
385

ł@alex, this fixes #9ž: Analysis of Referencing Patterns in
Pull Request Discussions

ASHISH CHOPRA, University of British Columbia, Canada

MORGAN MO, University of British Columbia, Canada

SAMUEL DODSON, University at Buffalo, USA

IVAN BESCHASTNIKH, University of British Columbia, Canada

SIDNEY S. FELS, University of British Columbia, Canada

DONGWOOK YOON, University of British Columbia, Canada

Pull Requests (PRs) are a frequently used method for proposing changes to source code repositories. When

discussing proposed changes in a PR discussion, stakeholders often reference a wide variety of information

objects for establishing shared awareness and common ground. Previous work has not considered how the

referential behavior impacts collaborative software development via PRs. This knowledge gap is the major

barrier in evaluating the current support for referencing in PRs and improving them. We conducted an

explorative analysis of ~7K references, collected from 450 public PRs on GitHub, and constructed taxonomies

of referent types and expressions. Using our annotated dataset, we identified several patterns in the use of

references. Referencing source code elements was prevalent but the authoring interface lacks support for

it. Three classes of contextual factors influence referencing behaviors: referent type, discussion thread, and

project attributes. Referencing patterns may indicate PR outcomes (e.g., merged PRs frequently reference

issues, users, and tests). We conclude with design implications to support more effective referencing in PR

discussion interfaces.

CCS Concepts: · Human-centered computing → Empirical studies in collaborative and social com-

puting; · Software and its engineering→ Collaboration in software development.

Additional Key Words and Phrases: Pull Request, Reference, Software Development, Code Review, Taxonomy,

Qualitative Content Analysis

ACM Reference Format:

Ashish Chopra, Morgan Mo, Samuel Dodson, Ivan Beschastnikh, Sidney S. Fels, and Dongwook Yoon. 2021.

ł@alex, this fixes #9ž: Analysis of Referencing Patterns in Pull Request Discussions. Proc. ACM Hum.-Comput.

Interact. 5, CSCW2, Article 385 (October 2021), 25 pages. https://doi.org/10.1145/3479529

1 INTRODUCTION

Making a pull request (PR) is the primary method for software development teams to propose and
review changes in code repositories [21]. GitHub reported that more than 87 million PRs were
created on its platform between 2018 and 2019 [1]. Discussion among stakeholders is often a crucial
aspect of reviewing a proposed change and deciding whether or not to merge a PR into a repository

Authors’ addresses: Ashish Chopra, ashish22@student.ubc.ca, University of British Columbia, Canada; Morgan Mo, yang.

mo@alumni.ubc.ca, University of British Columbia, Canada; Samuel Dodson, smdodson@buffalo.edu, University at Buffalo,

USA; Ivan Beschastnikh, bestchai@cs.ubc.ca, University of British Columbia, Canada; Sidney S. Fels, ssfels@ece.ubc.ca,

University of British Columbia, Canada; Dongwook Yoon, yoon@cs.ubc.ca, University of British Columbia, Canada.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2573-0142/2021/10-ART385 $15.00

https://doi.org/10.1145/3479529

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 385. Publication date: October 2021.

385:2 Ashish Chopra et al.

[21]. Previous studies of software engineering suggest that code reviews serve many purposes,
such as identifying issues with proposed changes, collaborative problem-solving, clarifying, and
encouraging knowledge sharing amongst team members [4, 14, 47]. In this paper, we studied ~7K
references made in public GitHub PRs, analyzing what types of information objects are mentioned
and how these references are expressed in PR discussions.

X-Request-ID

r.Use(middleware.RequestID)

// which behind the scenes does this:
reqID := r.Header.Get("X-Request-ID")
if reqID == "" {
 reqID = generateReqId()
}
setReqId(ctx, reqID)

reqID := middleware.GetReqId(ctx)

// log.With().String("requestId", reqID) // zerolog structu
// req.Header.Set("X-Request-ID", reqID) // HTTP calls to o

X-Request-ID

r.Use(middleware.RequestID)

// which behind the scenes does this:
reqID := r.Header.Get("X-Request-ID")
if reqID == "" {
 reqID = generateReqId()
}
setReqId(ctx, reqID)

reqID := middleware.GetReqId(ctx)

// log.With().String("requestId", reqID) // zerolog structu
// req.Header.Set("X-Request-ID", reqID) // HTTP calls to o

X-Request-ID

r.Use(middleware.RequestID)

// which behind the scenes does this:
reqID := r.Header.Get("X-Request-ID")
if reqID == "" {
 reqID = generateReqId()
}
setReqId(ctx, reqID)

reqID := middleware.GetReqId(ctx)

// log.With().String("requestId", reqID) // zerolog structu
// req.Header.Set("X-Request-ID", reqID) // HTTP calls to o

nyanp commented on Nov 6, 2016

Add tests for serializers to confirm #356

Update docs

Fix serialization for concat-layer

Referent: VC Platform (Issue)

Expression: Named (Unique)

Referent: Source Code (Code Containers)

Expression: Named (Unique)

Referent: Documentation (Project Doc.)

Expression: Named (Generic)

nyanp added 20 commits on Nov 6, 2016

edgarriba commented on Nov 12, 2016

@nyanp why is autodoc.py needed?

Referent: Actor (Stakeholder)

Expression: Named (Unique)

Conversation 5 Commits 27 Checks 0 Files changed 24

(a) (b)

Fig. 1. (a) An example reference breakdown. The PR reviewer (VojtechVitek) proposed a new function with
the name łgetReqID()ž, but another function with that same name already exists. The homonym confused the
PR author (harikb) and delayed the review process. The red box indicates the point of reference breakdown,
and the grey dashed line indicates content that was not shown in this figure for brevity. (b) An illustrated
example of coded references. We assigned two codes (shown in blue boxes) to each reference (highlighted in
yellow boxes). For each highlighted reference, the type and sub-category of the referent and expression is
mentioned as łType (Sub-category)ž from the taxonomy tables. See Table 1 and Table 2 for the full list of
referents and expressions.

Referencing information objects is a communication device that frequently serves essential
purposes in PRs. Linking external resources, such as documentation and forum threads, is important
in justifying proposed changes and improving documentation of the pull request [59]. Linking
issues helps identify complex bugs across projects and redundant issues [32]. @-mentioning is
a popular mechanism for inviting the attention of specific collaborators, delegating tasks, and
distributing information to them [21, 60]. Conversely, a breakdown of reference can delay or
impoverish the code review process. For example, in Figure 1 (a), a vague reference to a homonym
(i.e., łgetReqID()žs) without explicitly resolving the referent caused confusion and delay. Theories of
grounding in communication explain that referential behaviors are crucial for establishing shared
understanding [10, 11], and PR discussion is no exception.

PR is the primary mode for contributing code in collaborative software projects. Understanding
referencing practices in PRs, despite their importance, is a relevant but new topic for CSCW. On
the one hand, collaborative software development has been regarded as the quintessential context
of CSCW. Several foundational studies in the field grew out of the investigations of software teams
[24, 46], and such interests continue in more recent studies [7, 16, 48, 51, 56]. On the other hand,
CSCW and HCI researchers have investigated referencing in online communications in different
task contexts, including educational discussion boards [63], remote collaborative work [20], and
video-based comment threads [9, 57]. The confluence of these two trends suggests the need for
investigating software developers’ referential behaviors. By filling this gap in the literature, we

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 385. Publication date: October 2021.

ł@alex, this fixes #9ž: Analysis of Referencing Patterns in Pull Request Discussions 385:3

provide a clearer picture of PR reference behavior and pave the way for better tool support for PR
discussions.
Referencing can impact the quality of PR discussion, and ultimately the maintainability of the

project source code. To reach a decision on whether or not to merge a proposed change, a reference
is crucial for creating a shared understanding of the consequences of accepting or rejecting a PR. In
software engineering studies, there are many known factors that predict and impact PR outcomes
[21, 22, 50, 52, 58]. For example, Zhang et al. [60] found that references to stakeholders through
@-mentions impacts the amount of time a PR is processed. By identifying what and how people
make references in PR, we aim to (1) better understanding of stakeholders’ decision-making process,
and (2) identifying the design requirements for better facilitating these discussions.
Referencing features are currently available in most online software development platforms,

such as Bitbucket, GitHub, Gitlab, and SourceForge. The GitHub PR interface, for example, supports
referencing platform-specific entities, such as commits, issues, PRs, and users, in addition to basic
URL-embedding. However, it is not known how well existing PR interfaces support people’s
referencing behaviors or how to improve them. Beyond the context of software engineering,
researchers have envisaged novel tools for better supporting referencing [9, 20, 37, 57]. Similarly,
understanding referencing practices in PRs is the first step in designing better tools. In this paper,
we offer an empirical grounding of software developers’ needs with respect to referencing in PR
discussions. These insights can inform designs of referencing features that satisfy the needs of
discussants in PR platforms and online communities.
We explore the following research questions in this paper:

(1) What information objects do stakeholders refer to in PR discussions? How do they communi-
cate these references?

(2) How well do existing interfaces support the referential practices of users?
(3) What contextual factors influence referencing behavior in code reviews and how?
(4) What, if any, relationships exist between referencing and PR outcomes?

With these questions in mind, we conducted an analysis of a diverse sample of ~7K references
from 450 public GitHub PR discussion threads. We identified the references, including their type
and expression, through a qualitative content analysis, as illustrated in Figure 1 (b). We examined
these referential behaviors using exploratory data analysis and hierarchical clustering on principal
components. As a preview of our findings, we found that source code, such as variables and
functions, are the most frequently referenced type of information; however, these did not make
up the majority of all references. Surprisingly, we found that the GitHub referencing interface
has limited support for referencing source code. We also found that stakeholders have different
referential practices, such as nested pointing, when it comes to internal documentation, such as
READMEs as compared to external documentation. Finally, we found that some referent types,
such as bots and tests, appear more often in accepted PRs than open or closed ones.
The contributions of this study are four-fold:

(1) empirical findings from 450 PRs, identifying the most commonly used reference types; how
contextual factors, such as project attributes, discussion thread, and referent type, influence
referential behaviors,

(2) two reference oriented taxonomies: one for what information is referenced (referent type)
and another for how this is communicated (referential expressions),

(3) design implications for PR discussion interfaces that are enhancedwith type-based referencing
based on our analysis, and

(4) an annotated dataset of ~7K references, from 450 public PR discussions on GitHub.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 385. Publication date: October 2021.

385:4 Ashish Chopra et al.

