
Parking Packet Payload with P4
Swati Goswami, Nodir Kodirov, Craig Mustard, Ivan Beschastnikh, Margo Seltzer

University of British Columbia
sggoswam@cs.ubc.ca,knodir@cs.ubc.ca,craigm@ece.ubc.ca,bestchai@cs.ubc.ca,mseltzer@cs.ubc.ca

ABSTRACT
Network Function (NF) deployments suffer from poor link goodput,
because popular NFs such as firewalls process only packet head-
ers while receiving and transmitting complete packets. As a result,
unnecessary packet payloads needlessly consume link bandwidth.
We introduce PayloadPark, which improves goodput by temporar-
ily parking packet payloads in the stateful memory of dataplane
programmable switches. PayloadPark forwards only packet head-
ers to NF servers, thereby saving bandwidth between the switch
and the NF server. PayloadPark is a transparent in-network opti-
mization that complements existing approaches for optimizing NF
performance on end-hosts.

We prototyped PayloadPark on a Barefoot Tofino ASIC using
the P4 language. Our prototype, when deployed on a top-of-rack
switch, can service up to 8 NF servers using less than 40% of the
on-chip memory resources. The prototype improves goodput by 10-
26% for a Firewall → NAT NF chain and reduces PCIe bandwidth
load by 2-58%. With workloads that have datacenter network traffic
characteristics, PayloadPark provides a 13% goodput gain with a
Firewall → NAT → LB NF chain, without latency penalty. In this
scenario, we can further increase the goodput gain to 28% by using
packet recirculation.

CCS CONCEPTS
• Networks → Programmable networks; Middle boxes / net-
work appliances.

KEYWORDS
Programmable switches, Network function virtualization, P4
ACM Reference Format:
Swati Goswami, Nodir Kodirov, Craig Mustard, Ivan Beschastnikh, Margo
Seltzer. 2020. Parking Packet Payload with P4. In The 16th International
Conference on emerging Networking EXperiments and Technologies (CoNEXT
’20), December 1–4, 2020, Barcelona, Spain. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3386367.3431295

1 INTRODUCTION
Network Functions (NFs) are widely deployed in enterprise net-
works, and they implement critical network functionality, such
as intrusion detection, Network Address Translation (NAT), and
performance optimization (WAN optimizers, caches) [32]. NFs are
often connected together in an NF chain [15] and deployed using

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7948-9/20/12.
https://doi.org/10.1145/3386367.3431295

P

NF1
SPLIT

H P

H H’

P

MERGE
H’

NF2 NFn

Figure 1: Abstract PayloadPark deployment. Split decouples
the packet into header H and payload P. Shallow NF chain
NF1, NF2 ... NFn transforms headerH intoH’.Merge reassem-
bles the header H’ with payload P.

software modules running on commodity hardware. However, lack
of specialized hardware results in degraded performance [9, 12].
Moving NFs to the cloud further degrades performance due to
additional network hops and encryption overhead [32].

NFs that process only headers, such as firewalls and NATs, suffer
from poor goodput, because unexamined packet payloads waste link
bandwidth. Goodput is the amount of useful information delivered
over time. In this case, goodput is the amount of data examined by
the NF. For example, NATs and firewalls can achieve throughput that
saturates a 40 Gbps link when processing 10 Mpps with 500 byte
(4000 bits) packets. But, they only examine the 5-tuple in the first
42 bytes (336 bits) of the header (including Ethernet, IPv4, and UDP
header). So their goodput is only 3.36 Gbps. To increase goodput, we
propose PayloadPark – a header-payload decoupling optimization
that temporarily holds packet payloads in switch dataplanememory.
PayloadPark forwards only packet headers to NFs, temporarily
parks payloads in the switch ASIC memory, and reassembles the
packet when returned by the NFs.

As PayloadPark addresses bandwidth, it is orthogonal to prior
work that optimizes endhosts, such as reducing per-packet CPU
cycles (SpeedyBox [16], NetBricks [28]). In fact, PayloadPark com-
plements such existing end-host optimizations. For example, a com-
bined setup of PayloadPark and NetBricks results in goodput im-
provement from PayloadPark and throughput and latency gains
from NetBricks. Also, NF frameworks that use specialized devices
such as FPGAs [20] or programmable NICs [19] are bandwidth
bound and will yield a higher benefit by improving the packet
processing rate – a result of improved link goodput.

