5 sybils (33%)</td>
<td>0.78</td>
<td>0.001</td>
</tr>
<tr>
<td>VGGFace2 1 sybil</td>
<td>0.62</td>
<td>0.44</td>
</tr>
</tbody>
</table>
FoolsGold performs well even when i.i.d.

- How similar are model updates over VGGFace2 training process?
 - For each client/sybil, plot weights of final update
FoolsGold performs well even when i.i.d.

- How similar are model updates over VGGFace2 training process?
 - For each client/sybil, plot weights of final update

Weights are positive for each client’s class
FoolsGold performs well even when i.i.d.

- How similar are model updates over VGGFace2 training process?
 - For each client/sybil, plot weights of final update

![Difficult to distinguish in full-i.i.d setting](image)
FoolsGold performs well even when i.i.d.

- How similar are model updates over VGGFace2 training process?
 - For each client/sybil, plot weights of final update

[Diagram showing similarity of model updates across clients and sybils.]

Poisoning attack from sybils appear similar.
FoolsGold performs well even when i.i.d.

- How similar are model updates over VGGFace2 training process?
 - For each client/sybil, plot weights of final update

Even when more i.i.d, FoolsGold can distinguish between sybils and honest clients!
Can an intelligent attacker defeat FoolsGold?

● What if the attacker is stronger?
 ○ They know the FoolsGold algorithm
 ○ They can *coordinate at each iteration*

● Bypass FoolsGold by increasing dissimilarity amongst sybils
 ○ Modify model updates with orthogonal perturbations
 ○ Withhold poisoning attacks to avoid detection
Coordinated sybils can bypass FoolsGold

- Limiting malicious model update frequency
 - Monitor FoolsGold similarity
 - Only poison when similarity is below M
- Too often: Detected by FoolsGold (M>0.25)
- Too infrequent: Cannot overpower honest clients in system
- With lower M, success requires more sybils
 - Also requires estimate of honest client data distribution
The bigger picture

- FoolsGold can be defeated by increasing coordinated attackers
- Attacks extend beyond model quality attacks
- As future defenses are designed for federated learning:
 - Consider sybil capabilities when defining attacker

<table>
<thead>
<tr>
<th>Churn</th>
<th>Data</th>
<th>Coordination</th>
<th>U.Poison</th>
<th>T.Poison</th>
<th>D.Inversion</th>
<th>M.Infer</th>
<th>M.Free</th>
<th>T.Inflate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remain</td>
<td>Clones</td>
<td>Uncoordinated Swarm Puppets</td>
<td></td>
<td></td>
<td>FoolsGold</td>
<td></td>
<td>[41]</td>
<td></td>
</tr>
<tr>
<td>Act-likes</td>
<td>Uncoordinated Swarm Puppets</td>
<td></td>
<td></td>
<td>[58]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clowns</td>
<td>Uncoordinated Swarm Puppets</td>
<td></td>
<td>[3,6,36]</td>
<td>[26,48,56]</td>
<td>[41,42,54]</td>
<td>[34]</td>
<td>§5.2</td>
<td></td>
</tr>
<tr>
<td>Churners</td>
<td>All</td>
<td>All</td>
<td>[19,59]</td>
<td>§7.3, §7.4</td>
<td>Unexplored</td>
<td></td>
<td>§5.2</td>
<td></td>
</tr>
</tbody>
</table>
Contributions

● Federated learning: new threat model
 ○ Adversaries perform **arbitrary compute**
● New attacks are possible/stronger with sybils
 ○ Categorize sybil strategies/capabilities
 ○ New training inflation attacks on FL
● FoolsGold: defending against sybil-based poisoning attacks
 ○ Detect sybils based on **client similarity**

Contact: clementf@andrew.cmu.edu
Our code can be found at: https://github.com/DistributedML/FoolsGold