2 PREVIOUS WORK

2.1 Common grounding through referencing

Grounding in communication is when people share knowledge and beliefs and is important for
effective and efficient collaboration [11]. People frequently use references when communicating.
A reference is a relationship between two objects, where one object connects or links to another
object. Common ground allows discussants to identify and understand what is being referenced
through their shared knowledge and beliefs [10]. For example, demonstrative references (this, these,
that, those) with more than one potential referent can be de-referenced when common ground has
been established [12]. Consequently, establishing referential identity, i.e., correctly identifying the
object of a reference and the ability to de-reference it, is a crucial aspect of communication [41].
Previous research has looked into referencing in different kinds of collaborative platforms

[8, 9, 30, 57]. Chua et al. [9] developed an asynchronous discussion interface that supports complex
non-verbal referencing to visual materials like documents and videos to support forum-style
discussions in Massive Open Online Course environments by contextualizing the references in a
thread. In a remote collaboration setting, AlphaRead [8] helps to make and resolve references to
physical objects. Yarmand et al. [57] studied what types of information are referenced in YouTube
comments, and how these referents are expressed. In addition, they showed how common referential
behavior can be facilitated with an alternative commenting interface which improved engagement.
Our findings add to the existing CSCW and HCI literature fresh insights to better understand

referencing behaviors specific to source code PR discussions and novel design implications for
enhancing referencing to information resources in PR discussions.

2.2 Source code review

Effective communication has a significant impact on the software development lifecycle. A quality
modern code review process is important for ensuring the long-term maintainability of the code
base [40]. Asynchronous code review is now supported by collaborative software development
tools and platforms, meaning code feedback is often provided through PR-style discussion threads.
Kononenko et al. [26] found that developers still expect asynchronous code reviews to be clear
and thorough. Efstathiou et al. [19] evaluated the effectiveness of code review comments based
on theories of rhetoric and discourse coherence by presenting sentence-level relationships within
a comment. Similarly, Viviani et al. [55] investigated the linguistic representation of comments
to study how design discussion is embedded in code reviews and found that software developers
often use forms like paragraphs to express it. While there is a growing body of research assessing
the linguistic aspects of code review comments [17, 26, 55], little attention has been paid to the
references used in the comments, which is a key for establishing a common ground [11].
We provide a detailed account of references developers make and how these references are

expressed in their comments. We also provide qualitative descriptions of developer’s referential
practices which can inform design implications for building tools to support them.

2.3 Factors that affect PR outcomes

Given a PR, the reviewer’s task is to decide whether or not to accept the proposed change. Discussion
is often an important part of this evaluation process. Previous research has analyzed PR discussions
to identify factors that impact PR merging [21, 22, 50, 52, 58]. Gousios et al. [21] found that PRs
that propose changes to parts of the repository that are being actively developed are more likely to
be accepted. In a follow-up study, Gousis et al. [22] conducted a large-scale survey of reviewers
and found that the presence of tests, overall code quality, and the degree to which the code fits into
a project’s technical design all influence whether a PR is accepted.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 385. Publication date: October 2021.

ł@alex, this fixes #9ž: Analysis of Referencing Patterns in Pull Request Discussions 385:5

In addition to these characteristics of the suggested source code, various social signals also play a
role in whether or not a PR is merged. Tsay et al. [52] found the strength of connection between a PR
contributor and the stakeholders conducting the code review is important. Soares et al. [50] found
that PR evaluators also take into account a PR contributor’s reputation, their degree of contribution
to the source code repository, and their experience (e.g., first PR vs long-time contributor). Together,
these studies suggest that social factors can build trust in the proposed contribution.
The previous work has primarily relied on easily quantifiable variables to measure how much

source code and social factors affect PR outcomes, such as the number of commits, the number of
files changed, and the number of PR discussion comments. Less attention has been paid to analyzing
the information entities that are referenced by participants in their PR discussions. Our research
fills this gap by analyzing the information resources stakeholders reference in their PR discussions
and how these references are correlated to the PR outcome.

2.4 Taxonomies as a tool

Analyzing comments in code review discussions is a growing area of research [6, 18, 33, 42, 47]. To
better organize the use of comments in the PR evaluation process, a number of classification schemes
have been created. For example, Pascarella et al. [47] provide a classification of the information
needs of developers who review source code. Their taxonomy contains seven top-level categories
and 18 sub-categories classifying needs like seeking rationale for developing correct understanding
of the code, suggesting changes, and requesting additional actions. Ebert et al. [18] put forward a
framework on the types of confusion that arises in code reviews by analysing software developers’
comments. Both of these studies have focused on the cohesion of the overall discussion, and did not
investigate developer’s referential behaviors. Previous work in Information Science has investigated
in studying people’s referential behaviors and developed taxonomies to understand the types and
forms of references [5, 27, 36, 57].

The research literature has had success creating taxonomies in order to describe the communica-
tive behaviors of a wide range of communities. These taxonomies, overall, help to explain what
rhetorical roles information objects play. However, no taxonomies exist describing references in
the code review process appropriate for our analysis. Thus, we developed two taxonomies derived
from the data for this purpose: one for the information resources (referent types) that developers
refer to in their discussion comments, second for the referential expressions (expression types) they
use to communicate these resources. These taxonomies provide the basis to explore the referential
practices in PR discussions as described in Section 3.

3 METHODS

To study the referential practices in PR discussions, we represented the types of references that
software developers use in PR discussions, and how those references are expressed, by creating
taxonomies of referent types (Table 1) and referential expressions (Table 2) using the research design
presented in Figure 2. These lay the foundation for analysing referential behaviors in Section 3.5.
To create these taxonomies, we conducted a qualitative content analysis (QCA) [28] on ~7K

references in ~2K comments from 450 public GitHub PRs. QCA is a bottom-up process that identifies
themes through analysis of the data [61], and is a useful method for generating inductive taxonomies
[23, 35, 36]. For data collection, we used GitHub because it is the largest platform for open source
software development. GitHub’s PR feature is similar to those provided by other platforms, such as
Bitbucket, Gitlab, and SourceForge. Similarity in PR features across these platforms increases the
generalizability of our taxonomies. We conducted the QCA in three steps:

(1) Sampled PR discussions: we sampled 450 PRs from GitHub, containing 1,739 comments.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 385. Publication date: October 2021.

385:6 Ashish Chopra et al.

TaxonomiesPR Discussions
Qualitative

Content Analysis
Reference

Dataset

3.1 Sampling PR Discussions
3.2 Identifying and Coding References +

3.3. Building Reference Taxonomies

Sampling

Cleaning

Subsampling

for diversity
Public GitHub

Repositories

∼11K Repos

∼7K Repos
1,739 Comments, 450 PRs, 75 Repos 6,558 Refs

26 Referent Types

9 Expression Types

3.4 Compiling PR References Dataset

Fig. 2. A flow diagram representing our research design for compiling an annotated dataset of ~7K references
from 450 public PRs from GitHub. The dataset is used to analyze referential patterns in PR discussions.

(2) Identified and coded references: we analyzed each PR thread to identify and code references.
(3) Built the reference taxonomies: we used affinity diagramming to categorize the references into

two taxonomies: 1) referent types and 2) expression types.

3.1 Sampling PR discussions

We collected a stratified sample of 450 public PR discussion threads from GitHub, by accounting for
five project-based attributes. We used four attributes provided by GitHub (programming language,
star count, number of contributors, and number of PRs) and identified the application domain of
each project ourselves. The data snapshot was taken on 18 November, 2019.

Our sampling involved five steps. First, we scraped ~11K most popular repositories from GitHub,
based on their star count. Second, we filtered out ~4K projects that were either 1) not software-
based, 2) were missing descriptions or keywords, or 3) had fewer than six PRs, leaving us with ~7K
repositories. Third, we identified the application domain of these ~7K projects using Latent Dirichlet
Allocation topic modelling. Fourth, we used Nagappan et al.’s [43] sample coverage measure to
create a representative sample of 75 distinct repositories from the population of ~7K repositories,
accounting for the five diversity criteria. Our sample of 75 repositories covered 40.8% of the total
variance. Fifth, we randomly selected two merged, two closed, and two open PRs from each of
the 75 repositories to diversify over the PR statuses, resulting in the dataset of 450 PRs (2 PRs × 3
Statuses × 75 Repos = 450 PRs).

3.2 Identifying and coding references

We identified and coded all the references within the 450 PRs, and classified the referent and
expression types. A reference is a word or phrase used in a PR discussion comment to signal an
information object. A reference is comprised of two components:

• Referent: A referent is an information resource that is mentioned by a PR discussant. For
example, a referent could be a variable, function, file, commit, documentation, URL, etc. It
could also be an abstract concept (for example, JSON format, async tests, etc). These can be
singular, plural, or a collective.

• Expression: A referential expression is how the information resource is encoded in discus-
sion, for example, ł@reisenbergerž, ł#236ž, and łReading label is not responsivež. Here a
name, id, or description is used to encode the referent.

Two of the authors performed QCA, and the process was discussed among all authors to resolve
conflicts. To identify references, we looked into the words or concrete phrases used to reference

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 385. Publication date: October 2021.

ł@alex, this fixes #9ž: Analysis of Referencing Patterns in Pull Request Discussions 385:7

an information object, and then coded the reference’s referent as well as the expression used to
encode the object. In total, we identified 6,558 references, which we analyzed in Section 4.
The coders worked together on 26% of the dataset for training. During the training phase, a

code book was co-authored by them in three iterations. We developed codes for both referent type
and referential expression until we reached saturation. We refined the codes in this phase though
discussions with all members of the research team. The final code book contains 196 codes for
referent types and 33 codes for expression types. An illustrated example of coded references is
shown in Figure 1 (b), where each reference is highlighted and is assigned two codes: one for referent
type and one for expression. It took a total of 560 hours per coder to code 450 PR discussion threads,
of which the training phase took 40% of the time. The code book is available in the supplementary
materials. We used NVivo for this analysis.
Once the code book was established, the coders independently coded 74% of the PRs (N = 334).

We tested inter-coder reliability on 482 references identified in these 334 PRs. The Cohen’s Kappa
scores [13] were 0.76 for the Referent Taxonomy and 0.72 for the Expression Taxonomy, indicating
a strong agreement between the coders [39]. The disagreement instances were categorized into 12
notable cases and resolved after an hour-long discussion between the two coders.