PayloadPark is appropriate for header-only and fixed-prefix NFs,
i.e., shallow NFs, such as NATs, firewalls, and L4 load balancers
and not services that require deep packet inspection, e.g., intrusion
detection. A prior survey shows that, on average, 44% of datacenter
traffic requires at least one of L4 load-balancing and NAT opera-
tions [29]. Moreover, with increasingly encrypted traffic [25], many
NFs are effectively limited to shallow processing and will benefit
from PayloadPark.

Fig. 1 shows an abstract deployment of PayloadPark and its two
primitive operations, Split and Merge. Split decouples the incoming
packet’s header, H, from its payload, P. Header H is forwarded to
the shallow NF chain NF1,NF2...NFn , while payload P is parked

274

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3386367.3431295
https://doi.org/10.1145/3386367.3431295
https://creativecommons.org/licenses/by/4.0/

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain S. Goswami et al.

REMAINING
PAYLOADETH IP TCP/

UDP
ENB
(1 bit)

OP
(1 bit)

ALIGN
(6 bits)

TAG
(48 bits)

PayloadPark Header

Figure 2: PayloadPark header. Enable (ENB) bit indicates
whether PayloadPark operation is enabled. Opcode (OP) in-
dicates the operation to be performed: Merge | Explicit Drop.
ALIGN bits are for byte-alignment. TAG is a unique identi-
fier for the packet.

(stored) in the switch dataplane.Merge re-combines the (potentially
modified) header H’ from the NF chain with payload P before for-
warding the packet to its destination. In our prototype, we deploy
Split and Merge on the same ToR switch. This improves goodput,
because the link between the switch and the NF servers transfers
only useful information (headers) and not unused data (payload).

While intuitive, PayloadPark has only recently become possi-
ble thanks to newly available Reconfigurable Match-Action Table
(RMT) switches [4]. RMT switches are equippedwith programmable
ASICs that create opportunities for implementing in-network op-
timizations using domain specific languages such as P4 [3]. RMT
switches have limited storage resources and impose limits on the
number of per-packet compute and stateful operations. These re-
strictions ensure packet processing at line rate, but make Payload-
Park implementation challenging. PayloadPark fits within these
limits by 1) relying on the low-latency nature of NFs to bound re-
quired storage so it can evict old payloads, and 2) by turning the
optimization off when switch memory is exhausted.

Prior work, such as Dejavu [34] and SilkRoad [24], move func-
tionality onto the switch (e.g., offloading entire chains or spe-
cific functionality, such as load balancing). Such deployments pro-
vide high performance but limit flexibility in NF implementation.
SilkRoad stores active connection state in the switch, so it suffers
performance degradation when the number of active connections
exceed stateful memory resources on the switch [23]. Our work
differs from these approaches in that PayloadPark is a transparent
in-network optimization that leaves NF chains to run on commodity
hardware. This retains the flexibility in implementing NF chains
and ensures ease of integration with existing NF frameworks such
as OpenNetVM [35] and NetBricks [28].

2 BACKGROUND: RMT SWITCHES
RMT switches process packets using user-defined headers. This
flexibility enables PayloadPark to process packet payloads in the
switch dataplane. At a high level, RMT switches work by passing
each packet through a series of match-action tables (MATs), which
perform actions (functions) on packet headers that match criteria.

More precisely, the packet processing pipeline is composed of
three building blocks: Parser, Match-Action Pipeline, and Deparser.
The Parser interprets the packet header using a user-defined header
and populates the Packet Header Vector (PHV). The PHV size is ven-
dor dependent, and it limits the overall size of packet headers that
can be processed in the switch dataplane. TheMatch-Action Pipeline
is composed of stages, where each stage has local ALU, SRAM, and
TCAM resources. The match-action pipeline is programmed by

PKT IN

NF FRAMEWORK

SPLIT

MERGE

TAGGER PAYLOAD
EVICTOR L2

FWDLOOKUP TABLE

SWITCH DATAPLANE

NFn

TOR
SWITCH

NF
SERVER NF2 NF1

PKT OUT

Figure 3: Packet flow in PayloadPark. Split decouples the
packet header and payload, and stores the payloads in the
lookup table. TheMerge operation merges the headers from
the NF server with the payloads stored in the lookup table.
L2 FWD forwards packet using L2 forwarding.

