
Leveraging Existing Instrumentation to
Automatically Infer Invariant-Constrained Models

Ivan Beschastnikh Yuriy Brun Sigurd Schneider Michael Sloan Michael D. Ernst
Computer Science & Engineering Computer Science

University of Washington Saarland University
{ivan,brun,mgsloan,mernst}@cs.washington.edu, sigurd@ps.uni-saarland.de

Abstract
Computer systems are often difficult to debug and understand. A
common way of gaining insight into system behavior is to inspect
execution logs and documentation. Unfortunately, manual inspection
of logs is an arduous process and documentation is often incomplete
and out of sync with the implementation.

This paper presents Synoptic, a tool that helps developers by in-
ferring a concise and accurate system model. Unlike most related
work, Synoptic does not require developer-written scenarios, specifi-
cations, negative execution examples, or other complex user input.
Synoptic processes the logs most systems already produce and re-
quires developers only to specify a set of regular expressions for
parsing the logs.

Synoptic has two unique features. First, the model it produces
satisfies three kinds of temporal invariants mined from the logs,
improving accuracy over related approaches. Second, Synoptic uses
refinement and coarsening to explore the space of models. This
improves model efficiency and precision, compared to using just one
approach.

In this paper, we formally prove that Synoptic always produces
a model that satisfies exactly the temporal invariants mined from
the log, and we argue that it does so efficiently. We empirically
evaluate Synoptic through two user experience studies, one with a
developer of a large, real-world system and another with 45 students
in a distributed systems course. Developers used Synoptic-generated
models to verify known bugs, diagnose new bugs, and increase
their confidence in the correctness of their systems. None of the
developers in our evaluation had a background in formal methods
but were able to easily use Synoptic and detect implementation bugs
in as little as a few minutes.

Categories and Subject Descriptors: D.2.5 [Testing and Debug-
ging]: Debugging aids
General Terms: Algorithms, Reliability
Keywords: log analysis, temporal invariant mining, model infer-
ence, Synoptic

1. Introduction
Application of formal methods, such as specification and verifi-

cation of systems during the design stage, is a promising means of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’11, September 5–9, 2011, Szeged, Hungary.
Copyright 2011 ACM 978-1-4503-0443-6/11/09 ...$10.00.

 1 74.15.155.103 [06/Jan/2011:07:24:13] "GET HTTP/1.1 /check-out.php"
 2 13.15.232.201 [06/Jan/2011:07:24:19] "GET HTTP/1.1 /check-out.php"
 3 13.15.232.201 [06/Jan/2011:07:25:33] "GET HTTP/1.1 /invalid-coupon.php"
 4 74.15.155.103 [06/Jan/2011:07:27:05] "GET HTTP/1.1 /valid-coupon.php"
 5 74.15.155.199 [06/Jan/2011:07:28:43] "GET HTTP/1.1 /check-out.php"
 6 74.15.155.103 [06/Jan/2011:07:28:14] "GET HTTP/1.1 /reduce-price.php"
 7 74.15.155.199 [06/Jan/2011:07:29:02] "GET HTTP/1.1 /get-credit-card.php"
 8 13.15.232.201 [06/Jan/2011:07:30:22] "GET HTTP/1.1 /reduce-price.php"
 9 74.15.155.103 [06/Jan/2011:07:30:55] "GET HTTP/1.1 /check-out.php"
10 13.15.232.201 [06/Jan/2011:07:31:17] "GET HTTP/1.1 /check-out.php"
11 13.15.232.201 [06/Jan/2011:07:31:20] "GET HTTP/1.1 /get-credit-card.php"
12 74.15.155.103 [06/Jan/2011:07:31:44] "GET HTTP/1.1 /get-credit-card.php"

Line parsing: (?<ip>) .+ /(?<TYPE>.+).php"
Execution mapping: \k<ip>

+

Log:

Regular
Expressions:

check-out

check-out

get-credit-card

valid-
coupon

invalid-
coupon

reduce-
price

1/3

1/3

1/3

1

1

1

Generated Model:

1

7,11,12

9,10

1,2,5

4

3

6,8

Synoptic

Figure 1: (Top) A log with line numbers for an online shopping
cart, and two complete regular expressions for processing this log
with Synoptic. (Bottom) The generated Synoptic model. In the
model, rectangular/diamond/oval nodes indicate initial/terminal/in-
termediate nodes. Edge labels indicate transition probabilities. The
subscript to the right of each node lists the log line numbers cor-
responding to the partition. This application contains a bug that is
easily noticed in the generated model: processing an invalid coupon
incorrectly reduces the shopping cart’s total price.

preventing implementation bugs. Although such formal methods are
popular in limited domains (e.g., avionics), only rarely do tools from
the formal methods community get used by everyday developers.
More commonly, developers rely on debugging.

Logging system behavior is one of the most ubiquitous, simple,
and effective debugging tools. Developers instrument key locations
in the code to gain insight into the state of a process, the execution
sequence, and the presence or absence of certain events. Logging
is so important that production systems at companies like Google
are instrumented to generate billions of log events each day. These
events are stored for weeks to help diagnose bugs [45].

However, logs are analyzed primarily by hand or with ad hoc tools.
The goal of our work is to infer concise, accurate models of system
behavior from logs. The inferred models aim to help developers in
three ways: (1) help find bugs, (2) increase developers’ confidence
in the absence of certain bugs, and (3) improve developers’ under-
standing of their systems. We present the design and evaluation
of a tool called Synoptic, which processes the logs most systems

mailto:ivan@cs.washington.edu,brun@cs.washington.edu,sigurd@ps.uni-saarland.de,mgsloan@cs.washington.edu,mernst@cs.washington.edu

already produce and requires developers only to specify a set of
regular expressions for parsing the logs. Synoptic generates a model
similar to a finite state machine that satisfies the temporal invariants
mined from the logs. By leveraging existing logs, Synoptic produces
models with details the developer already considers to be helpful in
aiding understanding. More generally, Synoptic offers developers
who have little expertise in formal methods a means to consider their
systems more formally. Synoptic bridges the gap between the culture
of the average developer who practices logging for debugging with
advanced techniques developed by the formal methods community.

Synoptic differs from prior model-generation tools by its versa-
tility and by imposing few requirements on the developer. To use
the tool, developers neither need to specify their systems as part
of the design, identify properties for the tool to verify, nor modify
their code. Instead, Synoptic mines three kinds of temporal invari-
ants from existing logs and uses these to generate a concise model
satisfying the invariants. Developers only provide a set of regular
expressions to parse events from the logs. With this approach, Syn-
optic (1) does not restrict developers to a particular log format and
(2) allows developers to specify the events to include in the model.

Figure 1 shows a web server log for a shopping cart application.
Using the two listed regular expressions, Synoptic parses the log into
three traces, one for each of the three user IP addresses accessing the
server (Figure 3). Synoptic then mines temporal invariants that hold
in those traces and uses the invariants to infer a model of the system
(bottom of Figure 1). The model clearly illustrates a bug that would
be difficult to find by examining the log directly: applying an invalid
coupon allows the user to reduce the price. Not only can Synoptic
help a developer find this bug, it can also increase the developer’s
confidence that the bug has been successfully removed. For example,
the developer can run Synoptic on logs generated by a new version
of the system and compare the new model with the prior model.

We evaluated Synoptic both theoretically and experimentally. Sec-
tion 3 formally proves that Synoptic produces a model that satisfies
all the true temporal invariants mined from the log and none of the
invariants that are not satisfied by the log. Further, we argue that
Synoptic’s exploration of the model space is efficient and produces
concise models.

Additionally, to demonstrate Synoptic’s ability to produce useful
representations in practice, we evaluated it in two user experience
studies (Section 4). We first report on a study with a developer
working on reverse traceroute [23], a distributed system that deter-
mines the likely reverse Internet route between two hosts. Reverse
traceroute has been in deployment for over 7 months, has handled a
total of 3.6 million requests to date, and has been recently internally
deployed by a large, popular, and ubiquitous Internet company. Sec-
ond, we report on the experiences of 45 undergraduate students who
used Synoptic in a distributed systems course. The students applied
Synoptic to logs generated by their implementations of a distributed
version of a cache coherence protocol [26].