3.3 Building reference taxonomies

We iteratively built and refined our taxonomy to classify 196 referent codes identified during the
previous step into 6 top-level categories and 26 sub-categories that make up the referent taxonomy
(Table 1). The process of building taxonomies took ~400 hours in total over four iterations by
the lead author who discussed with all other authors for evaluation and refinement. To make the
classification generalizable, we organized these codes by the inheritance relationship. Codes which
exhibit an is-a relationship are grouped under the same category. For example, a variable, function,
class is-a source code; a user, organisation, bot is-an actor. The source code category in the
taxonomy consists of a variety of source code information objects, including variables, functions,
classes, libraries, and so on. The other categories in the taxonomy, such as actor, vc platform,
compilation and execution result, documentation, and dev tool and environment, are
comprised of non-source code entities. In the last iteration, we added several new codes generated
during the last batch of coding. Similarly, 33 expression codes were classified into four top-level
categories and nine sub-categories in our expression taxonomy (Table 2). The full directory of
referent and expression codes of these taxonomies is provided in the supplementary materials.

3.4 Compiling PR references dataset

We have compiled a dataset of ~7K coded references from 450 PR discussion threads in CSV format
and have made it publicly available at Zenodo [3]. Each row in the dataset represents a reference
identified from a PR and is described by 26 columns of information related to the repository, PR,
and the assigned referent and expression codes, categories and sub-categories. Also, each reference
contains the comment fromwhich it was extracted, marked with the location of the reference within
the comment. In total, it took 360 hours to develop, test, and execute the data extraction pipeline
for compiling the dataset from the coded PR threads. We used this dataset for our exploratory data
analysis of referential behaviors, which we present in Section 4. The R scripts for data analysis are
also available at Zenodo [3].

3.5 Analysing PR references

We used the dataset to identify referential behaviors in PR discussions, and how these behaviors are
impacted. Prior work has suggested various factors which impacts the PR evaluation process [21,

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 385. Publication date: October 2021.

385:8 Ashish Chopra et al.

Table 1. Taxonomy of referent types, with examples.

Category Sub-category Definition Example(s) from Dataset

source code Code Container A container unit which contains the source code, typi-
cally a file.

Only change in abstractclientbase.js is this...

Code Element The building blocks that make up the source code, such
as symbols, keywords and various constructs.

.doesNotThrow() is currently not matching the error mes-
sage...

Input and Value Any literal value or data specified in the source code If you accidentally pass a None or False value, it will re-
turn without check.

Code Library A collection of non-volatile resources used by the source
code.

In the development of a script to periodically send statis-
tics of performance of three.js examples...

Test A source code written specifically for testing purposes. The build is failing because we need to update the
snapshot test for this component.

API A source code written to be used by other code or project. We are trying to keep the surface API as consistent as
possible

Assets Other artifacts in the project which accompanies the
source code.

Updated AWS icons.

actor Stakeholder People or groups affected by the software project lifecy-
cle.

@reisenberger thanks for the tag!

Agent A software program that acts for a user in PR discussions
to automate tasks.

And Travis CI broke for unrelated issues that I need to
investigate.

Organisation A larger body of people who have stakes in the software
project.

Pending assignment with my open source review board

internally. I’ll follow up.

vc platform Version Control Entity Entities related to the version control system of the soft-
ware like branches, hooks, merge conflicts etc.

Otherwise this branch is a great starting point for you to
work on the update.

Repo A global container of project related resources and arti-
facts.

@bordeo this repo is actually dead.

Issue A bug or feature raised by stakeholders related to the soft-
ware project.

A possible fix of the issue #48

PR Code submission request raised by contributors in the
project.

I like the simplicity of this solution, which also has no
executional overhead versus PR #248...

Comment The information expressed by stakeholders in the discus-
sion of the PR.

I am still thinking about the last comment regarding
async behavior though.

dev tool and en-

vironment

Software Development
Tool

Tools used by people to develop the software project. This enables some new warnings, as recommended by
Xcode.

Automation Tool Tools used to automate lifecycle tasks of the software de-
velopment process.

In the last commit, I upgrade Gradle to the 3.0.0-beta2...

Programming Language The language used to express the source code. I know that semicolons are optional in JS.

Environment A virtual environment where the software is Executed. This is very noticeable on the iPhone simulator with slow
animations enabled.

Platform An environment where the software is executed. Seems it’s only broken on android btw, iOS works cor-
rectly.

compilation and

execution result

Warning Messages that indicate some issue with source code after
compilation or execution, without halting the activity.

fix compilation warnings on older Python versions

Error A result obtained as an outcome of unsuccessful compila-
tion or execution of the source code.

Also, I wasn’t able to run gradlew build, it gave me some
Javadoc errors which I’m not sure how to fix.

Output A result obtained as an outcome of successful execution
of the source code.

Made the following changes to make logs look more like

Eclipse/Studio logcat...
Application A runtime instance of the source code after successful ex-

ecution.
The app seemed to behave the same before/after this

change.

documentation Client Documentation End-user documentation of a project. If this is the most important factor, it would be great to
have the README reflect it then.

Project Documentation Project development lifecycle related documents used by
stakeholders.

Please refer to our pull request process documentation to

help your PR have a smooth ride to approval.
Reference Documentation Third Party documentation which are referred by stake-

holders to conduct their activities.
Extend the openapi validator to allow the examples field,
see https://swagger.io/docs/

22, 50, 52, 58]. Building on this work, we formulated three guiding principles that we applied in
analyzing referential behaviors in PR discussions:

(1) We determine the commonly referenced referent types and expressions and their relation-
ships.

(2) We consider how project attributes like application domain, programming language impact
the use of references in the discussion.

(3) We also investigate the relationship between referent types and the PR outcome.

To this end, two authors of the paper conducted an exploratory data analysis [54] to identify
patterns in the references dataset.We used amixed approachwhich includes inductive and deductive

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 385. Publication date: October 2021.

ł@alex, this fixes #9ž: Analysis of Referencing Patterns in Pull Request Discussions 385:9

Table 2. Taxonomy of expression types, with examples.

Category Sub-category Definition Example(s) from Dataset

named Unique/Distinct A unique attribute of the referent ReflectUtils has an overload that takes the cxtor...
Generic General/collective word or phrase to identify referent Let me knowwhy you created this pull request, closing it for now.

content-based Descriptive An expression which serves to describe the referent in
text.

Now they’re colored too (if colored nicknames option is enabled).

Verbatim An expression which uses the exact same representation
of the referent’s content.

Below that you can add stats.fps = (frames * 1000) / (time - prevTime);

locative Absolute An expression which uses the exact location of a referent. The loop function in src/native/utils/game-loop.js has been

changed from arrow function to regular function...
Relative An expression which uses the location of a referent rela-

tive to the current location where the expression is used.
@smurching Never mind my comment above.

temporal Absolute An exact point in time Thanks @filbertteo ! Released in react-game-kit@1.0.6

Relative Relative to current point of time Thanks for your contribution! We will work on releasing
new version soon.

Range Interval of time The change has to be made in a way that supports both
Butterknife 7 and older versions.

inquiry of the data. Using the guiding principles mentioned above, we plotted frequency distribution
of the references and generated 34 distinct patterns. And then, we performed qualitative reading
of the samples in PR discussions to confirm the relevance of these patterns. These patterns were
discussed with four other authors of the paper to reach an agreement. The two coders spent ~400
hours in total analyzing the PR references.
To explore the co-occurence relationships between the referent types, we performed cluster

analysis. We created a matrix of PRs by the counts of each referent type in the PR with 450 rows,
one for each PR, and six columns, one for each referent type. We used principal component methods,
specifically correspondence analysis [53], as a pre-process for clustering. We then used hierarchical
clustering on principal components to identify the relationships between the top-level referent
types. We used the single linkage method, which calculates the minimum distance between a pair of
observations, to cluster through a bottom-up, agglomerative approach. The resulting dendrogram
(Figure 5a) was cut at the partition with the higher relative loss of variance, which yielded three
clusters. We plotted these clusters on the factor map provided by the correspondence analysis, as
suggested by [25] (see Figure 5b). The relevant analysis of co-occurring referent types is presented
in Section 4.

4 FINDINGS

We found referencing of information resources to be prevalent in PR discussions. We identified 6,558
references in 2,189 comments. 93.5% of the comments referred to at least one information entity.
On average, a comment has 2.99 references (SD = 3.15 , Min = 0, Max = 59). We use łcommentsž to
refer to the titles and threaded messages of PRs. A PR, on average, has 4.86 comments (SD = 4.33,
Min = 2, Max = 54).
Referencing is a critical communication device for establishing common ground. As shown in

the example in Figure 1 (a), discussants in a PR can misunderstand each other’s comments due to a
referencing breakdown. Having correct and unambiguous references is crucial for productive code
review and discussion.

The following sections document our findings on howwell current interfaces support referencing
in PRs, which contextual factors influence referencing behaviors, and how referencing patterns
might indicate different PR outcomes.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 385. Publication date: October 2021.

385:10 Ashish Chopra et al.

Table 3. Distribution of references created using different referencing mechanisms

Plain Text Total

SOURCE CODE 0 76 2,910 2,986 2,203 2,279

VC PLATFORM 368 56 1,309 1,733 461 885

ACTOR 332 30 245 607 166 528

DOCUMENTATION 0 156 388 544 249 405

DEV TOOLS AND ENVIRONMENT 0 4 360 364 318 322

COMPILATION AND EXECUTION RESULT 0 11 313 324 224 235

Total 700 333 5,525 6,558 3,621 4,654

Auto-linked
URL-

Linked

Excluding Generic
Referent Type Plain Text Total

4.1 Empirical Accounts of Referencing Support on GitHub

In GitHub, there are three ways for PR discussants to refer to information resources. The auto-
linking features [2] detect references prefixed with special characters (e.g., ł#456ž, ł@reisenbergerž)
and then automatically convert them into links. However, auto-linking is only available for a
handful of the referent types we identified in our taxonomy, specifically vc platform (issues,
PR, and commit) and actor (stakeholder). The GitHub interface also detects web addresses and
convert them into links. We refer to these as URL-links to differentiate them from auto-links. For
information entities without auto-linking or URL-linking support, users must write plain text
references (e.g., łpaperFontButtonž, łflake8 issuesž, łIE 11ž). In this section, we focus on providing
empirical findings that underpin the extent to which existing interface features support different
types of references or leave certain reference types unsupported.
Among all reference instances in our dataset, the majority (84.2%, 5,525 out of 6,558) was in

plain text, while only 15.8% were either auto-links or URL-links (Table 3). The plain text references
were over represented, because, discussants tend to use generic terms such as pronouns, adjectives,
common nouns, and collective nouns (e.g., łissuesž, łunit testsž, łthis PRž, łthe functionž, łitž, etc.)
that are all in the plain text format when referring to a collective class of referents or an established
reference that appeared early in the thread. These references do not establish any referential identity.
Instead, they assume that the referential identity of the information resource is already established.
To count direct, specific references, we removed 1,904 of these second-degree references that are
expressed in the generic terms (i.e., named-Generic types in our expression taxonomy Table 2). In
the remaining 4,654 references, the proportion of plain text went down, as shown in the łExcluding
Genericž columns of Table 3.