writing match-action table (MAT) definitions in P4 [3]. Each MAT
contains several entries composed of match and action rules. For
each packet, a MAT compares header fields (from the PHV) using
user-supplied match rules and executes an action based on the com-
parison result. MATs can also perform stateful operations using
the read/write register API. The register API abstracts SRAM as an
array of fixed-sized bit-vectors called registers. To ensure line-rate
packet processing, switches impose restrictions on the number of
per-packet stateful operations. MATs communicate values, such as
register contents, to subsequent stages using user-defined metadata
values that are allocated on the PHV. Finally, theDeparser assembles
the new header from the modified and unmodified header fields.

The packet processing pipeline can recirculate the packet by
sending the packet back to the parser. Recirculation increases the
number of permitted per-packet header transformations but results
in a bandwidth and latency penalty.

3 PAYLOADPARK OVERVIEW
3.1 PayloadPark Header
PayloadPark is enabled on a per-port basis. When a packet arrives
on a PayloadPark-enabled port, the Split operation adds a Payload-
Park header (shown in Fig. 2). The Enable (ENB) bit indicates if
the payload was successfully stored in the switch. The opcode (OP)
bit distinguishes between Merge and Explicit Drop operation (dis-
cussed in §5.2). The tag is a unique identifier for each packet, and
it is used to map the packet to the payload in the switch dataplane.

3.2 High Level Algorithm
PayloadPark implements two operations: Split and Merge:
• Split decouples the packet header and payload, by (1) associat-
ing a unique tag with the packet, (2) storing the payload in the
dataplane, (3) adding the PayloadPark header to the packet, and
(4) setting the Enable bit to one (ENB bit in Fig. 2). The Split
operation sets the Enable bit to zero when there is insufficient
memory to store the payload.

• Merge recombines the payload with the modified header from
the NF chain. The Merge operation (1) uses the tag to locate the
stored payload, (2) appends the payload to the packet, (3) removes

275

Parking Packet Payload with P4 CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

the PayloadPark header, and (4) frees the space consumed by the
payload.
The Split and Merge functionality is composed of three compo-

nents: the packet tagger, lookup table, and payload evictor (Fig. 3).
Packet tagger. Every packet must be assigned a unique identifier
or tag that is used to index into the lookup table. The original packet
header cannot be used for indexing, because NF chains can modify
headers.
Lookup table. PayloadPark uses a lookup table to store packet
payloads. The lookup table is composed of two tables – themetadata
and payload tables – each organized as register arrays indexed using
a common table index. The metadata table is conceptually a bitmask
indicating which positions in the payload table are occupied.
Payload evictor. The evictor reclaims memory occupied by pay-
loads of packets lost or dropped after the Split operation. Packet
drops may occur due to lossy links or when packets are dropped by
NFs, such as firewalls. The NF framework will not notify the switch
of packet drops, because the framework is unaware of PayloadPark
operation on the switch. For eviction, we associate every entry
in the metadata table with an expiry threshold (EXP). When an
entry reaches its expiry, the evictor reclaims space in the lookup
table. The Merge operation distinguishes between evicted and non-
evicted payloads using the packet tag. PayloadPark works within
limited storage by giving the NF enough time to return a packet
before the payload is evicted.

The switch uses L2 forwarding to send packets to their destina-
tion, and the NF framework processes the packets through an NF
chain. L2 forwarding and the NF framework run independently of
the PayloadPark components.

4 SWITCH DATAPLANE DESIGN
We next map the general-purpose design described in §3.2 onto
the architecture of the switch dataplane. The code is available on
Github [1], and our companion paper [11] includes a pseudocode.
Split operation. When the switch receives a packet, it executes
the Split operation. In the first stage, we maintain two counters
(each two bytes wide) to generate two parts of the tag: 1) an index to
find an empty location for storing the packet payload (TI in Fig. 4),
and 2) a generation number to disambiguate between evicted and
non-evicted payloads (CLK in Fig. 4). We increment these counters
and roll them over when they reach their maximum values.