In our evaluation, Synoptic generated models on logs up to 900,000
events that represent over 28,000 unique system executions. Most
developers in our studies found the generated models helpful in
understanding their systems. Synoptic models increased developer
confidence in the correctness of their implementations, helped iden-
tify previously unknown bugs, and confirmed the existence of known
bugs.

Next, we motivate and explain how Synoptic works by describing
BisimH, the central algorithm Synoptic uses.

2. BisimH: Generating models from logs
Synoptic uses a hybrid refinement and coarsening algorithm called

BisimH. Our prior workshop paper proposed this algorithm without

1 Input: log L, regular expressions RegExps
2 let traceGraph = extract(L, RegExps)
3 let I = mineInvariants(traceGraph)
4 let (V,E) = partition(traceGraph)
5 while (V,E) does not satisfy invariants I
6 // p: event→ boolean, π: partition that will be split
7 let (p, π) = selectSplit((V,E), I)
8 let π1 = {event ∈ π | p(event)}
9 let π2 = {event ∈ π | ¬p(event)}

10 V := (V −{π})∪{π1,π2}
11 E := {(π3,π4,r) ∈V ×V ×R | ∃ event1 ∈ π3,∃ event2 ∈ π4
12 : event1 r event2 ∈ traceGraph}
13 end while
14 (V,E) := kTail((V,E), 0, I)
15 Output: (V,E)

Figure 2: The BisimH algorithm. Section 2 describes the
extract, mineInvariants, partition, selectSplit, and
kTail procedures.

providing a formal analysis or reporting on user experience with
the tool [39]. The rest of this section explains the algorithm in
detail by walking through its pseudo-code listed in Figure 2, and by
illustrating how Synoptic would process the log in Figure 1. For a
more formal treatment see Section 3.

2.1 Log parsing
Synoptic constructs a system model from a set of observed system

execution traces. It takes as input a log file containing the execution
traces, and a set of user-defined regular expressions. Synoptic uses
the regular expressions to parse the log file and extract from some
of the log lines an event instance: a triplet containing: (1) a trace
identifier, (2) a timestamp, and (3) an event type. Trace identifiers are
used to group together event instances from the same trace. Synoptic
requires that the event instances in a trace be totally ordered using
their timestamps. Therefore, no two event instances in a trace may
have identical timestamps. An event type can be an arbitrary string,
and is usually defined by the developer as something that conveys
important information about the system. For example, Section 4
presents two Synoptic-generated models in which an event type
represents (1) an executed method’s name, and (2) the state of a
node in a distributed system.

A trace can be considered to be a linear graph — each vertex is an
event instance, and the edges represent the total ordering. We term
the union of such graphs a trace graph. The trace graph is built from
the log using the provided regular expressions (line 2 in Figure 2).

Recall the shopping cart application. Figure 1 shows the log and
the two complete regular expressions that Synoptic uses to parse the
log into three traces, one per unique IP in the log; the php script
names denote the trace event types. Figure 3 shows the three traces
parsed from the log. For example, the trace corresponding to the IP
74.15.155.103 is 〈0, check-out〉, 〈1, valid-coupon〉, 〈2, reduce-price〉,
〈3, check-out〉, 〈4, get-credit-card〉. Here, the integer timestamp is
derived implicitly from the order of lines in the log.

2.2 Mining invariants from the trace graph
To guide model generation, Synoptic mines three kinds of tem-

poral invariants relating event types from the trace graph (line 3 in
Figure 2):

• a Always Followed by b (written a → b). Whenever the
event type a appears, the event type b always appears later in
the same trace.
• a Never Followed by b (written a 6→ b). Whenever the event

check-out

check-out

get-credit-card

valid-
coupon

invalid-
coupon

reduce-
price

check-out

check-out

get-credit-card

reduce-
price

check-out

get-credit-card

74.15.155.103 13.15.232.201 74.15.155.199

1

4

6

9

12

2

3

8

10

11

5

7

Figure 3: Trace graph parsed from the log in Figure 1. Each execu-
tion corresponds to an IP address that accessed the web application.
The subscript to the right of each node lists the line number of the
log line from which the event instance was extracted.

type a appears, the event type b never appears later in the same
trace.
• a Always Precedes b (written a ← b). Whenever the event

type b appears, the event type a always appears before b in
the same trace.

The missing symmetrical invariant Never Precedes, defined as a
Never Precedes b iff b can be generated only when no a was yet
generated, is equivalent to the Never Followed by invariant.

We term these relations “invariants” because they succinctly cap-
ture temporal event type relationships that must hold true over all the
input traces. The trace graph in Figure 3 yields 27 such invariants.
Two examples are reduce-price 6→ valid-coupon, and invalid-coupon
→ check-out. Section 2.5 justifies our use of these particular invari-
ant types, and Section 3.2 explains how these invariants are mined.
Next, we introduce Synoptic models.

2.3 Synoptic models and the initial model
The Synoptic model is a partition graph of the trace graph. Given

a partitioning of the original vertices, each vertex in the model is one
partition. Directed edges in the model are formed through existential
abstraction. That is, a directed edge between two vertices indicates
that there exists a pair of event instances in the corresponding par-
titions that are connected by an edge in the trace graph. A further
constraint is that each partition contains event instances of only one
particular event type. The resulting relational model makes minimal
assumptions about the underlying process that produced the logged
event instances. For a more complete discussion concerning our
model choice see [39].

An important property of Synoptic models is that each trace in the
input log is accepted by a model constructed from the corresponding
event instances (in the sense that each trace maps to a valid path in
the model). However, a Synoptic model is also generative — it may
accept traces that were not present in the log.

The BisimH algorithm starts with an initial model (constructed
using partition on line 4 of Figure 2). In this model, there is one
partition per event type containing all the event instances of that type.
Figure 4 shows the initial model for the trace graph in Figure 3.

By construction, the initial Synoptic model captures two important
kinds of temporal properties for any two adjacent event instances
in a trace in the log. First, if an event instance of type a is at some
point immediately followed by an event instance of type b in the log,
then there must be an edge from a to b. Second, if an event instance
of type a is never immediately followed by an event instance of type
b in the log, then there is no edge from a to b.

check-out

get-credit-card

valid-
coupon

invalid-
coupon

reduce-
price

3/5

1/5

1/5

1

1

1
6,8

7,11,12

1,2,5,9,10

4

3

Figure 4: Initial model corresponding to the trace graph in Figure 3.

The initial model is therefore the most compact or abstract model
plausible, based on the logged traces. The least compact (and most
concrete) model is the trace graph, in which each partition contains
a single event instance. This model makes no generalizations and
overfits to the input traces.

2.4 Refinement and coarsening
Coarsening and refinement are dual operations on a Synoptic

model. Starting with the initial model, Synoptic first performs
model refinement, shown as an iterative process in lines 5–13 of
Figure 2. This algorithm is a modification of a partition refinement
algorithm introduced by Elomaa [13]. Synoptic refines (i.e., splits)
partitions until it reaches a model that satisfies all the mined in-
variants. Next, Synoptic uses coarsening to merge those partitions
that were needlessly refined due to an imperfect splitting heuristic
(line 14 in Figure 2). The coarsening step is constrained to not
violate the mined invariants satisfied during refinement. Synoptic
outputs the model when it is unable to coarsen it any further.

2.4.1 Refinement
The refinement goal of BisimH is to pick a minimal sequence of

splits, so that the resulting graph is the coarsest graph that satisfies a
set of invariants. This problem is NP-hard [7], so an efficient algo-
rithm might not yield the optimal result. For an example illustrating
refinement suboptimality see [39].

BisimH performs splits as long as there exists some mined invari-
ant that is not satisfied. BisimH uses an FSM-based model checker
to check whether a model satisfies a mined invariant. It converts
each invariant into a small FSM that accepts traces satisfying the
invariant. It then updates the FSMs as it traverses the model graph.
If the model does not satisfy an invariant, the model checker outputs
a counterexample path. For example, the invariant valid-coupon
6→ invalid-coupon mined from the log in Figure 1 is not true in the
model in Figure 4 — Figure 5 shows a counterexample path.