4.1.1 Auto- and URL-linking are frequently used when available.

GitHub’s auto-links and URL-links are frequently used when referencing a supported referent type.
The majority of actor (62.9%, 332 out of 528) and a significant portion of vc platform (41.5%,
368 out of 885) references were made with the auto-linking features (Table 3). URL linking was
popular for linking to documentation. However, plain text was used for the majority of all other
referent types, especially source code (96.7%, 2,203 out of 2,279), dev tool and environment

(98.8%, 318 out of 322), and compilation and execution result (95.7%, 224 out of 235).

Auto-linked referencing feature is most frequently used for platform-related referent types. We
found that platform resources, such as Issue, PR, and Stakeholder, are the most frequently referenced
types when using auto-linked referencing interface (see Figure 3). These information resources
are native to the GitHub platform, and have built-in referencing support through the auto-linking
features in the authoring interface. For example, a developer can auto-link an issue or a PR with the

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 385. Publication date: October 2021.

ł@alex, this fixes #9ž: Analysis of Referencing Patterns in Pull Request Discussions 385:11

Agent

Organisation

Stakeholder

Application

Error

Output

Warning

Automation Tools

Environment Platform

Client Documentation

Project Documentation

Reference Documentation

API

Assets

Code Containers

Code ElementsCode Libraries

Inputs and Values

Test

Comment

Issue

PR

Repo

Version Control Entities

0%

20%

40%

60%

80%

16 128 1024

References (Log scale)

P
ro

p
o

rt
io

n
 o

f
re

fe
re

n
c
e

s
 m

a
d

e
 u

s
in

g
 G

it
H

u
b

 f
e

a
tu

re
s

Referent Category

a

a

a

a

a

a

Actor

Compilation and Execution Result

Dev Tools and Environment

Documentation

Source Code

VC Platform

Fig. 3. Distribution of referent sub-categories, based on the number of non-generic references (x-axis) and
the proportion of those references created using the GitHub auto-linking features (y-axis).

ł#ž character followed by the issue or PR number, as in łThis fixes #9.ž Similarly, a GitHub user can
be referenced in a comment with the ł@ž character followed by a username: ł@reisenberger thanks

for the tag!ž. The prevalent use of these references in comments is likely due to the auto-completion,
which activates as soon as a user types any of the special referencing characters (# and @) within
the authoring interface. This makes it easy to search for and link to references while commenting.
At present, the auto-linking features only support platform-specific entities; however, they do

not provide full coverage. For example, Repos and comments in Issues and PRs are unsupported.
We found that discussants use plain text referencing for 80% of references to other repositories on
GitHub, such as dependent library projects and forked repositories. For example, a PR submitter
referenced another repository in his comment through a URL link: łI made this from combining
parts of the ipython/ipython and jupyter/jupyter Dockerfilesž.

Stakeholders rarely link URLs in their comments. We found that 7.2% of references (333 out of 4,654)
in our dataset are URLs (Table 3). Reference Documentation outside GitHub, such as external web
pages and forum threads, are primarily referenced by URL-linking (see Reference Documentation
in Figure 3). However, the other referent types used it sparingly. A possible reason for sparse usage
of linking URLs is because it is time-consuming for discussants to locate, copy, and paste the URL
of the resource in the comment text. It is also sometimes unnecessary for resources that are already
a part of the project, such as project documentation, readme, bots, and source code files. These are
primarily mentioned in plain text.

4.1.2 Most referent types are expressed in plain text.

We found that the majority of references (77.8%, 3,621 out of 4,654) were written in plain text
without a link (Table 3). The higher number of plain text references in PR discussions may be due
to the lack of support for many referent types through GitHub’s auto-linked referencing interface.
Therefore, plain text is employed as the fallback option. For example, source code, which is a
highly discussed information in PRs, has no support in the referencing interface and is discussed
primarily in plain text (Table 3). Since plain text lacks the ability to link to the referent, it takes
longer to express the referent information, for example, a reviewer has to explain the variable
value in a sentence like łThe fontSize for paperFontButton is 14ž. Similarly, a PR in a UI project

has a comment łMade box shadow color of white color option a darker shade of gray for better

visibilityž in which properties and values in the source code are explained in long text. Writing and

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 385. Publication date: October 2021.

385:12 Ashish Chopra et al.

n = 69

(2.31%)
n = 21

(0.70%)

n = 673

(22.54%)

n = 1639

(54.89%)

n = 202

(6.76%)

n = 263

(8.81%) n = 119

(3.99%)

0

500

1000

1500

2000

Code
Elements

Code
Containers

Inputs and
Values

Code
Libraries

Test API Assets

Source Code Sub−categories

N
u
m

b
e
r

o
f
R

e
fe

re
n
c
e
s

Fig. 4. Distribution of source code referent type by sub-categories.

interpreting comments becomes even more challenging when the discussion involves Application
referents, such as runtime instances of source code: łClick on menu1, then menu2, then menu1
again→ JS error is occurred.ž Here, UI navigation is described in writing to reproduce the issue
which is difficult to dereference.

On the other hand, plain text is an appropriate choice of expression for some referent types, such
as dev tool and environment, compilation and execution result, and documentation. For
example, Software Development Tools, including automation tools, code editors, and browsers, are
mainly presented in text: łFixes issue with m.route in IE 11, caused by this line.ž References to tools
(e.g., łIE 11ž, łchromež, łwindowsž, łandroidž, łJVMž) are commonly used in software engineering
discussions and can be easily understood in plain text.
We found that ∼18.8% of plain text references express the referents verbatim. For example,

compilation/runtime Error, and console Output are generally provided as-is by copying the output
log into comments (Figure 3). This is likely because Errors cannot be easily understood by other
reference handles, such as error codes. Therefore, complete logs are useful for communicating the
error in the discussion. However, producing verbatim references by copying and pasting is time-
consuming. Also, referencing and dereferencing the verbatim reference in subsequent comments
takes effort.

On the other hand, some plain text references use descriptive phrases to reference information,
including API, Warning, and Test Case (Figure 3). For example, in one of the PR comments, the
reviewer suggested a new API: łit would be great to have a "should retry" callback somewhere

that will decide if the retry is still relevant at the time it can executež. This was picked up in the
thread and used as a reference handle while discussing the use case scenario by other discussants.
We observed similar practices for Test, Warning and Issue, which are given short descriptive titles
(e.g., łcoroutine testž, łpeer dependency warningsž, łflake8 issuesž, łtypescript bugž) that serve as

reference handles throughout the thread.

4.1.3 Source code is frequently discussed in PR discussions, but is unsupported by auto-linking.

There are many references to source code in PR discussions despite being unsupported by the
authoring interface. We found that 49.0% of all references in our dataset (2,279 of 4,654) are to
source code referent types (Table 3). Code Elements and Code Containers are the most prevalent
of these (54.9% and 22.5% respectively, see Figure 4). However, only 3.3% of total source code

references were created using the GitHub referencing interface, primarily by linking URLs (Table 3).
We present referencing patterns in the two major source code types below.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 385. Publication date: October 2021.

ł@alex, this fixes #9ž: Analysis of Referencing Patterns in Pull Request Discussions 385:13

Table 4. Distribution of references to Source Code sub-
categories by referencing mechanism (N = 2,279). GitHub
does not support auto-linking for the Source Code type
references.

Sub-category URL-linked Plain Text

API 1 (1.6%) 59 (98.3%)

Asset 2 (13.3%) 13 (86.7%)

Code Container 56 (10.6%) 471 (89.4%)

Code Element 12 (1.0%) 1,217 (99%)

Code Library 3 (1.6%) 179 (98.3%)

Input and Value 1 (<1%) 231 (99.5%)

Test 1 (2.9%) 33 (97.0%)

Total 76 (3.3%) 2,203 (96.7%)

Table 5. Distribution of PRs by source

code and non-source code referents.

Referent Type(s) Count of PRs

source code and Non-

source code
356 (79.1%)

Non-source code only 60 (13.3%)

source code only 34 (7.5%)

Total 450 (100%)

Plain text-based referencing to Code Elements can be tedious. Code Element (e.g., variable, function,
and class) is the most frequently referenced (54.9%) source code type in PR discussions (Figure 4).
99% of Code Element references are made using plain text. Since there is no direct URL for code
constructs, such as variables, functions, and classes, they are referred to manually (Table 4). For
example, a PR contributor described the content of the PR by referencing functions with plain
text: łImplements a new tracing support for uvloop adding the pair methods start_tracing and

stop_tracing that allows the user to start or stop the tracing.ž The contributor also referenced classes

similarly: łMetricsSpan, CounterSpan and TimingSpan controversial, this PR only implements a

generic Span that is a timing onež. Referencing these resources becomes challenging in repositories

containing code elements with the same names located in different files. Often, developers try to
resolve this ambiguity by mentioning the fully qualified name of the function or class in text, for
example: łwhen internally a new span is created using the TracedContext.start_span under the

hood the parent span is passed to the Tracer.create_spanž. This helps to disambiguate the reference,

but is burdensome and error-prone. We observed developers working around this by inserting
URLs for the lines of code where the function or class is located in the file. This involves context
switching, requiring the author to leave the discussion interface in order to identify and copy the
link location. Dereferencing source code references in plain text is also tedious for readers of the PR
discussion, and requires navigating to different web pages to locate where the referent is situated.

Developers reference code containers by writing text descriptions, which can be difficult for viewers

to dereference. Code Containers, such as code files, folders, and lines of code, are the second-most
referenced type (22.5%) of source code (Figure 4). The GitHub interface allows developers to
reference lines of code and code files with URLs. However, we found that the majority of Code
Container references (89.4%) are made in plain text, with only 56 out of 527 (10.6%) created using
URL-links (Table 4). For example, a discussant mentioned a line of code by specifying the line
numbers in plain text: łCan we wrap the try started on line 97 in a single try/catchž, and similarly
referenced a file: łIt would be helpful to have ICombinedSimpleModel interface be in the main.tsž.
This is possibly because typing the name of the file or the line number is easier and quicker for
comment authors than manually searching and inserting the URL. However, it is burdensome for
readers to dereference these resources to establish a mutual understanding of the context.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 385. Publication date: October 2021.

385:14 Ashish Chopra et al.

4.2 Contextual factors that shape the reference use

The references in PR discussions are indexical in nature, and are understood by knowing the
associated context of the discussion. The context shapes how these references are made. We present
a qualitative description of how references are shaped by three classes of contextual factors: referent,
discussion thread, project attributes. These findings add to the factors known to affect general
information practices, as identified by Courtright [15].