In stage 2, we probe the metadata table using the table index to
determine if the index is empty. Each entry in the metadata table
includes the expiry threshold (EXP), and the index is available if
EXP is zero. If the index is available, we claim it for storing payload
by writing the CLK value and a pre-defined expiry threshold (EXP)
into the metadata table. For example, in Fig. 4, assume that when
the Split operation started, the EXP value in element 0 (the TI) was
0. We then write CLK and EXP into the zeroth entry of the metadata
table. We add the PayloadPark header to the packet and update the
ENB and tag values. If the lookup table entry at the table index is
occupied, we set the ENB bit to zero. We also add a 2 byte CRC. It
is a part of the tag and is used to validate the PayloadPark header.

If we found an empty location in stage 2, then we store the
packet payload in subsequent stages. The payload table is a two
dimensional array, where the columns are spread across MATs. To

PACKET
TAGGER

0

1

1 EXP

0 0

STAGE 1

…

P0 PL

STAGE 2 STAGE 3 STAGE N

PAYLOAD
TABLE

METADATA
 TABLE

P1TI

CLK

… … … … …

Figure 4: PayloadPark dataplane implementation. The tag-
ger has registers for the table index (TI), which is an index
into the lookup table, and a clock (CLK). The metadata ta-
ble contains two values at each index, the value of the clock
when the index was occupied and an expiry threshold (EXP).
If the index is available for storing payload, its EXP value is
0. Payload Blocks (P0, P1 ... PL) are striped across MATs.

match this memory layout, we stripe the incoming payload into
equal-sized blocks, called payload blocks. Following the example in
Fig. 4, we store the payload at the zeroth row by striping the payload
blocks, P0, P1...PL , across all the columns. The total number of
payload bytes stored in the payload table will vary across switches;
it depends on PHV size and available memory resources. In our
implementation, we store 160 bytes of payload per packet.
We do not split packets with payload size less than 160 bytes to avoid
wasting dataplane memory resources. For small packets (payload
size < 160 bytes), we add the PayloadPark header and set the ENB
bit to zero.

The Split operation does a single lookup in the metadata table to
find empty slots due to restrictions imposed by the switch. Laying
out stateful memory as arrays, or more accurately, a circular buffer,
neatly coexists with this restriction. Usually, Split and Merge pro-
cess packets in the same (FIFO) order. Thus, if we allocate space in
the metadata table sequentially, as the table index works its way
through the array, Merge operations reclaim memory at earlier
positions in the array. By the time the table index wraps around, it
should find empty spots. This access pattern optimizes PayloadPark
operation for the common case (FIFO order).
Payload eviction. The Split operation also reclaims memory in
the lookup table by cleaning up long-lived payloads. Each entry
in the metadata table stores the entry’s expiry threshold. If during
the Split operation, the TI points to an occupied location (indicated
by a non-zero value of the expiry threshold), we decrement the
expiry threshold. When the associated expiry threshold reaches
zero, we evict the stored payload and reclaim the space for splitting
packets. For example, if value of EXP is 2, the TI will iterate over
the metadata table twice, before evicting the payload.
Merge operation. When the switch receives a packet from the
NF server, we execute the Merge operation. In the first stage, we
process packets for which PayloadPark operation was disabled.
For such packets, we remove the PayloadPark header and forward
packets to their destination.

In the second stage, we validate that the packet’s stored payload
has not been evicted by comparing the clock values in the Payload-
Park header and the metadata table. If the validation succeeds, we

276

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain S. Goswami et al.

RMT Switch
PayloadParkPktGen NF

 ServerNICNIC
port1

port2

port1

Figure 5: Experimental setup.

reclaim the space in the metadata table and remove the Payload-
Park header. If validation fails, we conclude that the payload was
prematurely evicted. We drop the packet, and update the premature
eviction counter.

In subsequent stages, we merge the payload back to the validated
packets and remove the stored payload from the lookup table.

5 EVALUATION
We compare PayloadPark’s performance with a baseline and show
that PayloadPark uses switch resources efficiently.
Setup.We implemented PayloadPark using approximately 900 lines
of P416 [6] code and deployed it on a 64 port 6.4 Tbps switch with
Barefoot Tofino ASIC [26]. The switch has four pipes where 16 ports
share the resources of each pipe. For the baseline setup, the switch
uses L2 forwarding to pass traffic between the traffic generator and
the NF server.