Having identified a set of counterexamples that violate the mined
invariants, BisimH follows the counterexample guided abstraction
refinement (CEGAR) approach [7] to determine a set of candidate
partitions, for each of which there exists a split that removes at
least one of the counterexamples. BisimH identifies these partitions
heuristically by tracing each counterexample, stepwise, in parallel,
in the input traces and in the model. In the traces, only a prefix of the
counterexample path will be present (otherwise the counterexample
would not violate an invariant). BisimH finds the longest such
prefix, and the last partition of this prefix in the model becomes a
candidate for refinement — this partition allows a spurious transition
in the model that allows for the counterexample path to exist. For
example, the longest such prefix for the counterexample path in
Figure 5 ends in the check-out partitions. This is because check-
out stitches together two traces from the log (two left-most traces
in Figure 3) into a trace that violates the valid-coupon 6→ invalid-
coupon invariant.

To refine a candidate partition (i.e., to eliminate the counterex-

check-outcheck-out

valid-
coupon

reduce-
price

invalid-
coupon

reduce-
price

check-out

get-credit-card

1

4

6

2

3

8

10

11

Figure 5: A path through the initial model in Figure 4 that violates
the mined valid-coupon 6→ invalid-coupon invariant.

ample path), the event instances in this partition are divided into
two sets based on whether they can or cannot be reached from the
partition immediately preceding the candidate partition in the pre-
fix. In line 7 of Figure 2, selectSplit obtains a predicate p that
distinguishes these two event instance sets, and lines 8 and 9 intro-
duce two new partitions, π1 and π2, corresponding to these two sets.
Figure 6 illustrates a refinement of the initial model in Figure 4 to
eliminate the counterexample in Figure 5. In this case, the predicate
p separates the event instances in the check-out partition into those
that can or cannot be reached from the reduce-price partition.

We experimented with two kinds of predicates. Synoptic uses the
one described above: it separates event instances in the candidate
partition based on an incoming edge from a partition that imme-
diately precedes the candidate partition. We also tried a predicate
that separates event instances in the candidate partition based on an
outgoing edge representing the spurious transition — it separates
event instances in the candidate partition into sets based on whether
they can or cannot make the spurious transition. Though we did not
show this formally, in practice, we found the second strategy to be
less optimal than the first. It is also possible to split the candidate
partition simultaneously on an incoming and on an outgoing edge.
Though we have not tried this, we think this may work best. In
our future work, we intend to further study the splitting predicate’s
impact on the algorithm.

Typically, the refined model violates several invariants and can-
didate partitions must be ranked to decide which one to split first.
Synoptic employs a two-class ranking: it examines all counterexam-
ples in an arbitrary order and performs the first split that validates
an invariant (i.e., eliminates the last counterexample for that invari-
ant). If no such split is available (because more counterexamples
exist for each invariant), BisimH picks a split nondeterministically.
This ranking introduces nondeterminism and BisimH might perform
unnecessary splits.

2.4.2 Coarsening
BisimH may end up refining more than it needs to. When this hap-

pens, the model will contain partitions that can be merged without
violating the satisfied invariants. After refinement, BisimH coarsens
the model to merge such partitions (line 14 in Figure 2).

For coarsening, BisimH uses kTail-equivalence [5]. kTail is a
coarsening algorithm that starts with the most fine-grained model.
It stops once there is no pair of k-equivalent partitions, i.e., no two
partitions that are roots of sub-graphs identical up to depth k. At each
step, the algorithm merges one pair of kTail-equivalent partitions,
chosen nondeterministically. BisimH runs kTail with k = 0 (label
equivalence) to produce the most concise models. It starts with the
final refined graph, under the extra constraint that all merges do
not unsatisfy any invariants. The resulting merged model is locally
minimal: merging any two partitions will violate some invariant.

2.5 The impact of mined invariants on BisimH
BisimH uses the mined invariants to establish a well-defined

get-credit-card

valid-
coupon

invalid-
coupon

reduce-
price

check-out

check-out

check-out

check-out

check-out

1

2

5

4

3

6,8

7,11,12

9

10

Figure 6: A refinement of the model in Figure 4 that eliminates the
counterexample path in Figure 5. The edge between the reduce-price
partition and the check-out partition induces a split of check-out:
the check-out event instances reachable from reduce-price are split
out. The two new check-out partitions, with the contained check-out
event instances, are shown in bold. This model is equivalent to the
final model shown at the bottom of Figure 1.

termination criterion for refinement, and also to guide refinement in
its choice of partition to refine. This use of invariants is an important
feature of BisimH. To see this, suppose the set of invariants is empty.
In this case, refinement would terminate with a model that is the
quotient under label-equivalence, i.e., the initial model. This model
is often too compact to capture key properties of the log and is
overly generative. On the other hand, suppose that the invariant
set includes all possible temporal log invariants expressible in LTL.
Then the algorithm will terminate when, for all partitions A, if an
event instance in A has a successor event instance in a partition B,
then every event instance in A has a successor event instance in B
in the model. In this case, the final model is the quotient under
bisimulation, i.e., a graph that satisfies the same set of LTL formulae
as the trace graph. In our experience, the bisimulation quotient is
usually too similar to the trace graph, and thus too fine-grained to be
considered concise.

Our choice of the three invariant types is a compromise between
the above two extremes. In our experience, the models derived using
this set of invariants are accurate, yet sufficiently generative for the
kinds of applications we are considering (e.g., improving developer
understanding of how the system operates). These invariant types
are also exactly the most frequently observed specification patterns
formulated by Dwyer et al. [12], with scope constrained to a trace
(i.e., global scope). The translation is not one-to-one: a → b is
Dwyer’s Existence pattern when a is START (see Definition 2 below),
and is otherwise Dwyer’s Response pattern. Another example is
∀b,a ← b, which is Dwyer’s Universality pattern. In our experience,
these invariants were sufficient for capturing key temporal properties
of the systems that produced the logs we considered.

Users can write Java code to define custom Synoptic invariants.
However, all of the users in our case studies (Section 4) successfully
used Synoptic without even knowing about its use of invariants.

In the next section, we define log and model formalism and prove
important positive results about the BisimH algorithm.

3. Formal evaluation
This section proves the correctness of our algorithm, and explains

why it is efficient and is able to infer concise models in practice.
Sections 3.1 and 3.2 define the formalisms. Section 3.3 proves that
BisimH always halts and that the final model satisfies exactly the
invariants mined from the input log. Section 3.4 proves an important
result for improving model search efficiency, and Section 3.5 deals
with model size.

3.1 Definitions
Two special event types — START and END — are added inter-

nally by Synoptic to keep track of initial and terminal events in the
traces.1

Definition 1 (Event Types). A set of event types is a finite set
(alphabet) E ⊇ {START , END}.

Definition 2 (Trace). Let E be a set of event types. Then for all
n ∈ N≥2, a finite trace is an ordered sequence of event types l ∈ En

such that the first element of l is START and the last element is END.
The length of l is n−2.

Definition 3 (Log). A log L is a set of traces.

The set of event instances in a log is the collection of elements in
the traces in that log. Each trace element is a unique event instance,
indexed by its trace and position within that trace.

Definition 4 (Event Instances). Let E be a set of event types. Let L
be a log over E. Then an event instance is a triplet 〈e, l, i〉 such that
e ∈ E occurs in the log trace l ∈ L at position i ∈ N. Ê denotes the
set of all such event instances for L.

An event instance relation is a set of pairs of elements of Ê. For
example, one representation (using “0” to represent the event in-
stance 〈0, l,1〉, etc.) of the event instance relation “next” on the
log trace l = 〈0,1,2,3,4〉 is {〈0,1〉,〈1,2〉, 〈2,3〉, 〈3,4〉}. This pa-
per’s examples only use this “next” relation, although all the results
generalize to arbitrary relations.

Definition 5 (Event Instance Relation). Let Ê be a set of event
instances. Then r ⊆ Ê2 is an event instance relation.