Documentation

Dev Tools and Environment

Source Code

Compilation and Execution

VC Platform

Actor

−0.10.00.10.2

Height

Dendrogram

(a)

Dev Tools and Environment

Source Code

Compilation and Execution VC Platform

Actor

Documentation−0.5

0.0

0.5

1.0

1.5

−0.5 0.0 0.5 1.0

Dim1 (25.8%)

D
im

2
 (

2
2

.8
%

)

Factor Map

(b)

Fig. 5. The output generated by the correspondence analysis and hierarchical clustering: (a) Dendrogram on
principal components on the top-level referent types (b) Factor map on principal components on the top-level
referent types.

4.2.1 Referent influences expression.

The type of information resource being referenced influences the use of references in PRs: certain
types of references often co-occur. For instance, we found that source code types frequently
co-occur with non-source code types (Table 5). Discussants leverage these references to motivate
and specify the need for the suggested code changes. The cluster analysis shows that some referent
types are more relevant to source code than the other categories. source code references
frequently co-occur with the actor, vc platform, and compilation and execution result

referent types, but not with dev tool and environment or documentation (see Figure 5b).
Below we present our findings on how referent type shapes the reference usage.

References to documentation frequently include additional information to increase specificity. doc-

umentation references, developers often point to a specific section of the referent. They tend
to augment a written description to denote the exact location in their reference for readers to
focus on. For example, a developer referring to a subsection of a document in a comment as ł...the
third section of README.mdž. Apart from referring to specific structural organisation of the doc-
ument, developers also reference a specific content item in a project file such as łcopyright year

in License.mdž. These references are frequently expressed as plain text because nested sections of
information resource might not be locatable by a URL. Sometimes, developers combine links with
plain text providing additional information about the location of the referent. This saves the other
discussants’ time in locating the information and also prevents misunderstanding.

Developers tend to express compilation errors verbatim and warnings descriptively. compilation

and execution result referent types such as Error are referenced verbatim, either by copying
and pasting the error text or with a screenshot image. Warnings, on the other hand, are expressed
using descriptive titles or names only. From all the references to errors in our dataset, 34% are
expressed verbatim. Similarly, 42% of references to warning messages are descriptively mentioned

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 385. Publication date: October 2021.

ł@alex, this fixes #9ž: Analysis of Referencing Patterns in Pull Request Discussions 385:15

(Figure 6). In software development, errors are more technical in nature and can block the software
development and execution activities as compared to warnings. Therefore, to diagnose the problem,
one needs complete error information (e.g., a stack trace). This is why verbatim expressions are
preferred for errors.

3

16

31

7

1

1

16

28

5

27

7

54

25

27

31

3

27

3

3

1

0%

25%

50%

75%

100%

Warning Application Error Output

Sub−categories

P
ro

p
o
rt

io
n
 o

f
R

e
fe

re
n
c
e
s Expression

Sub−categories

Absolute−Locative

Absolute−Temporal

Descriptive

Generic

Relative−Temporal

Unique Identifier

Verbatim

Fig. 6. Distribution of Expression Sub-categories for compilation and execution result.

Developers tend to use temporal information for Build Release and Execution Output. Many referent
types, including many from the compilation and execution result and vc platform are
frequently expressed using temporal descriptors, such as their version number. 85 out of 174 (48.9%)
references to Output artifacts, such as build releases, explicitly employ temporal expressions while
the other referent types did it seldom. For instance, one PR has a comment łThe change is made
in a way to support both Butterknife 7 and older versionsž, which refers to the release version
of the software. This temporal information is useful to refer to a specific release of the software
which is useful in evaluating the impact of changes submitted in the PR on backward and forward
compatibility with the software. Knowing temporal information of these referent types is necessary
for reviewers to gauge the impact on the code base and helps in prioritizing PRs.

4.2.2 Discussion thread influences referencing.

Each PR discussion thread varies by its topic, length, discourse complexity, and discussion stage.
Reference use may indicate such attributes of PR discussion threads. Below we elaborate on our
novel findings regarding how the nature of a discussion thread shapes referencing behaviors.

Developers frequently use generic terms to reference information scoped within a discussion thread.

We found that 30.2% of the references in our dataset are expressed using generic terms, including
pronouns, adjectives, and collective nouns (Figure 7). These references are used for various purposes.
Once a reference is introduced in a comment, it is re-referenced in the discourse repeatedly using
generic terms like pronouns (it, this, etc.). For example, after introducing a class by its name
łEnhancedFactoryDataž, it was expressed in the discourse using pronouns, such as łitž and łthisž.
This works because the mutual understanding of the referential identity is already established, and
there is no need to reference it by its name again. When the referent is obvious in the discussion,
such as the PR itself or the issue under discussion, generic terms like demonstrative adjectives (i.e.,
łThis PRž, łThis issuež) are used. For example, a submitter referenced the self PR in a comment
as łThis fixes #9ž. Also, when the discussant points to a collective group rather than to a specific

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 385. Publication date: October 2021.

385:16 Ashish Chopra et al.

n = 2362 (37.51%)

n = 1904 (30.24%)

n = 821 (13.04%)

n = 686 (10.89%)

n = 386 (6.13%)

n = 73 (1.16%)

n = 48 (0.76%)

n = 17 (0.27%)Relative−Locative

Relative−Temporal

Absolute−Temporal

Absolute−Locative

Verbatim

Descriptive

Generic

Unique Identifier

0 1000 2000 3000
Number of References

E
x
p

re
s
s
io

n
 S

u
b

−
c
a

te
g

o
ri

e
s

Expression Types

Named Expression

Content Based Expression

Locative Expression

Temporal Expression

Fig. 7. Distribution of Expression Sub-categories.

referent, for example, referring to the łcontributorsž instead of a specific user, collective nouns
are used as generic expressions. References with generic terms may work well for those who are
following the discussion but may pose a problem for new readers, who need to re-read the discussion
from the top to understand the generic reference. Also, having multiple referents expressed with
generic words in the same discussion may lead to misunderstanding.

PRs that discuss source code mostly contain references to non-source code references such as issues

and other PRs. 81% of source code discussions contain at least one reference to vc platform

types, such as Issue and PR. Issues on GitHub also have a discussion thread of their own. Therefore,
referencing issues in the PR discussion provides evidence of the rationale behind the decisions made
by the contributor in the proposed change. Reviewers also often reference related or similar PRs in
the discussion which is impacted by the current change to fast-forward the evaluation process, for
example, łA possible fix of the issue #48 and Fixes #425ž. Also, in our qualitative exploration, we
found that these references appear in different places in the PR. For example, some contributors
mention them in the PR description, but other contributors or reviewers bring it into the discussion
during the review process. Referencing issues and PRs not only helps in the evaluation process of
the PR, but also helps others to track similar efforts, either in the space of issues, PRs, or commits.

Source code-only PRs tend to be specific and short. A small fraction of PRs (7.5%) only refer to
source code (Table 5). These PRs tend to include atomic changes in the code with restricted impact
like changing variable names, adding arguments, updating properties and so on. Therefore, these
PRs tend to reference many Code Elements in their comments and their discussion threads typically
contain fewer than three comments.

4.2.3 Project attributes influence referencing.

We identified instances where the characteristics of projects shape referencing behaviors of stake-
holders. Software projects vary by goal, programming language, age, size, team composition, etc.
It is a reasonable conjecture that these factors can attribute to and influence what stakeholders
mention in PRs and how those references are communicated. Two patterns were apparent in our
qualitative analysis.

Referring to UI elements is common in mobile and web-development projects but difficult. Android,
iOS, and web-based development projects frequently reference a substantial number of UI elements,
including buttons, menus, and margins, as well as how UI elements animate on screen and respond
to input. 6.3% of references in these projects refer to UI elements as compared to other projects

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 385. Publication date: October 2021.

ł@alex, this fixes #9ž: Analysis of Referencing Patterns in Pull Request Discussions 385:17

that contain only 0.7% of UI-related references. Despite their prevalence, GitHub does not support
an interface feature to mention UI elements specifically. Hence, stakeholders exerted more effort to
express these references, such as writing descriptive names or phrases, or linking screenshot images.
For example, in one PR discussion participants referred to a button in the GUI by its screen name:
łshow more buttonž. Also, to express transient information (e.g., UI effects, states, and transitions),
which cannot be pointed to easily by name, like a button in the above example, participants used
GIFs or images in pairs to show before and after scenarios. This approach also adds to readers’
workload decoding the reference.

Developers commonly use suggested references in projects of web-based programming languages.

We identified references in PR discussions to information resources that do not yet exist. We call
these Suggested Referents. Any referent type in our taxonomy Table 1 can be a suggested referent.
We found that suggested referents are commonly used in projects using JavaScript, CSS, and PHP
as their primary language. For example, in one CSS project’s PR, a reviewer commented łIf you
could update this to data-balloon-* attributes instead of classes, I would be glad to accept this PRž.
data-balloon-* is a suggested property in the comment. As web-based programming languages,
such as CSS, offer many ways to implement the same feature in a relatively few lines of code, we
suspect that the expressive nature of these languages is responsible for the pattern we observed.
The increase in suggested referents also indicates that developers in such projects tend to have
discussions related to alternative solutions and suggestions. Also, a larger number of suggested
referent types are found in closed PRs as compared to merged PRs, implying that the discussion led
to revising the submitted source code.

4.3 Referencing patterns in PRs with different outcomes

At the end of the day, a successful PR is either merged or closed because reaching a conclusion
quickly is important for efficiency in the software development process. Therefore, the essence of
the discussion process in the PR is to evaluate the contribution and reach an outcome. The use of
references in a PR discussion can help in advancing the discussion process so that the PR progresses
towards conclusion. We present an analysis of referencing patterns observed in merged and closed
PRs, because these two statuses are conclusive while the open status is indefinite, and a decision
has yet to be made. We also describe our high-level observations from open PRs (i.e., PRs that are
neither closer nor merged).

4.3.1 Accepted or Rejected PRs tend to have references to the evidence which advocate their appro-

priateness. References to Test, Agent, and Issue are more frequently found in merged than closed
PRs (see Figure 8). These referent types indicate that the participants in the discussion may have
taken steps to ensure that the changes in a PR do not impact the project negatively or the changes
are important for maintaining the quality of the main repository. For example, references to unit
tests and test suites can signify the presence of tests and testing code, which make it easy to verify
the correctness of the pull request. The presence of Agent references can indicate the use of a bot
or third party service for running CI loops, calculating code coverage, and so on, which provides
further evidence that the PR has been reviewed for quality. For example, a kubernetes-prow-bot
has been used in the "Kubernetes" project in our dataset; it can run test suites, add labels to the PR,
and merge the code based on users’ commands. Similarly, the "CLAassistant" bot is used to ensure
contributors have signed the contributor license agreement. Although, Environment references are
also higher in merged PRs than closed, we refrain from making strong claims about them due to
the small sample size (N = 17).