We use twoNF frameworks –OpenNetVM [35] andNetBricks [28]
to evaluate our prototype. OpenNetVM is built on top of DPDK and
runs NF chains in Docker containers [35]. NetBricks is a DPDK-
based framework written in Rust, which provides software-level
isolation. We evaluated PayloadPark using Intel 82599ES 10 GE NIC
and Intel XL710 40 GE NIC.

We use PktGen, a DPDK-based traffic generator to saturate the
NF server with UDP packets. We run PktGen on a dual NUMA node,
2.4 GHz Intel Xeon E5-2407 v2 server with 8 cores and 48GB RAM.
Fig. 5 shows the experimental setup. We connect two ports of the
PktGen’s NIC to the switch to saturate the NF server. One port is
not sufficient, because PayloadPark reduces data that the switch
transmits to the NF server. We use identical NICs for the traffic
generator and the NF server.

The NF server is a four NUMA node, 60 core machine with a
2.3 GHz Intel Xeon E7-4870 v2 processor and 512GB RAM. With
OpenNetVM, we reserve 3 cores for the OpenNetVM manager, and
each NF in the chain is pinned to one core. With NetBricks, we use
4 cores to run the NF chain. We can scale up the NF framework by
using additional cores or ports, but this tuning is orthogonal to our
evaluation, because PayloadPark is an in-network optimization. We
reserve 8GB of memory backed by hugepages on each NUMA node.
We use two NF chains: Firewall → NAT → LB and Firewall →
NAT to evaluate our prototype. The firewall linearly probes through
a list of blocked IP addresses. The firewall in the three-NF chain
has 20 rules, and the two-NF chain has a single rule in its firewall.
The load balancer is based on the Maglev load-balancer [8]. The
NAT is based on MazuNAT from NetBricks [28].
Evaluation metrics. PayloadPark is a goodput optimization, and
we measure goodput from the switch’s perspective. We use the
packet header as the unit of useful information. In our evaluation,
throughput of 10 Mpps corresponds to 3.36 Gbps of goodput in the
baseline and PayloadPark, because the packet header (including
Ethernet, IPv4 and UDP header) length is 42 bytes (336 bits). We

Aggr. Send Rate From PktGen’s 2 NIC Ports (Gbps)

A
gg

r.
G

oo
dp

ut
 (G

bp
s)

A
ve

ra
ge

 L
at

en
cy

 (!
s)

Figure 6: Results for FW → NAT using PktGen. The vertical
red line at X=40 Gbps highlights physical link capacity. For
X<40 Gbps, themaximumdifference between peak and aver-
age latency is 31 µs and 25 µs for baseline and PayloadPark.
At X=40 Gbps, this difference is 104 µs and 25 µs for baseline
and PayloadPark, respectively.

measured end-to-end packet processing latency from the traffic
generator. We also measured PCIe bus utilization on the NF server
using Intel’s Processor Counter Monitor [10]. We consider the sys-
tem to be healthy when the packet drop rate is below 0.1%; we use
this boundary to measure peak goodput of PayloadPark and the
baseline. Unless explicitly stated, the expiry threshold (EXP) is set
to 1, and the number of premature evictions is zero – a prerequi-
site for functional equivalence between PayloadPark and baseline
operation.
Workload. We replay PCAP files to simulate an enterprise dat-
acenter traffic pattern reported by Benson et al. [2]. The packet
sizes have a bimodal distribution, with an average packet size of
882 bytes (refer Fig. 8(a) in the appendix). Recall that we do not
split packets whose payloads have fewer than 160 bytes. In this
workload, 30% of the packets are less than 160 bytes and for such
packets, we add the PayloadPark header and set the ENB bit to zero.
We collect performance metrics by replaying packets over a period
of 2 minutes. For all experiments, we report averages of three runs.
Although we use UDP for our evaluation, PayloadPark works with
any protocol.