A partitioning of a finite set of event instances Ê is a finite set of
disjoint, exhaustive subsets of Ê. Each subset is called a partition
and contains event instances of the same event type.

Definition 6 (Partitioning). Let Ê be a set of event instances. Then
P⊂ P (Ê) is a partitioning of Ê if ∀ distinct p,q ∈ P, p∩q = /0, and
Ê =

⋃
p∈P p, and ∀p ∈ P, all ê ∈ p are of the same event type. Each

p ∈ P is called a partition. We enforce the condition that for a valid
partitioning, all instances of the START event type are in a single
partition and all instances of the END event type are in a single parti-
tion. That is, for all ê1 ∈ p1, ê2 ∈ p2: ê1, ê2 instances of START⇒
p1 = p2 and ê1, ê2 instances of END⇒ p1 = p2.

A relational model is a partition graph. The largest (most nodes)
relational model for a log L is the trace graph: the set of disconnected
subgraphs, one for each trace l ∈ L, with a vertex for each event
instance and edges only between consecutive event instances in l.
Other relational models can be generated by merging vertices that
represent event instances of the same event type (and removing
redundant edges).

Definition 7 (Relational Model). Let Ê be the set of event instances
in a log. Let Rr be a family of relations over Ê indexed by r. Then
the relational model is a directed graph M = 〈MV ,MA〉, such that
MV is a partitioning of Ê and a = 〈p1, p2,r〉 ∈MA ⊆MV ×MV ×Rr
iff p1, p2 ∈ MV and ∃ê1, ê2 ∈ Ê such that ê1 ∈ p1, ê2 ∈ p2, and
〈ê1, ê2〉 ∈ Rr.

Definition 8 (Complete Path). A path in a model is complete if it
starts at the START partition and ends at the END partition.

A relational model M accepts a trace if the event instances of the
trace form a complete path in M.

1When viewing a model, the user can optionally hide these nodes, and instead
have Synoptic specially mark the partitions containing any initial and terminal events
as rectangles and rhombuses, respectively. The models pictured in this paper were all
generated in this way.

Definition 9 (Trace Acceptance). Let n ∈ N and let l = 〈START ,
ê1, . . ., ên, END〉 be a trace of length n. Then a relational model M
accepts l iff ∃Π = 〈pSTART , p1, . . ., pn, pEND〉 such that ∀1≤ i≤ n,
êi ∈ pi and Π is a complete path in M.

Note that by construction a relational model M for a log L accepts
all traces in L. To see this, consider a trace l = 〈START , ê1, . . ., ên,
END〉 ∈ L. The “next” relation, corresponding to Rnext , holds for all
pairs of adjacent event instances, that is ∀1≤ i < n,〈êi, êi+1〉 ∈ Rnext
as well as 〈START, ê1〉 ∈ Rnext and 〈ên,END〉 ∈ Rnext . This means
that l maps to a complete path in M and therefore M accepts l.

3.2 Invariants
We consider three invariants that relate pairs of event types:

Definition 10 (Event Invariant). Let a and b be two event types.
Then an event invariant is a property that relates a and b in one of
the following three ways:

a → b : In a model, if some partition on a complete path contains
an event instance of type a, then at least one later partition
along that path contains an event instance of type b.

a 6→ b : In a model, if some partition on a complete path contains
an event instance of type a, no later partition along that path
contains an event instance of type b.

a ← b : In a model, if some partition on a complete path contains
an event instance of type b, at least one earlier partition along
that path contains an event instance of type a.

Definition 11 (Invariant Satisfiability). Let M be a relational model,
and let i be an event invariant. M satisfies i iff ∀ Π, a complete path
in M, i is true of Π.

Each of the three event invariants may relate any pair of event
types. Thus, for a set of event types E there can be at most 3|E|2
invariants.

Synoptic mines the above invariants by collecting three kinds
of counts across all the traces. Each trace is traversed once in the
forward and once in the reverse direction to count:

• ∀a,Occurrences[a] : the number of event instances of type a,
• ∀a,b Follows[a][b] : the number of event instances of type a

that are followed by at least one event instance of type b, and
• ∀a,b Precedes[a][b] : the number of event instances of type b

that are preceded by at least one event instance of type a.

The invariants are then determined by using the following equiva-
lences:

a→ b ⇔ Follows[a][b] = Occurrences[a]
a 6→ b ⇔ Follows[a][b] = 0
a← b ⇔ Precedes[a][b] = Occurrences[b]

3.3 BisimH termination
This section proves that BisimH terminates (Theorem 1) and that

the final model satisfies all the event invariants in the log (Theorem 2)
and no others (Theorem 3).

Theorem 1 (BisimH Terminates). BisimH makes a finite number of
iterations (no more than the number of event instances).

Proof of Theorem 1. After every BisimH iteration, the model has
more partitions than the model before the iteration, as some partition
is split into two new partitions. The maximal model has a finite
number of partitions (each event instance is in its own partition,
except the START and END instances) and satisfies all the mined
invariants. Therefore, BisimH can make no more iterations than
there are event instances.

Theorem 2 (True Invariant Satisfiability). BisimH produces a final
model that satisfies all the event invariants that are true for a log.

Proof of Theorem 2. The termination condition for BisimH is that
the final model satisfies all the invariants mined from the log. The
maximal model trivially satisfies all those invariants. Therefore,
BisimH either terminates with that model or a smaller model that
also satisfies the invariants.

Theorem 3 (False Invariant Unsatisfiability). Let L be a log with
event instances Ê and event types E. Let M = 〈MV ,MA〉 be a rela-
tional model over Ê with a family of relations Rr. Let i be an event
invariant that is not true of L. Then M does not satisfy i.

Proof of Theorem 3. Since i is not true for L, there must be a trace
l ∈ L for which i is not true. Since there exists a path in M corre-
sponding to l, that path must start with START and end with END
and must not satisfy i. Therefore, M does not satisfy i.

3.4 Improving model search efficiency
The previous section proved that regardless of which partitions

BisimH splits, the algorithm always finds a model that satisfies
exactly the log invariants. This is an important theoretical result, but
a splitting strategy must be efficient in practice since refinement is
expensive — a log with dozens of event types will generally satisfy
hundreds of invariants of the types we are considering. Checking
these invariants is costly, especially when the model grows to a large
size. In this section, we prove that once BisimH satisfies an invariant,
it never again violates it (Theorem 4). Therefore, invariants that
have been satisfied do not need to be re-checked in finer models.
This reduces the number of model checking runs BisimH needs to
perform, making it more efficient.

Theorem 4 (Invariant Preservation). Let L be a log with event in-
stances Ê and event types E. Let M = 〈MV ,MA〉 be a relational
model over Ê with a family of relations Rr. Construct a new rela-
tional model M′ = 〈M′V ,M′A〉 as follows:

1. Select one partition p ∈MV , |p| ≥ 2.
2. Split p into two nonempty partitions p′ and p′′.
3. Let M′V = (MV \{p})∪{p′, p′′}.
4. Compute M′A using the family of relations Rr.

For all event invariants i:
[(M satisfies i) ∧ (i is true for L)] ⇒ M′ satisfies i.

It is an immediate corollary that M′ satisfies all invariants that M
does and that are true in the log.

Proof sketch: The proof considers the differences between M and
M′, and relies on the fact that these differences are confined to the
region around the refined partition p. Consider some path Π′ in M′

that might violate invariant i. That path is made up of edges, each of
which comes from some trace, which means for each edge, there is
a corresponding edge in M. Therefore, there is a corresponding path
Π in M that goes through partitions of the same event types. Since
the event types along both paths are identical, then either both or
none of the paths satisfy i. But since M satisfies i, so must M′.

Proof of Theorem 4. Without loss of generality, let 〈a,b〉 be the
pair of event types that i relates. We will now show that all paths in
M′ must satisfy i.

Consider a complete path Π′ in M′. For any two partitions con-
nected by an edge in Π′ there must exist at least one pair of event
instances, one in each partition, that is related by some relation in

some trace. For each edge in Π′ choose such a pair of event instances
to construct a sequence of event instances s.