References to Automation Tool and Version Control Entity are more than twice likely to be found
in closed PRs than merged PRs (Figure 8). These pattern indicates that the discussion may have

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 385. Publication date: October 2021.

385:18 Ashish Chopra et al.

2838

324

1715

87

3110

9963

209239

596482

8660

6548

710

2422

11279

92116

63

8253

4731

317185

2531

5967

3728

9361

2513

177129

3049

11957

41

API

Warning

Automation Tools

Version Control Entities

Organisation

Software Development Tools

PR

Client Documentation

Output

Repo

Platform

Code Libraries

Inputs and Values

Stakeholder

Comment

Reference Documentation

Code Elements

Assets

Application

Error

Project Documentation

Code Containers

Programming Language

Issue

Agent

Environment

Test

0% 25% 50% 75% 100%

Proportion of References

R
e

fe
re

n
t

S
u

b
−

c
a

te
g

o
ri

e
s

PR Status CLOSED MERGED

Fig. 8. Distribution of all Referent Types by PR status (Closed/Merged).

taken place regarding the source code management aspect of software development such as using a
wrong branch, merge conflicts, build related issues, or redundant fixes. Automation Tool references
in closed PR discussions may indicate the negative outcomes of a build system on a given PR [62].
Similarly, Version Control Entity references may appear to indicate duplicate fixes or pending issues
in the submission which is preventing a proposed change from being merged. All these factors
are indicative of how certain referent types are more frequently found in closed PRs than others.
We also found that API-heavy PRs might be more likely to be closed (N = 32) than merged (N =
4), because such discussions tend to be contentious and can easily lead to rework (see Figure 8).
However, we found that a similar number of API references (N = 33) are also present in open PRs
which are yet to reach a conclusion which indicates that these PRs tend to remain inconclusive
before closing. Therefore, we present our observations on open PRs separately in the next section.

4.3.2 In Open PRs, developers seem to be discussing high-level changes such as API and Compatibility

issues in software projects.

We found that a relatively high proportion of API-level changes in the software or compatibility
issues are found in open PRs (33 of 69 API instances) than the other two PR types (4 in merged, 32
in closed). These PRs generally involve discussion about how the proposed changes may affect the
entire project, for example, with regards to backward compatibility and support for running on
different platforms. This is difficult to appraise. For example, one PR we considered proposed an
API for client interceptors in which discussion hinged on the API’s compatibility across different
runtime platforms. This PR included four active discussants. The discussion ended without any
decision around the time that we sampled this PR in our study. Fast forward 5 months later, and
the PR was closed with a message that the proposed changes were in conflict with the long-term
API goals of the project. We believe that such API-changing PRs are more likely to remain in an
open state, because consensus is more difficult to reach.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 385. Publication date: October 2021.

ł@alex, this fixes #9ž: Analysis of Referencing Patterns in Pull Request Discussions 385:19

Table 6. Summary of implications for tool design and future research.

Design Implications

1 Referencing finer details in source code.

2 Referencing UI elements in PR Discussion.

3 Supporting nested referencing in comments with transclusion.

4 Supporting references within a PR discussion thread.

5 Extending GitHub’s current support for auto-linking software deliverables.

Research Opportunities

6 Exploring the use of references in different stages of discussion.

7 Exploring the relationship between referencing and PR outcomes.

8 Extending the support of referencing to discussions beyond software engineering domains.

5 DISCUSSION

This paper provides insights into developers’ referencing practices in PR discussions as summarized
in Table 6. We further consolidate our findings into twomajor takeaways for the design and research
community. First, many prevalent referencing practices provide design implications for supporting
richer referencing in PR discussion interfaces, which are discussed in Section 5.1. Second, the study
of referencing patterns in PRs opens up new possibilities for further research to explore its impact
on the flow of discussion and ultimately on the discussion outcomes, which we elaborate on in
Section 5.2 and Section 5.3. Finally, we end the chapter with a discussion of the lack of referencing
support in communication occurring beyond the context of PRs.

5.1 Design implications

We identified various referencing patterns in PR discussions that are frequently used by the
stakeholders but are not supported by GitHub’s auto-linking features. For example, source code is a
frequent object of discussion in PRs, but it is primarily discussed in plain text. Similarly, there is no
support for referencing UI elements, nested content in documentation, build releases, and certain
resources that appear within the scope of the discussion thread itself. In this section, we discuss
the implications for design generated through the referencing practices observed in PR discussions
to better support referencing and dereferencing various underrepresented referent types through
GitHub’s PR discussion interface.

5.1.1 Referencing finer details in source code.

Our findings in Section 4.1.3 indicate that Code Elements in the source code category are a major
part of PR discussions. However, developers are making these references manually, which is tedious
and can be error-prone. Typing correct variables names or function signatures is important, because
that is the only index into the source code. Although GitHub renders the code differently from the
regular text in the comments, which provides a visual distinction, it does not support referencing
source code within PR comments. This suggests the need for in-situ code editing capabilities within
the PR interface. This could assist developers to reference and dereference various code elements
in the source code within the repository. Like a code editor, the interface would provide content
assist (i.e., code completion) to write code faster and more efficiently. When a developer types in
the first few letters, it would provide a list of matching code elements (variables, functions, classes,
etc.) drawn from the source code within the project. The developer could then make a selection
from the list and the interface would automatically create a link to the referent.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 385. Publication date: October 2021.

385:20 Ashish Chopra et al.

This feature would allow developers to type code with few keystrokes while maintaining accurate
and precise links. It would be even more useful when a function or variable with the same name
exist in different code files, as the feature would link to the correct definition. These auto-linked
code references could be dereferenced in many ways. By hovering over the reference (e.g., a function
name) in the comment, the interface would display a function definition in a tooltip within the
PR thread. Or, by clicking the reference, a user could navigate to the location of the referent in
the source code file. The in-situ code-editing capabilities within the commenting interface of PR
discussion would speed up coding authoring within comments and improve efficiency by reducing
typos and other common mistakes.

5.1.2 Referencing UI elements in PR Discussions.

We found that projects with interface elements reference various resources, including UI elements,
layouts, colors, and positions, in their comments. Referencing these resources requires verbose
descriptions. It is even more difficult to reference information that cannot be pointed to on the UI,
such as state changes, animations, and background effects. Developers interleave screenshots with
text descriptions in their comments, which is tedious and time-consuming. To reproduce issues, or
demonstrate the implemented changes, developers reference links to the running instance of the
app on web-based IDEs such as StackBlitz1 and Gitpod2. The reviewer can browse these hosted
apps to interact with the live application; however, these are situated outside the PR’s discussion
environment and require context switching. This suggests there is a need for built-in UI emulation
with referencing and dereferencing capabilities within the PR discussion interface. An emulator
could run the app next to the discussion thread in the PR and allows users to access different UI
elements. For example, a user could reference a button in the app by selecting the button in the
emulator and dragging it into the commenting interface, which would then automatically add a
link to the button in the comment. Developers could also take a screenshot of the UI within the
PR interface without having to switch their context. These linked UI references in the comments
could be dereferenced by clicking the link, which would load the UI in the emulator within the PR
discussion.

5.1.3 Supporting nested referencing in comments with transclusion.

We found that references were often made to specific elements of information objects. For example,
references to documentation, code files, web pages, often include a location within the larger
information object. For example, łThe third section of readme.mdž specifies a section in a document.
In previous work on hypertext, there have been calls for transclusions [31, 45]. Transclusion is a
method of including all or part of an information object into another, which eliminates the need
to dereference. However, more recent work has highlighted challenges for readers making sense
of these types of links because key context can be missing in transclusions [29, 38]. This implies
that tools should support forms of transclusion appropriate to the granularity of the content with
particular contexts, such as text sections and code snippets, found in PR discussions. Chua et
al. [9] suggested one of few solutions to the nested referencing for varying degrees of specificity,
addressing the specific case for documents in the online learning context.

5.1.4 Supporting references within a PR discussion thread.

We found that various references are being generated within the scope of the discussion thread
itself. For example, developers introduce issues, APIs, and features with short titles, like łtypescript
bugž, łflake8 issuež, and łTiming APIž. Once introduced in the scope of discussion, these references
are later used by others in subsequent replies. However, there is no mechanism to trace the location

1https://stackblitz.com/
2https://gitpod.io/workspaces/

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 385. Publication date: October 2021.

ł@alex, this fixes #9ž: Analysis of Referencing Patterns in Pull Request Discussions 385:21

where these references are created. Therefore, users who are not actively involved in the discussion
need to search the entire thread to locate the definitions of these references. These references
become even more difficult to decipher when one comment in the PR is cross-referenced in another
PR. This suggests a need for an NLP-based auto-detection feature within the PR discussion interface
that can automatically highlight these references in the discussion thread and link the comment in
which it was introduced. The user could use such a feature to navigate directly to the comment
where the reference was introduced by clicking the reference without needing to read the whole
thread.

5.1.5 Extending GitHub’s current support for auto-linking software deliverables.

We noted in Section 4.2.1 that developers make text references to software deliverables such as
build releases, project documents in their comments during discussion. Although, there is a way
to link URLs to these resources by copy-pasting them into the text, this feature has not been
used effectively. It is time-consuming and requires context switching. Since GitHub’s auto-linking
feature already supports referencing many platform-specific entities, including Issues, PRs, and
users, it would be reasonable to extended its support to other resources within projects, such as
build releases and project files. To reference a build release, a user could type a prefix character to
invoke quick navigation within the authoring interface. The quick navigation would provide the
list of releases published by this repository on GitHub. The user could navigate the list and make a
selection, and a linked reference to the release would be added to the comment. This feature could
enhance a common linking feature provided by GitHub for auto-linking external resources [49].
The reference includes an embedded link to the release page, which can be dereferenced by the
readers from the discussion interface directly.