5.1 Performance and Ease of Integration
5.1.1 Performance improvement with replayed PCAP files. Fig. 6
shows the goodput and latency of PayloadPark with the Open-
NetVM framework. We used the FW → NAT chain with the 40
GE NIC. We observed similar results with NetBricks, but omit the
results for brevity. The experiment shows that PayloadPark can
process more traffic than the baseline without latency penalty. Pay-
loadPark integrates easily with NF frameworks, so running on
the two different frameworks required no code changes. We also
evaluated the FW → NAT → LB chain with a 10 GE NIC us-
ing OpenNetVM framework. With the 10 GE NIC, we observe
a 13.06% goodput improvement and no latency penalty. The
goodput gain in this setup is capped by the NIC capacity.

Fig. 6 also shows that PayloadPark reaches the latency cliff at
a higher packet send rate (X>40 Gbps). In the baseline setup, the
average latency increases sharply as the network link approaches

277

Parking Packet Payload with P4 CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

(b) Packet Size (Bytes)

Av
g.

 P
C

Ie
 B

us
 U

til
. (

G
bp

s)

(a) Packet Size (Bytes)

Pe
ak

 G
oo

dp
ut

 (G
bp

s)

(c) Firewall Drop Rate (%)

Pe
ak

 G
oo

dp
ut

 (G
bp

s)

Figure 7: Evaluation with 40 GE NIC (a) (Higher is better) Goodput with different packet sizes, (b) (Lower is better) PCIe bus
utilizationwith different packet sizes, (c) (Higher is better) Effect of expiry threshold and eviction policy with FW->NAT chain.

saturation (X=40 Gbps), while PayloadPark has no such spike, be-
cause the switch-to-NF server link does not approach saturation.

The bimodal packet distribution is representative of datacenter
traffic, but it yields modest goodput gain with PayloadPark. The
reason is two-fold: 1) 30% of the traffic is not Split because packet
size is less than 160 bytes, and 2) the average packet size is 882
bytes, so we don’t truncate a substantial proportion of the payload.

5.1.2 Goodput Gain with Different Packet Sizes. Fig. 7(a) and Fig. 7(b)
show PayloadPark’s behavior with different packet sizes and NF
chains with the 40 GE NIC and OpenNetVM framework. With
PayloadPark, goodput improvement varies between 10% and
36% for 384- to 1492-byte packets. We see a larger goodput gain
for small packets (384 and 512 byte packets) than large packets (1024
and 1492 byte packets), because we truncate a larger fraction of
each packet for small packet sizes. Also, the NF framework is able
to sustain the higher incoming packet rate for packets larger than
384 bytes. The FW → NAT chain has lower goodput gain than
individual NFs because the NF server does more per-packet com-
putation, which makes OpenNetVM compute bound sooner. For
256 byte packets, the goodput gain is negligible, because the NF
framework becomes compute bound and is not able to sustain the
higher packet rate in the PayloadPark deployment.

Fig. 7(b) shows a 2 - 58% reduction in PCIe bus load; the reduction
is proportional to the number of payload bytes stored in the switch.
Neugebauer et al. show that PCIe bandwidth decreases with small
packets [27]. However, PayloadPark still provides a net goodput
gain. See further discussion in our companion paper [11]. Assum-
ing that future generations of RMT switches have more memory,
the PCIe savings will increase, because we can store more payload
bytes on the switch. Another option is to deploy PayloadPark on
SmartNICs. However, this approach will not improve goodput on
the link. Also, prior work showed that NFs can run directly on
SmartNICs [20, 22]. NF deployment on SmartNICs can simultane-
ously benefit from performance gains of SmartNICs and goodput
gains from PayloadPark operating on the switch.

5.2 Effect of Expiry Threshold
We added 50 lines of code to OpenNetVM to explicitly notify the
switch when the NF drops a packet. Explicit Drop notifications
provide ground truth to evaluate the payload eviction policy, be-
cause the NF notifies the switch as soon as a payload can be evicted.
OpenNetVM marks a packet as dropped by changing the opcode

Resource Name Percentage Res. Util.

SRAM (4 NF servers) 25.94% (Avg.) / 33.75% (Peak)
TCAM 0.69%

Exact Match Crossbar 16.47%
Ternary Match Crossbar 0.88%

Packet Header Vector (PHV) 37.65%
Table 1: Resource utilization on the Tofino chip.