Now consider the unique path Π in M that corresponds to s. Every
partition in Π contains event instances of the same type as the
corresponding partition in Π′ (in fact, Π’s partition is a superset
of Π′’s).

Assume Π′ violates i. Consider three cases:
Case 1: i is a → b. There must be some partition in Π′ with
an event instance of type a such that no subsequent partition in
Π′ contains an event instance of type b. Therefore, no subsequent
partition in Π contains an event instance of type b. But M satisfies i.
Contradiction.
Case 2: i is a 6→ b. There must be some partition in Π′ with
an event instance of type b that follows a partition with an event
instance of type a. Then Π must also violate i. Contradiction.
Case 3: i is a ← b. There must be some partition in Π′ with an
event instance of type b such that no earlier partition in Π′ contains
an event instance of type a. Then no earlier partition in Π contains
an event instance of type a. But M satisfies i. Contradiction.

3.5 Maintaining a small model size
Synoptic’s aim is to present to a developer the smallest model

(fewest nodes) satisfying the mined invariants. Large models are
often too complex and no better than the raw log. In this section,
we explain how the CEGAR [7] approach leads BisimH towards
concise models. We argue that refinement always makes provable
progress towards satisfying an invariant. Therefore BisimH rarely
performs splits that make the model larger than it needs to be.

As a reminder, the CEGAR approach (detailed in Section 2.4.1)
works as follows. First, BisimH generates a counterexample trace
(e.g., Figure 5) that is accepted by the model and violates a mined
invariant (valid-coupon 6→ invalid-coupon). BisimH then traces
along the counterexample trace in the model and in the input traces
to find the longest prefix of partitions that exists as a sequence of
corresponding event type instances in at least one input trace. The
last partition in this prefix is refined (Figure 6). Two cases are
possible:
Case 1: The refined model does not accept the counterexample trace.
Consider the set of trace equivalence classes: two traces are in the
same class if the paths of the two traces in the model are equivalent
after removing all iterations through loops in the model. A split that
eliminates one loop-free trace from an equivalence class, eliminates
all traces in that class. Thus, eliminating a counterexample always
eliminates an entire class of counterexamples that violate the invari-
ant. Since there are a finite number of loop-free paths in a model,
eliminating a class makes progress toward satisfying the invariant.
Case 2: The refined model accepts the counterexample trace. Con-
sider the prefix corresponding to the counterexample trace in the
refined model. This prefix is shorter than the previous prefix by at
least one partition (the partition that was refined). Because any prefix
must be finite, the refinement makes progress toward eliminating the
counterexample trace from the model (towards Case 1).

Because BisimH considers one counterexample at a time, a re-
finement may split a partition suboptimally. That is, a split partition
may need to be split again to help eliminate another counterexample,
even though a single split might suffice to help eliminate both coun-
terexamples. To counteract such suboptimal splits, BisimH uses
coarsening (Section 2.4.2).

4. Experience with Synoptic
We performed two case studies to evaluate Synoptic’s ability to

produce concise and useful representations in practice. First, we

carried out a user study with a developer working on the reverse
traceroute system that determines the likely reverse route from an ar-
bitrary destination on the Internet to a source host [23] (Section 4.1).
Synoptic analyzed the coordinator node logs that contained debug-
ging event instances generated by the system.

Second, we introduced Synoptic as a tool for use in an under-
graduate distributed systems class of 45 students (Section 4.2). The
students were tasked with designing and implementing a cache co-
herence protocol and had to (1) draw a finite state machine of their
design, (2) run Synoptic on their implementation, and (3) explain
any observed differences.

The students used Synoptic during development and testing, while
the reverse traceroute developer used Synoptic on logs generated in
production. We therefore believe that Synoptic can be helpful during
all stages of a typical software engineering process. Overall, we
found that Synoptic was useful for finding new bugs (Section 4.3),
for increasing developer confidence (Section 4.4), and for building
understanding (Section 4.5).

4.1 Reverse traceroute study
Reverse traceroute [23] is a distributed system that determines

the likely reverse traceroute from an arbitrary destination on the
Internet to a source host. Reverse traceroute relies on a distributed
set of Internet vantage points hosted by PlanetLab [36], and uses a
variety of methods to find each segment of the reverse route, such
as IP record route and timestamp options [19, 20], and relies on IP
spoofing from PlanetLab hosts.

Reverse traceroute has been in live deployment for over 7 months
and since that time it has had hundreds of distinct users and has
handled a total of 3.6 million requests. Today, it gets tens of thou-
sands of requests per day. Recently, a large, popular, and ubiquitous
Internet company has deployed the system internally.

We carried out a user study with a developer working on the
system to study a log of 900,000 event instances. To generate this
log, the developer spent a total of 15 minutes to add a total of 16
lines of logging code to the system. We then wrote four regular
expressions to process the log. The log was divided into traces by
measurement-based method names — a single trace corresponded
to a sequence of method calls made to determine the reverse route
for a particular 〈source, destination〉 pair.

Synoptic took 11.5 minutes to generate the final graph from the
input log on an Intel i7 (2.8 GHz) OS X machine with 8GB of
RAM. Because this graph contained many rare edges (i.e., edges
with low transition probabilities), we showed the developer both
the full graph, as well as a graph that omitted 62 edges with low
transition probability. The second type of graph is shown in Figure 7.
We then performed a talk-aloud user study with the developer by
showing him Synoptic-derived graphs, explaining to him what they
represent, and asking him to talk through his observations.

4.2 Distributed systems course assignment
In the University of Washington undergraduate distributed sys-

tems course2, groups of 2–4 students designed and implemented a
peer-to-peer Facebook-like social network. The project was divided
into multiple assignments, one of which was to implement the dis-
tributed version of a cache coherence protocol [26] between a single
master node and some number of replica clients. For this assignment,
the students were to (1) record their design as a FSM diagram, (2)
implement their design, (3) apply Synoptic to logs generated by
their implementation, and (4) observe and explain any differences
between the Synoptic output and their initial FSM diagram.

For testing, the students used a simulated environment in which
2http://www.cs.washington.edu/education/courses/cse490h/11wi

all nodes executed in a single process, and communicated via a
centralized simulator manager. The simulator provides the option of
reordering, losing, and duplicating messages, as well as randomly
failing and restarting nodes.

The simulator logged common event types like message sent, re-
ceived, and lost and file read and written, and also allowed student
node code to log user-defined event types. Although the simu-
lated system was distributed, the simulator produced totally ordered
logs — event instances were serialized through the central simulator
manager. The students were also given a set of Synoptic regular
expressions for processing logs generated by the simulator.

All 18 groups completed the assignment. Due to space constraints,
Sections 4.3–4.5 showcase just a few of the Synoptic diagrams
generated by the students, and quotes just a few of their reports on
their experiences with Synoptic.

4.3 Finding bugs in code
Synoptic models capture event type orderings and co-occurrence

frequencies among event types. The absence of an edge could
indicate that the log is incomplete. However, if the behavior is
supposed to occur at all times or with high frequency, an unexpected
graph topology can be an indicator of a latent bug.

Reverse traceroute study.
The reverse traceroute developer identified one new and im-

portant bug using the Synoptic model within the first two min-
utes of seeing the model. All measurements made by the system
must eventually terminate in either the do_reach_callback or the
do_fail_callback methods. The developer thought that all traces
reaching these methods terminated. The graph showed otherwise —
some of the traces continued past these callbacks. The model in Fig-
ure 7 illustrates these buggy transitions with bold, dashed emphasis.
The developer hypothesized that this bug is caused by concurrency
in the measurement code. The developer also observed that the
tool offers a light-weight means of verifying that some previously
observed buggy behavior is not present after a bug fix, and that it
may help to rule out bug fixes that fail to eliminate buggy behavior.

Distributed systems course.
Of the 18 groups, 3 groups found bugs in their implementations

with Synoptic. Synoptic models effectively capture event type or-
derings and all three of the bugs had to do with illegal message
orderings. One group observed that a transition that was expected
never occurred — the node seemed to never execute the write com-
mand after processing it. They then fixed the bug and used Synoptic
to confirm that it did not appear in the traces:

“We did find a bug in the graph. If you follow the append path in the
final graph you can see that it goes from append→send→write.
In the old graph the append→send, but dies instead of passing it
onto write.”