5.2 Referencing and discussion stages

During the code review process, PR discussions flow through different discussion stages. Referencing
can act as a benchmark as to the current stage of the discussion. For example, the title and description
provided by the submitter of the PR sets the grounds for reviewers to start the discussion. Based
on the references given in the description, a reviewer can decide the next course of action: either
continue with the code review or ask for additional information from the submitter. Similarly, in
case of disagreement with the submitted change, a reviewer may suggest an alternative change to
the code, or decide to reject it. In these scenarios, a discussion moves into different stages and the
people in the discussion make different references over time. These references can orient the flow
of the PR discussion in a specific direction. Therefore, it would be interesting to explore what set of
references impact the PR discussion in helping it to make progress. This kind of study may also
reveal commonly occurring behaviors in these conversations, as well as well-established norms that
can have useful implications. For example, the kinds of references made by people to come to an
agreement could inform the design of an automated bot which can facilitate the decision-making
process by directly introducing, or encouraging, similar comments. Also, knowing the stage of
discussion, we could build predictive models to predict when a PR has reached a conclusion. This
may help to improve the efficiency of software development process.

5.3 Referencing and PR outcomes

Our findings indicate various referencing patterns found in PRs with different outcomes. This
observation suggests that analysing referencing is an important yet understudied aspect of code
review discussion. Discussions that use references in different ways may lead to different, correlated
outcomes, depending on the context. For example, Yarmand et al. [57] showed that referencing
timestamped video snippets in comments can increase the number of łlikesž and replies on YouTube.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 385. Publication date: October 2021.

385:22 Ashish Chopra et al.

Similarly, Liu et al. [34] found that messages that reference multimedia content on Twitter receive
more re-tweets. On StackOverflow, answers with references receive more župž votes [44]. Note
that having certain references in a PR may not at all ensure that it will be accepted because many
technical and social factors impact the PR outcome [21, 22, 50, 52, 58]. References can reduce
the cognitive workload in a discussion which helps to reach a conclusion faster. Therefore, it is
interesting to see in future work how references can influence a certain outcome over time. This
can be done by building a sophisticated statistical model that can predict the PR outcome based on
various factors including the references. Together, the findings across this and previous work hint
at the importance of studying and improving the referencing and dereferencing capabilities of our
software to better support collaboration and discussion.

5.4 Varying levels of platform’s support for referencing

GitHub is an evolving platform. For example, in 2011, GitHub introduced auto-linking users using
@-mentions the PR interface [2]. Similarly, in 2019, a custom prefix feature for creating hyperlinks to
external web resource was released to enterprise-tier customers [49]. In Section 4, we only captured
referencing behaviors that took place when the users were given only a type of referencing feature
set. Future work could study how different levels of platform’s interface support may impact the
way people refers to information resources in their discussions by comparing people’s referencing
behaviors before and after GitHub’s auto-linking feature was introduced. Another study could
focus on practices for creating and using different custom prefixes. Therefore, referencing feature
set could become an another sampling criteria in data collection for future studies.

5.5 General lack of referencing support

While we have established that referencing is an important tool for effective communication and
that rich referencing is occurring in PR discussions, we also found that support for it is limited.
Fewer than 16% of the references in our dataset are supported by the GitHub platform. Despite
lacking support, developers are introducing textual references to e.g., a shared codebase, other
repositories on GitHub, various third-party websites, suggesting the importance of references in
establishing common ground. Since GitHub’s referencing interface already supports vc platform

references, therefore, support for other platform-entities like repositories can be included. Similarly,
other studies have also found that general support for referencing is lacking in contexts beyond code
review. Yarmand et al. [57], for example, found that most referencing behaviors are unsupported
on YouTube. We suspect that this is a concern for other Q&A platforms, such as StackOverflow
and Quora, where users lack the same degree of shared context as on GitHub. In these contexts
referencing support could be crucial for effective communication [44].

6 CONCLUSION

In this paper we examined software developers’ referential behaviors in code reviews through
an analysis of ~7K annotated references from 450 public PRs sampled from GitHub. We provided
a detailed empirical account of how well referencing is supported by GitHub. We provided an
analysis of the patterns of what people refer to (type) and how they refer it (expression). We
found source code is the most frequently referenced type of information, even though it is
under-supported by GitHub’s referencing interface. We found referent type, discussion thread,
and project attributes are three classes of contextual factors that shape the use of references in PR
discussions. We presented several referencing practices shaped by these factors. Finally, we found
distinct referential behaviors in merged, closed and open PRs. Based on consolidating our analyses,
we provide some more general insights about referencing behaviour in PR discussions and reflect

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 385. Publication date: October 2021.

ł@alex, this fixes #9ž: Analysis of Referencing Patterns in Pull Request Discussions 385:23

on how this human behaviour appears in other contexts leading to design strategies for providing
better tool support.
This study has several limitations. With regards to the taxonomy, we focused only on referent

types and referential expressions. Other important aspects of the referencing behaviors fall outside
the scope of the current study. We collected a diversified sample of PR discussions from popular
repositories on GitHub, based on star ratings. Future work could prioritize other repository at-
tributes, such as number of contributors. Our dataset does not contain PR discussions from private
repositories on GitHub, leaving questions about the referencing practices within closed-source
projects from our analysis.
This study created a data-driven taxonomy of references stakeholders make in PR discussions,

analyzed the existing referencing support provided by GitHub and observed several patterns of
referential behaviors in practice. Through the articulation of the PR reference behavior in this
paper, better software tools can be designed to accommodate the rich nature of referencing in
stakeholder PR discussions to improve source code design, implementation, management and,
ultimately, trustworthiness.

7 ACKNOWLEDGEMENTS

This work was partially supported by the Huawei-UBC Joint Software Engineering Research
Program, NSERC Discovery Grant, and Designing for People CREATE program.

REFERENCES

[1] 2019. The state of the Octoverse: An overview on community and platform growth. https://octoverse.github.com/2019/

Accessed Nov. 6, 2019.

[2] 2020. Autolinked references and URLs - GitHub Docs. https://docs.github.com/en/github/writing-on-github/

autolinked-references-and-urls Accessed Oct 29, 2020.

[3] 2021. Public Dataset: "@alex, this fixes #9": Analysis of Referencing Patterns in Pull Request Discussions. http:

//doi.org/10.5281/zenodo.5081029 Accessed Jul. 7, 2021.

[4] Alberto Bacchelli and Christian Bird. 2013. Expectations, outcomes, and challenges of modern code review. In 2013

35th International Conference on Software Engineering (ICSE). IEEE, 712ś721.

[5] Lisa Baron, Jean Tague-Sutcliffe, Mark T Kinnucan, and Tom Carey. 1996. Labeled, typed links as cues when reading

hypertext documents. Journal of the American Society for Information Science 47, 12 (1996), 896ś908.

[6] Moritz Beller, Alberto Bacchelli, Andy Zaidman, and Elmar Juergens. 2014. Modern Code Reviews in Open-Source

Projects: Which Problems Do They Fix?. In Proceedings of the 11th Working Conference on Mining Software Repositories

(Hyderabad, India) (MSR 2014). Association for Computing Machinery, 202ś211.

[7] Pernille Bjùrn, Morten Esbensen, Rasmus Eskild Jensen, and Stina Matthiesen. 2014. Does Distance Still Matter?

Revisiting the CSCW Fundamentals on Distributed Collaboration. ACM Trans. Comput.-Hum. Interact. 21, 5, Article 27

(Nov. 2014), 26 pages. https://doi.org/10.1145/2670534

[8] Yuan-Chia Chang, Hao-ChuanWang, Hung-kuo Chu, Shung-Ying Lin, and Shuo-Ping Wang. 2017. AlphaRead: Support

unambiguous referencing in remote collaboration with readable object annotation. In Proceedings of the 2017 ACM

Conference on Computer Supported Cooperative Work and Social Computing. 2246ś2259.

[9] Soon Hau Chua, Toni-Jan Keith Palma Monserrat, Dongwook Yoon, Juho Kim, and Shengdong Zhao. 2017. Korero:

Facilitating complex referencing of visual materials in asynchronous discussion interface. Proceedings of the ACM on

Human-Computer Interaction 1, CSCW (2017), 1ś19.

[10] Herbert Clark. 1996. Using Language. Cambridge University Press, Cambridge, United Kingdom.

[11] Herbert Clark and Susan E Brennan. 1991. Grounding in communication. (1991).

[12] Herbert Clark, Robert Schreuder, and Samuel Buttrick. 1983. Common ground at the understanding of demonstrative

reference. Journal of Verbal Learning and Verbal Behavior 22, 2 (1983), 245ś258.

[13] Jacob Cohen. 1960. A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement 20, 1

(1960), 37ś46.

[14] Valerio Cosentino, Javier Luis Cánovas Izquierdo, and Jordi Cabot. 2016. Findings from GitHub: methods, datasets and

limitations. In 2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR). IEEE, 137ś141.

[15] Christina Courtright. 2007. Context in information behavior research. Annual review of information science and

technology 41, 1 (2007), 273ś306.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 385. Publication date: October 2021.

385:24 Ashish Chopra et al.

[16] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social Coding in GitHub: Transparency and

Collaboration in an Open Software Repository. In Proceedings of the ACM 2012 Conference on Computer Supported

Cooperative Work (Seattle, Washington, USA) (CSCW ’12). Association for Computing Machinery, New York, NY, USA,

1277ś1286. https://doi.org/10.1145/2145204.2145396

[17] Felipe Ebert, Fernando Castor, Nicole Novielli, and Alexander Serebrenik. 2018. Communicative intention in code

review questions. In 2018 IEEE International Conference on Software Maintenance and Evolution (ICSME). IEEE, 519ś523.

[18] F. Ebert, F. Castor, N. Novielli, and A. Serebrenik. 2019. Confusion in Code Reviews: Reasons, Impacts, and Coping

Strategies. In 2019 IEEE 26th International Conference on Software Analysis, Evolution and Reengineering (SANER). 49ś60.

[19] Vasiliki Efstathiou and Diomidis Spinellis. 2018. Code review comments: language matters. In Proceedings of the 40th

International Conference on Software Engineering: New Ideas and Emerging Results. 69ś72.

[20] Susan R Fussell, Robert E Kraut, and Jane Siegel. 2000. Coordination of Communication: Effects of Shared Visual

Context on Collaborative Work. In Proceedings of the ACM Conference on Computer Supported Cooperative Work. 21ś30.

[21] Georgios Gousios, Martin Pinzger, and Arie van Deursen. 2014. An Exploratory Study of the Pull-Based Software

Development Model. In Proceedings of the 36th International Conference on Software Engineering (Hyderabad, India)

(ICSE 2014). Association for Computing Machinery, New York, NY, USA, 345ś355.

[22] Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and Arie van Deursen. 2015. Work Practices and Challenges

in Pull-Based Development: The Integrator’s Perspective. In Proceedings of the 37th International Conference on Software

Engineering - Volume 1 (Florence, Italy) (ICSE ’15). IEEE Press, 358ś368.

[23] Devon Greyson, Heather O’Brien, and Saguna Shankar. 2020. Visual Analysis of Information World Maps: An

Exploration of Four Methods. Journal of Information Science 46, 3 (2020), 361ś377.