("OP" field in Fig. 2), truncating the packet payload, and sending
the resulting (header-only) packet back to the switch. The Drop
operation reclaims switch memory after validating the tag.

Fig. 7(c) compares the goodput with and without explicit drops
to different expiry thresholds. We replay our PCAP files with the 40
GE NIC for the Firewall → NAT chain running on OpenNetVM.
We vary the proportion of blocked IP addresses in the FW to control
the drop rate at the firewall. Unlike the firewall benchmark recom-
mendations [14], we consider dropped packets in our measurement,
since we measure goodput from the switch’s perspective.

Fig. 7(c) shows that an aggressive eviction policy (EXP=2) per-
forms comparably to Explicit Drop notifications. With a conserva-
tive eviction policy (EXP=10), goodput reduces, because dropped
packets stay longer and occupy more space in the lookup table.

Overall, the expiry threshold trades effective memory utiliza-
tion for protection against premature payload evictions. Explicit
Drops in combination with payload eviction balances this trade-off.
Fig. 7(c) shows that a conservative eviction policy with Explicit
drops (Explicit EXP=10) performs comparably to an aggressive evic-
tion policy (No Explicit EXP=2). This benefit comes at a one-time
cost of small code changes to the NF framework.

5.3 Resource Utilization
Payload Park is designed to take advantage of the spare capacity
already available in Tofino switches. Table 1 shows the dataplane
resources used by our prototype (excluding L2 forwarding). De-
spite being memory-intensive, our average per-stage SRAM utiliza-
tion is 25.94%, and it is comparable to prior work (SilkRoad [24],
BurstRadar [18]). This memory is sufficient for supporting four NF
servers (one on each pipe). PHV resource utilization of 37.65% is
comparable to our overall memory consumption and therefore, not
a limiting resource. Additional resources such as TCAM and cross-
bars also have less than 20% utilization. Overall, PayloadPark leaves
sufficient resources for implementing additional P4 functionality.

278

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain S. Goswami et al.

6 DISCUSSION
Limitations. PayloadPark increases packets per second on the
links, but the overall performance gain is capped by the perfor-
mance profile of the end-host NF server. If the NF server setup
cannot process the incoming packet rate in the baseline setup, the
overall setup will not benefit from PayloadPark, because additional
packets that PayloadPark transfers over the link will get dropped
at the NF server. NF frameworks that use commodity hardware are
compute bound and this limits the goodput gain. This is reflected
in our choice of simple NFs and shorter NFs for evaluation with the
40 GE NIC. With the 10 GE NIC, goodput gain is capped by the NIC
capacity. Also, longer packet processing latency (longer NF chain
or slower NF framework) increase the memory pressure on the
switch, limiting goodput gain with PayloadPark. In the worst case,
when switch memory is exhausted, PayloadPark gracefully stops
parking payload bytes on the switch and adds a fixed PayloadPark
header overhead (of 7 bytes) per packet.
Improving goodput gain. Our evaluation shows that storing
only 160 bytes on the ToR switch can be effective. We can further
increase the goodput gain by recirculating packets within the switch
(see Appendix B). We can also split packets across switches in
the datacenter topology: core, aggregate and the ToR switch. We
can increase the goodput gain and distribute memory pressure by
striping the packet payload across multiple switches in the packet
path within the cloud provider’s infrastructure.
Adaptive payload eviction policy. Our prototype tracks pre-
mature payload evictions with a counter. We use this counter to
identify the safe operating boundary of PayloadPark. This counter
could be used to adaptively change the payload eviction policy
and protect against unexpected latency spikes in the NF server.
For example, PayloadPark could start with an aggressive payload
eviction policy and dynamically switch to a conservative eviction
policy when payload evictions exceed a predefined threshold. We
leave this tuning to future work.
Failure scenarios. The PayloadPark deployment and the baseline
setup deal with the following failure scenarios:
1) Link/NF server failures: Both deployments are equally susceptible
to NF server failures and link disconnects. All in-flight messages
in disconnected link(s) and the server will be lost. Incoming traffic
will trigger payload eviction, but overall NF processing will stall.
Once the disconnected links and NF server are restored, the payload
evictor will reclaim space and resume normal operation.
2) Switch failure: PayloadPark increases the failure-domain of the
NF-server to include the switch. Therefore, when the switch fails,
all packets in the switch will be lost in both deployments. However,
the failure scenario differs for packets that have already reached
the NF server. In the baseline deployment, if the server connects
to another ToR switch, it can route packets through a different
ToR. But, this is not applicable to PayloadPark due to the stored
payloads in the (failed) switch. However, the number of extra lost
packets is negligible due to the small time-delta between Split and
Merge operation. For example, in Fig. 6, PayloadPark will lose at
most 200 packets (compared to the baseline) for a link operating at
full capacity (40 Gbps) with average packet size of 882 bytes and