A different group found a bug in which they mistakenly sent the
wrong type of packet:

“We had few places where we sent the wrong type of packet in
the code. For example, we sent RDC when we had to send WDC.
When looking at the Synoptic diagram, these kinds of mistakes
were easy to find.”

4.4 Increasing developer confidence
Synoptic models can succinctly represent thousands of execution

traces with a few nodes in a graph. A single compact diagram
that consolidates many executions gives developers confidence that
they will not overlook any behaviors present in the log. Moreover,

http://www.cs.washington.edu/education/courses/cse490h/11wi

do_measurements

do_fail_callback

get_next_hop

reverse_hops_assume_
symmetric

do_measurements

reverse_hops_assume_
symmetric_peek

reverse_hops_
tr_to_src

do_measurements

get_next_hop

check_cache

reverse_hops_assume_
symmetric_peek

reverse_hops_
tr_to_src

do_reach_callback

do_fail_callback

get_next_hop

do_reach_callback

reverse_hops_ts

reverse_hops_rr

reverse_hops_assume_ symmetric

0.820.14

1.00

0.24

1.00

1.00

0.92

0.33

0.440.14

0.95

1.00

1.00

0.20

0.78

0.67

0.15

0.71

0.11

0.13

0.85

0.50

0.12

0.43

0.81
0.01

0.01

0.04

0.02

0.02

0.48

0.01

Figure 7: Synoptic model for a reverse traceroute input log of 900,000 event instances. Rectangular nodes are start nodes, and diamond nodes
are terminal nodes. Edge labels indicate transition probability. For clarity certain edges and nodes are omitted. The (manually) bold, dashed
lines indicate a new bug that was discovered by the developer. The (manually) shaded terminal nodes make up the set of methods exhibiting a
bug known to the developer. Before viewing the Synoptic graph, the developer thought the bug affected only two of these eight nodes.

developers often recognized expected patterns and considered them
to be important evidence that the system worked as expected.

Reverse traceroute study.
The reverse traceroute developer was often prompted by the model

to try to explain various patterns. Patterns that were simpler and more
noticeable, like self-loops on nodes, elicited more attention. For
example, upon noticing a self-loop on one of the nodes the developer
mentioned that this indicated that a specific type of measurement
was re-tried and that this was correct behavior.

Distributed systems course.
Of the 18 groups in the class, 11 reported that Synoptic increased

their confidence in their implementations. In many cases the stu-
dents recognized expected patterns. Figure 8 illustrates two sets of
diagrams generated by a group that felt that they acquired additional
confidence in their system by using Synoptic. The figure shows
four models, with each pair corresponding to a Client and Server
processes in the system. The group decided to use a combination
of messages and states for their event types — e.g., create is a file
create request message sent by the client to the server, while e.g.,
readonly_state is the state of the client when it holds a shared
read lock on the file. To more easily follow the sequence of event
types the students generated two sets of models for two distinct
scenarios (see Figure 8). By inspecting these models, the group con-
firmed that the messages were exchanged in the appropriate order
and that the nodes transitioned between states correctly.

The following are some student quotes that indicate that Synoptic
increased developers’ confidence in their systems:

“[Synoptic] definitely let us know for sure that our code was func-
tioning correctly.”

“Using Synoptic did not help us find any bugs with our code, but it
did help us to clarify that our code is doing what it should.”

“We can confidently say that Synoptic helped confirm the correct
behavior of our program, and certainly made us feel better about
our code.”

4.5 Building system understanding
Using the Synoptic model, the reverse traceroute developer was

able to solidify his understanding about the system. For example,
he knew that the system had a bug in which a reverse traceroute
measurement terminates prematurely. Using the model, he was able
to verify that this bug occurred — methods terminating prematurely
appeared as terminal nodes in the model. However, as it turned
out, the developer did not understand the full extent of this bug. He
assumed that it affected only two methods. By inspecting the model,
he found out that other methods were impacted as well. The model
in Figure 7 illustrates the set of all the methods impacted by this
known bug with a darker shading. This experience solidified the
developer’s understanding of where the bug manifested and he felt
better prepared to resolve it.

Overall we found that Synoptic was useful for finding new bugs,
for increasing developer confidence, and for building systems under-
standing.

4.6 Threats to validity
Our two user studies are limited in scope and have a number of

inherent biases for which we were unable to control. The reverse
traceroute system has been developed by about five developers, all
of whom understand the entire system. Consequently, Synoptic
models are straightforward for them to interpret. Developers who
are new to a project or are working on a larger project may find it

invalid_state

read_write_state

delete

cached_write_state

invalid_state

1.00

1.00

0.38 1.00

1.00

create

invalid_state

read_write_state

cached_write_state

delete get

cached_read_state

readonly_state

1.00

0.50 0.50

1.00

0.15

1.00

1.00

0.85

0.13
0.50

wait_write_
confirm

wait

wait

wait_read_data

1.00

0.11

0.50

1.00

wait_write_
confirm

wait

wait_write_data

0.33

0.67

0.40

0.43

0.89

0.13

wait

get

invalid_state

read_only_state

cached_read_state

(a) Client 1

(b) Server 1

(d) Server 2(c) Client 2
Figure 8: Two pairs of Synoptic models generated by a group of students in the distributed systems class for a distributed cache coherence
assignment. Each pair of models has a server model and a client model. The Client1 and Server1 models correspond to a scenario in which
the client host starts, and then deletes the file if it exists. Alternatively the client creates the file, and then either deletes it or reads from it. The
Client2 and Server2 models correspond to the simpler scenario in which the client reads a file that is not currently accessed by any other client.

difficult to interpret Synoptic models, which may be larger and more
complex. However, we believe that Synoptic may also be used to
gain insight into components of larger systems, and because most
sizable systems are developed in a modular fashion, there may still
be value in using Synoptic in large projects. Lastly, our study with
the developer implicitly emphasized bug findings, which may have
primed the developer into thinking more about bugs. In a different
context, he might have been less successful in identifying bugs.

Because the students in the distributed systems course were re-
quired to use Synoptic as part of the assignment, it is unknown
whether they would have been motivated enough to learn about and
use the tool without a mandate. Students might have also been at-
tempting to please us and thereby reported only positive experiences
with the tool. Finally, students are not representative of experienced
developers and we do not know whether the bugs they found using
Synoptic are problems for expert developers.

5. Related work
Work related to Synoptic falls into three main categories; (1) tools

to mine logs generated by systems; (2) algorithms to create concise
models of system executions; and (3) the study of bisimulations,
which motivated our development of BisimH.

Mining systems logs
This paper extends our previous work [39] with a formal analysis
of the BisimH algorithm and a report on user experiences with the

Synoptic tool. An overview of the Synoptic tool from a user’s per-
spective is given in [4]. Other prior work on mining systems logs
focused on detecting dependencies [31], anomalies [22, 32, 46, 49],
and performance debugging [40, 41]. That work does not target the
problem of finding a concise model for an arbitrary system gener-
ating the log. For instance, SALSA [40] and Mochi [41] extract
and visualize node behavior of Hadoop [17] node logs to support
performance debugging. This line of work is MapReduce-specific.
Perracotta [48] mines and visualizes temporal properties of event
traces, and it has been used to study program evolution [47]. Unlike
Synoptic, Perracotta does not use the mined temporal properties to
infer a model of the system.

Inferring models
The problem of automata inference from positive examples of exe-
cutions is computable [6], but is NP-complete [16, 3], and the FSA
cannot be approximated by any polynomial-time algorithm [35].