[24] Carl Gutwin, Reagan Penner, and Kevin Schneider. 2004. Group Awareness in Distributed Software Development. In

Proceedings of the 2004 ACM Conference on Computer Supported Cooperative Work (Chicago, Illinois, USA) (CSCW ’04).

Association for Computing Machinery, New York, NY, USA, 72ś81. https://doi.org/10.1145/1031607.1031621

[25] François Husson, Julie Josse, and Jérôme Pagès. 2010. Principal ComponentMethods-Hierarchical Clustering-Partitional

Clustering: Why Would We Need to Choose for Visualizing Data? , 17 pages.

[26] Oleksii Kononenko, Olga Baysal, and Michael W Godfrey. 2016. Code review quality: how developers see it. In

Proceedings of the 38th International Conference on Software Engineering. 1028ś1038.

[27] Richard W Kopak. 1999. Functional link typing in hypertext. ACM Computing Surveys (CSUR) 31, 4es (1999), 16śes.

[28] Klaus Krippendorff. 2019. Content Analysis: An Introduction to Its Methodology. SAGE, Los Angeles, CA.

[29] Harald Krottmaier and Hermann A. Maurer. 2001. Transclusions in the 21st Century. Journal of Universal Computer

Science 7, 12 (2001), 1125ś1136.

[30] André Kunert, Alexander Kulik, Stephan Beck, and Bernd Froehlich. 2014. Photoportals: shared references in space and

time. In Proceedings of the 17th ACM conference on Computer supported cooperative work & social computing. 1388ś1399.

[31] George Landow. 2006. Hypertext 3.0: Critical Theory and NewMedia in an Era of Globalization. Johns Hopkins University

Press, Baltimore, MD.

[32] Lisha Li, Zhilei Ren, Xiaochen Li, Weiqin Zou, and He Jiang. 2018. How are issue units linked? empirical study on the

linking behavior in github. In 2018 25th Asia-Pacific Software Engineering Conference (APSEC). IEEE, 386ś395.

[33] Zhi-Xing Li, Yue Yu, Gang Yin, Tao Wang, and Huai-Min Wang. 2017. What Are They Talking About? Analyzing

Code Reviews in Pull-Based Development Model. Journal of Computer Science and Technology 32, 6 (2017), 1060ś1075.

[34] Zhiming Liu, Lu Liu, and Hong Li. 2012. Determinants of information retweeting in microblogging. Internet Research

(2012).

[35] Amy Madden, Ian Ruthven, and David McMenemy. 2013. A Classification Scheme for Content Analyses of YouTube

Video Comments. Journal of Documentation 69, 5 (2013), 693ś714.

[36] Emily E Marsh and Marilyn Domas White. 2003. A Taxonomy of Relationships Between Images and Text. Journal of

Documentation 59, 6 (2003), 647ś672.

[37] Catherine Marshall. 1998. Toward an Ecology of Hypertext Annotation. In Proceedings of the Ninth ACM Conference on

Hypertext and Hypermedia. ACM, New York, NY, 40ś49.

[38] Hermann Maurer and Josef Kolbitsch. 2006. Transclusions in an html-based environment. Journal of Computing and

Information Technology 14, 2 (2006), 161ś173.

[39] Nora McDonald, Sarita Schoenebeck, and Andrea Forte. 2019. Reliability and inter-rater reliability in qualitative

research: Norms and guidelines for CSCW and HCI practice. Proceedings of the ACM on Human-Computer Interaction

3, CSCW (2019), 1ś23.

[40] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E Hassan. 2016. An empirical study of the impact of

modern code review practices on software quality. Empirical Software Engineering 21, 5 (2016), 2146ś2189.

[41] Martin Mühlpfordt and Martin Wessner. 2005. Explicit referencing in chat supports collaborative learning. (2005).

[42] M. V. Mäntylä and C. Lassenius. 2009. What Types of Defects Are Really Discovered in Code Reviews? IEEE Transactions

on Software Engineering 35, 3 (2009), 430ś448.

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 385. Publication date: October 2021.

ł@alex, this fixes #9ž: Analysis of Referencing Patterns in Pull Request Discussions 385:25

[43] Meiyappan Nagappan, Thomas Zimmermann, and Christian Bird. 2013. Diversity in Software Engineering Research.

In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering. ACM, New York, NY, 466ś476.

[44] Seyed Mehdi Nasehi, Jonathan Sillito, Frank Maurer, and Chris Burns. 2012. What makes a good code example?: A

study of programming Q&A in StackOverflow. In 2012 28th IEEE International Conference on Software Maintenance

(ICSM). IEEE, 25ś34.

[45] Theodor Nelson. 1987. Computer Lib/dream Machine. Tempus Books of Microsoft Press, Redmond, WA.

[46] Gary M Olson and Judith S Olson. 2000. Distance matters. Humanścomputer interaction 15, 2-3 (2000), 139ś178.

[47] Luca Pascarella, Davide Spadini, Fabio Palomba, Magiel Bruntink, and Alberto Bacchelli. 2018. Information Needs in

Contemporary Code Review. Proc. ACM Hum.-Comput. Interact. 2, CSCW, Article 135 (Nov. 2018), 27 pages.

[48] David Piorkowski, Soya Park, April Yi Wang, DakuoWang, Michael Muller, and Felix Portnoy. 2021. HowAI Developers

Overcome Communication Challenges in a Multidisciplinary Team: A Case Study. arXiv preprint arXiv:2101.06098

(2021).

[49] Lars Schneider. 2019. Save time linking resources with autolink references. https://github.blog/2019-10-14-introducing-

autolink-references/ Accessed Oct 29, 2020.

[50] Daricélio Moreira Soares, Manoel Limeira de Lima Júnior, Leonardo Murta, and Alexandre Plastino. 2015. Acceptance

Factors of Pull Requests in Open-Source Projects. In Proceedings of the 30th Annual ACM Symposium on Applied

Computing (Salamanca, Spain) (SAC ’15). Association for Computing Machinery, New York, NY, USA, 1541ś1546.

[51] Igor Steinmacher, Ana Paula Chaves, and Marco Aurélio Gerosa. 2013. Awareness support in distributed software

development: A systematic review and mapping of the literature. Computer Supported Cooperative Work (CSCW) 22,

2-3 (2013), 113ś158.

[52] Jason Tsay, Laura Dabbish, and James Herbsleb. 2014. Influence of Social and Technical Factors for Evaluating

Contribution in GitHub. In Proceedings of the 36th International Conference on Software Engineering (Hyderabad, India)

(ICSE 2014). Association for Computing Machinery, New York, NY, USA, 356ś366.

[53] Ledyard R Tucker. 1960. Intra-Individual and Inter-Individual Multidimensionality. In Psychological Scaling: Theory

and Applications, Samuel Messick and Harold Gulliksen (Eds.). Wiley, New York, NY, 155ś167.

[54] John Tukey. 1977. Exploratory Data Analysis. Addison-Wesley, Reading, MA.

[55] Giovanni Viviani, Calahan Janik-Jones, Michalis Famelis, and Gail Murphy. 2018. The structure of software design

discussions. In 2018 IEEE/ACM 11th International Workshop on Cooperative and Human Aspects of Software Engineering

(CHASE). IEEE, 104ś107.

[56] Mairieli Wessel, Bruno Mendes de Souza, Igor Steinmacher, Igor S. Wiese, Ivanilton Polato, Ana Paula Chaves, and

Marco A. Gerosa. 2018. The Power of Bots: Characterizing and Understanding Bots in OSS Projects. Proc. ACM

Hum.-Comput. Interact. 2, CSCW, Article 182 (Nov. 2018), 19 pages. https://doi.org/10.1145/3274451

[57] Matin Yarmand, Dongwook Yoon, Samuel Dodson, Ido Roll, and Sidney S Fels. 2019. łCan you believe [1:21]?!ž: Content

and time-based reference patterns in video comments. In Proceedings of the 2019 CHI Conference on Human Factors in

Computing Systems. ACM, New York, NY, 489:1ś489:12.

[58] Y. Yu, H. Wang, V. Filkov, P. Devanbu, and B. Vasilescu. 2015. Wait for It: Determinants of Pull Request Evaluation

Latency on GitHub. In 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories. 367ś371.

[59] Fiorella Zampetti, Luca Ponzanelli, Gabriele Bavota, Andrea Mocci, Massimiliano Di Penta, and Michele Lanza. 2017.

How Developers Document Pull Requests With External References. In 2017 IEEE/ACM 25th International Conference

on Program Comprehension. IEEE, Piscataway, NJ, 23ś33.

[60] Yang Zhang, Huaimin Wang, Gang Yin, Tao Wang, and Yue Yu. 2015. Exploring the use of @-mention to assist software

development in github. In Proceedings of the 7th Asia-pacific Symposium on Internetware. 83ś92.

[61] Yan Zhang and Barbara Wildemuth. 2017. Qualitative analysis of content (2 ed.). Libraries Unlimited, Santa Barbara,

CA, 318ś330.

[62] Yangyang Zhao, Alexander Serebrenik, Yuming Zhou, Vladimir Filkov, and Bogdan Vasilescu. 2017. The Impact

of Continuous Integration on Other Software Development Practices: A Large-Scale Empirical Study. In IEEE/ACM

International Conference on Automated Software Engineering. IEEE, Piscataway, NJ, 60ś71.

[63] Sacha Zyto, David Karger, Mark Ackerman, and Sanjoy Mahajan. 2012. Successful Classroom Deployment of a Social

Document Annotation System. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM,

New York, NY, 1883ś1892.

Received October 2021; revised April 2021; accepted July 2021

Proc. ACM Hum.-Comput. Interact., Vol. 5, No. CSCW2, Article 385. Publication date: October 2021.

	Abstract
	1 Introduction
	2 Previous Work
	2.1 Common grounding through referencing
	2.2 Source code review
	2.3 Factors that affect PR outcomes
	2.4 Taxonomies as a tool

	3 Methods
	3.1 Sampling PR discussions
	3.2 Identifying and coding references
	3.3 Building reference taxonomies
	3.4 Compiling PR references dataset
	3.5 Analysing PR references

	4 Findings
	4.1 Empirical Accounts of Referencing Support on GitHub
	4.2 Contextual factors that shape the reference use
	4.3 Referencing patterns in PRs with different outcomes

	5 Discussion
	5.1 Design implications
	5.2 Referencing and discussion stages
	5.3 Referencing and PR outcomes
	5.4 Varying levels of platform's support for referencing
	5.5 General lack of referencing support

	6 Conclusion
	7 Acknowledgements
	References