The kTail algorithm [5], used extensively in related work, takes
a finite state model and produces a more compact one by recur-
sively merging states whose root subgraphs are identical up to a
depth of k. Approaches that leverage kTail to infer models with-
out developer supervision [1, 5, 27, 28, 30, 33, 37] can produce
precise models for small and simple systems, but when complexity
of the system increases, the precision of the inferred models de-
creases dramatically [27]. Lorenzoli et al. [30] developed GK-Tail,
a variant of kTail, and applied it to logged sequences of method

call invocations. Unlike BisimH, the GK-Tail algorithm does not
preserve trace invariants. Lo et al. [29] augment the kTail algorithm
by using temporal properties mined from execution traces to guide
state merging while ensuring that the final model satisfies temporal
constraints. Temporal-invariant-consistency greatly increases the
model’s precision. Synoptic produces similar high-precision models
while leveraging refinement, as opposed to coarsening, to greatly
increase the efficiency and scalability of the approach [39]. Krka
et al. [25] have proposed, though have not yet implemented, using
refinement and mined invariants to improve precision of inferred
models beyond that of Lo et al.’s approach.

Numerous techniques leverage developer-written specifications
to infer system models. Whittle and Schumann [44] generate com-
ponent statecharts from scenarios and properties. Damas et al. [8]
inductively infer labeled transition system (LTS) models from scenar-
ios interactively provided by the developer. A later extension of this
approach reduces the number of questions to the developer [9] by
incorporating FLTL properties [15]. However, these techniques can
synthesize overspecified models and require significant human input.
Uchitel et al. [43] proposed using message sequence charts [21] to
infer LTS models and discover implied scenarios. Harel et al. [18]
synthesize statecharts from live sequence charts [10]. LTSs can also
be constructed based on pre- and postcondition specifications [2, 11].
De Caso et al. [11] generate abstract models to support validation of
the specifications. Alarjeh et al.’s technique [2] facilitates refinement
of pre- and postconditions based on system goals and execution sce-
narios. Similarly, Krka et al.’s algorithm [24] synthesizes behavioral
models from pre- and postcondition specifications and execution
scenarios and can synthesize component-level models from system-
level specification. Uchitel et al. [42] argued that it is crucial to
consider the specifications’ partiality when using developer-written
specifications to infer models. In contrast to all these approaches,
Synoptic requires much less input from the developer — the logs
that are usually already generated by systems, and a small set of
regular expressions. However, systems that are not instrumented to
generate logs may require developers to change the implementation.
However, logging is considered to be generally useful and adding
such instrumentation leads to better software. Further, we hope that
Synoptic’s utility will motivate developers to increase their systems’
logging capabilities.

Bisimulation
A bisimulation is a simulation relation that provides a strong notion
of similarity for relational structures [38]. Its key feature is to
preserve certain properties of the relational structure, for example,
two strongly bisimilar transition systems are guaranteed to satisfy
the same set of LTL formulae. An important application in model
checking is model minimization [14]. Our BisimH algorithm is a
modification of a partition refinement algorithm [34], which uses
invariants to determine which state to split next and when to stop
splitting, resulting in a coarser representation that is not bisimilar
to the input structure. Our BisimH algorithm is also related to the
partition refinement algorithms in [13], but BisimH uses invariants
to guide exploration and termination.

6. Limitations and future work
While working on Synoptic, we observed a number of its limita-

tions. Here, we detail the most important of these and connect some
of them to our future work.

Applicability. Synoptic models capture ordering relationships
between events observed in a log. It does not handle algebraic and
logical relationships that may also be useful in modeling software
(e.g., this.next 6= this.prev). Synoptic is therefore best suited for

studying logs of systems whose execution can be modeled as a
sequence of elements, with the ordering, the presence, and absence
of elements encoding some useful semantics about the system. We
have observed that Synoptic can help with problems whose root
causes can be deciphered using such semantic information. More
advanced issues, however, would require richer and more complex
models than Synoptic currently provides.

Invariants. Synoptic relies on three temporal invariants to deter-
mine when to terminate and how to proceed during refinement. A
rigorous evaluation of the limitations and advantages of these invari-
ant types is necessary. For example, we know that the invariants
constrain Synoptic models in ways that are sometimes undesirable.
For instance, the 6→ invariant constrains Synoptic models to be less
generative: e.g., if a 6→ b is true, then the model is restricted from
generating a path between a and b, even though this behavior might
be valid and can appear in an execution that is not present in the
input log. However, we do not know what kinds of systems or uses
these invariants favor, and whether we should expand this set, or
make it smaller.

Synoptic invariants are temporal. They do not involve the data
values that are often present in logs. Extending Synoptic to mine
and then preserve value-based invariants is a part of our future work.

Reliance on logs. To work well, Synoptic needs the input log
to include as many different system executions as possible. This is
because Synoptic models are at most as detailed as the input logs. If
the user failed to log an important behavior, then this behavior will
usually not be present in the Synoptic-generated model. However,
generating all possible system behaviors is notoriously difficult, and
may be infeasible, as illustrated by the following student quote:

“However, we had to run specific simulation cases in order to
produce the log, so while Synoptic was very useful, most of the
debugging process involved trying commands in the simulator. We
knew what cases we were testing, so running them through the
terminal was an easier way to test for the bug. But Synoptic did
confirm that we have the right message flows.”

Handling concurrency. Synoptic cannot handle traces of con-
current systems as it assumes a totally ordered relation for ordering
event instances in a trace. Concurrent systems may be modeled by
Synoptic with explicit concurrency (e.g., by listing all possible event
instance permutations), but this results in highly connected models
that are difficult to interpret. Another alternative, which we are cur-
rently pursuing, is to extend Synoptic models and the semantics of
the three invariants types to accommodate partially ordered traces.

Fault localization/interactive tool support. The feasibility of
fault localization using Synoptic-generated models depends on the
density and quality of the logging statements. Reconstructing ex-
ecution paths based on logs is an active research area (e.g., Sher-
Log [49]), and we hope to leverage this existing work in developing
more automated fault localization techniques. However, fault lo-
calization fundamentally requires human insight. To this end, we
are working on a Synoptic GUI that will support developers in this
task. This GUI will allow developers to explore, query, and interact
with the Synoptic models in real-time. For example, developers will
be able to find out which of the logged traces pass through a set
of partitions in the model and which event instances belong to a
partition, as well as other information.

7. Conclusion
Logging is a popular debugging methodology. Unfortunately,

large logs are often complex and difficult to analyze manually. This
paper presented the design and evaluation of a tool called Synoptic,
which builds a system model from its execution logs. Unlike other

tools, Synoptic requires few inputs from the developer and can be
applied to pre-existing logs.

The key to Synoptic’s algorithm is its use of three types of mined
temporal invariants to guide the model space exploration. Our formal
evaluation showed that Synoptic’s algorithm always makes progress
and always finds a model that satisfies the mined invariants. Our case
studies showed that Synoptic graphs improved developer confidence
in the correctness of their systems, and were useful for finding bugs.

We believe that Synoptic bridges the gap between systems devel-
oped by developers with little to no training in formal methods, and
a suite of methods developed by the formal methods community.
Synoptic is an open-source tool (http://synoptic.googlecode.com)
and has met the expectations of FSE artifact evaluation committee.

Acknowledgments
This work is supported by the National Science Foundation under
grant CNS-0963754 and under grant #0937060 to the Computing
Research Association for the CIFellows Project. This work is also
supported by the Saarbrücken Graduate School of Computer Science,
which receives funding from the DFG as part of the Excellence
Initiative of the German Federal and State Governments.

References
[1] M. Acharya, T. Xie, J. Pei, and J. Xu. Mining API Patterns as Partial

Orders from Source Code: From Usage Scenarios to Specifications. In
Proc. of FSE, 2007.

[2] D. Alrajeh, J. Kramer, A. Russo, and S. Uchitel. Learning Operational
Requirements from Goal Models. In Proc. of ICSE, 2009.

[3] D. Angluin. Finding Patterns Common to a Set of Strings. Journal of
Computer and System Sciences, 21(1):46 – 62, 1980.

[4] I. Beschastnikh, J. Abrahamson, Y. Brun, and M. D. Ernst. Synoptic:
Studying Logged Behavior with Inferred Models. In Proc. of FSE, 2011.

[5] A. W. Biermann and J. A. Feldman. On the Synthesis of Finite-State Ma-
chines from Samples of Their Behavior. IEEE Trans. Comput., 21(6):592–
597, 1972.

[6] L. Blum and M. Blum. Toward a Mathematical Theory of Inductive
Inference. Information and Control, 28(2):125 – 155, 1975.

[7] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided Abstraction Refinement. In Computer Aided Verification, pages
154–169. Springer, 2000.

[8] C. Damas et al. Generating Annotated Behavior Models from End-User
Scenarios. IEEE TSE, 31(12), 2005.

[9] C. Damas, B. Lambeau, and A. van Lamsweerde. Scenarios, Goals, and
State Machines: a Win-Win Partnership for Model Synthesis. In Proc.
of FSE, 2006.

[10] W. Damm and D. Harel. LSCs: Breathing Life into Message Sequence
Charts. Form. Meth. Syst. Des., 19(1), 2001.

[11] G. de Caso, V. Braberman, D. Garbervetsky, and S. Uchitel. Validation
of Contracts Using Enabledness Preserving Finite State Abstractions. In
Proc. of ICSE, 2009.

[12] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in Property
Specifications for Finite-State Verification. In Proc. of ICSE, 1999.

[13] T. Elomaa. Partition-Refining Algorithms for Learning Finite State Au-
tomata. In Proc. of ISMIS, 2002.

[14] K. Fisler and M. Y. Vardi. Bisimulation Minimization and Symbolic
Model Checking. Formal Methods in System Design, 21(1):39–78, 2002.

[15] D. Giannakopoulou and J. Magee. Fluent Model Checking for Event-
Based Systems. In Proc. of FSE, 2003.

[16] E. M. Gold. Language Identification in the Limit. Information and Con-
trol, 10(5):447–474, 1967.

[17] Welcome to Apache Hadoop!, http://hadoop.apache.org/. Ac-
cessed March 9, 2011.

[18] D. Harel, H. Kugler, and A. Pnueli. Synthesis Revisited: Generating
Statechart Models from Scenario-Based Requirements. Form. Meth. in
Soft. and Sys. Modeling, 3393, 2005.

[19] IPv4 Specification, Record Route option. http://www.ietf.org/rfc/
rfc791.txt. Pg. 20, 21. Accessed March 9, 2011.

[20] IPv4 Specification, Timestamp option. http://www.ietf.org/rfc/
rfc791.txt. Pg. 22, 23. Accessed March 9, 2011.

[21] ITU. Message Sequence Charts, 2000.
[22] G. Jiang, H. Chen, C. Ungureanu, and K. Yoshihira. Multi-resolution

Abnormal Trace Detection Using Varied-length N-grams and Automata.
In Proc. of ICAC, 2005.

[23] E. Katz-Bassett, H. V. Madhyastha, V. K. Adhikari, C. Scott, J. Sherry,
P. van Wesep, T. Anderson, and A. Krishnamurthy. Reverse Traceroute.
In Proc. of NSDI, 2010.

[24] I. Krka, Y. Brun, G. Edwards, and N. Medvidovic. Synthesizing Partial
Component-Level Behavior Models from System Specifications. In Proc.
of FSE, 2009.

[25] I. Krka, Y. Brun, D. Popescu, J. Garcia, and N. Medvidovic. Using Dy-
namic Execution Traces and Program Invariants to Enhance Behavioral
Model Inference. In Proc. of ICSE, 2010.

[26] K. Li and P. Hudak. Memory Coherence in Shared Virtual Memory
Systems. ACM Trans. Comput. Syst., 7:321–359, November 1989.

[27] D. Lo and S.-C. Khoo. QUARK: Empirical Assessment of Automaton-
based Specification Miners. In Proc. of WCRE, 2006.

[28] D. Lo and S.-C. Khoo. SMArTIC: Towards Building an Accurate, Robust
and Scalable Specification Miner. In Proc. of FSE, 2006.

[29] D. Lo, L. e. Mariani, and M. Pezzè. Automatic Steering of Behavioral
Model Inference. In Proc. of FSE, 2009.

[30] D. Lorenzoli, L. Mariani, and M. Pezzè. Automatic Generation of Soft-
ware Behavioral Models. In Proc. of ICSE, 2008.

[31] J.-G. Lou, Q. Fu, Y. Wang, and J. Li. Mining Dependency in Distributed
Systems through Unstructured Logs Analysis. SIGOPS Oper. Syst. Rev.,
44:91–96, March 2010.

[32] J. G. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li. Mining Invariants from
Console Logs for System Problem Detection. In Proc. of ATC, 2010.

[33] L. Mariani and M. Pezzè. Dynamic Detection of COTS Component
Incompatibility. IEEE Software, 24(5):76–85, September/October 2007.

[34] R. Paige and R. E. Tarjan. Three Partition Refinement Algorithms. SIAM
J. Comput., 16(6):973–989, 1987.

[35] L. Pitt and M. K. Warmuth. The Minimum Consistent DFA Problem
Cannot be Approximated Within any Polynomial. J. ACM, 40(1):95–142,
1993.

[36] PlanetLab | An open platform for developing, deploying, and accessing
planetary-scale services, https://www.planet-lab.org. Accessed
March 9, 2011.

[37] S. P. Reiss and M. Renieris. Encoding Program Executions. In Proc. of
ICSE, 2001.

[38] D. Sangiorgi. On the Origins of Bisimulation and Coinduction. ACM
Trans. Program. Lang. Syst., 31(4):1–41, 2009.

[39] S. Schneider, I. Beschastnikh, S. Chernyak, M. D. Ernst, and Y. Brun.
Synoptic: Summarizing System Logs with Refinement. In Proc. of
SLAML, 2010.

[40] J. Tan, X. Pan, S. Kavulya, R. G, and P. Narasimhan. SALSA: Analyzing
Logs as StAte Machines. In Proc. of WASL, 2008.

[41] J. Tan, X. Pan, S. Kavulya, R. G, and P. Narasimhan. Mochi: Visual
Log-Analysis Based Tools for Debugging Hadoop. In Proc. of WASL,
2009.

[42] S. Uchitel, J. Kramer, and J. Magee. Behaviour Model Elaboration Using
Partial Labelled Transition Systems. In Proc. of FSE, 2003.

[43] S. Uchitel, J. Kramer, and J. Magee. Incremental Elaboration of Scenario-
Based Specifications and Behavior Models Using Implied Scenarios.
ACM TOSEM, 13(1), 2004.

[44] J. Whittle and J. Schumann. Generating Statechart Designs From Sce-
narios. In Proc. of ICSE, 2000.

[45] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan. Experience
Mining Google’s Production Console Logs. In Proc. of SLAML, 2010.

[46] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan. Detecting
Large-Scale System Problems by Mining Console Logs. In Proc. of
SOSP, 2009.

[47] J. Yang and D. Evans. Automatically Inferring Temporal Properties for
Program Evolution. In Proc. of ISSRE, 2004.

[48] J. Yang and D. Evans. Dynamically Inferring Temporal Properties. In
Proc. of PASTE, 2004.

[49] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasupathy. Sherlog:
Error Diagnosis by Connecting Clues from Run-Time Logs. In Proc. of
ASPLOS, 2010.

http://synoptic.googlecode.com
http://hadoop.apache.org/
http://www.ietf.org/rfc/rfc791.txt
http://www.ietf.org/rfc/rfc791.txt
http://www.ietf.org/rfc/rfc791.txt
http://www.ietf.org/rfc/rfc791.txt
https://www.planet-lab.org

	1 Introduction
	2 BisimH: Generating models from logs
	2.1 Log parsing
	2.2 Mining invariants from the trace graph
	2.3 Synoptic models and the initial model
	2.4 Refinement and coarsening
	2.4.1 Refinement
	2.4.2 Coarsening

	2.5 The impact of mined invariants on BisimH

	3 Formal evaluation
	3.1 Definitions
	3.2 Invariants
	3.3 BisimH termination
	3.4 Improving model search efficiency
	3.5 Maintaining a small model size

	4 Experience with Synoptic
	4.1 Reverse traceroute study
	4.2 Distributed systems course assignment
	4.3 Finding bugs in code
	4.4 Increasing developer confidence
	4.5 Building system understanding
	4.6 Threats to validity

	5 Related work
	6 Limitations and future work
	7 Conclusion