average latency of 32 µs. With a 10 Gbps link, we will lose at most
50 packets. This packet loss is an overestimate, because we measure
latency from the traffic generator and not from the switch.

7 RELATEDWORK
Our work is inspired from Cut Payload proposed by Cheng et al. [5].
Cut Payload drops payload at overloaded switches to accelerate
TCP congestion detection. PayloadPark makes a similar observation
about not transmitting unnecessary data. Our approach is different
in that we do not drop the payload. Instead, we store the payload
at the switch and later merge it back with the header. In addition,
our work spans two areas: in-network computing and NFs.
In-network computing. Prior work accelerates applications by
offloading application functionality to programmable switches. Pay-
loadPark differs by using the switch to implement a transparent
optimization. NetCache implements an in-network cache for key-
value stores [17]. NetPaxos [7] offloads some Paxos functions to the
switch. NOPaxos (Network Ordered Paxos) uses in-network devices
for network sequencing and accelerates data replication [21].
Specialized hardware for NFs. Prior work has used specialized
hardware to improve NF performance. For example, ClickNP [20]
uses FPGAs and PacketShader [13] uses GPUs for accelerating
NFs. Metron offloads stateless NF operations to the switch and pro-
grammable NICs, resulting in better latency and throughput [19].
End-host optimizations for NFs. CoMB consolidates NFs to re-
duce provisioning and maintenance costs [31]. SafeBricks protects
NFs in untrusted clouds, but at a performance cost [30]. NFP [33]
and Parabox [36] explore parallel paths in execution of NF chains to
reduce packet processing latency. These optimizations are orthogo-
nal and PayloadPark can be integrated with such frameworks.

8 CONCLUSION
We described PayloadPark, an in-network optimization that de-
couples packets at the header-payload boundary. PayloadPark im-
proves shallow NF goodput by 2-36% without any latency penalty,
reduces NF server’s PCIe load by 2-58%, and uses less than 40% of
Tofino chip resources. Also, PayloadPark preserves the semantics
of non-PayloadPark deployments, and can be easily integrated with
existing NF frameworks.

9 ACKNOWLEDGEMENTS
We thank the anonymous reviewers and shepherd for their insight-
ful and constructive feedback. We would also like to thank Bruce
Shepherd, Joel Nider, and William Anthony Mason for reviewing
early drafts of the paper and giving us valuable feedback. This re-
search is supported by Natural Sciences and Engineering Research
Council of Canada (NSERC) under grant number 2014-04870.

REFERENCES
[1] 2020. PayloadPark on Github. https://github.com/PayloadPark/payloadpark
[2] Theophilus Benson, Aditya Akella, and David A. Maltz. 2010. Network Traffic

Characteristics of Data Centers in the Wild. In Proceedings of the 10th ACM
SIGCOMM Conference on Internet Measurement (IMC ’10). ACM, 267–280. http:
//doi.acm.org/10.1145/1879141.1879175

[3] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: Programming Protocol-independent Packet Processors.
SIGCOMM Comput. Commun. Rev. 44, 3 (2014), 87–95. http://doi.acm.org/10.
1145/2656877.2656890

279

https://github.com/PayloadPark/payloadpark
http://doi.acm.org/10.1145/1879141.1879175
http://doi.acm.org/10.1145/1879141.1879175
http://doi.acm.org/10.1145/2656877.2656890
http://doi.acm.org/10.1145/2656877.2656890

Parking Packet Payload with P4 CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

[4] Pat Bosshart, GlenGibb, Hun-Seok Kim, George Varghese, NickMcKeown,Martin
Izzard, Fernando Mujica, and Mark Horowitz. 2013. Forwarding Metamorphosis:
Fast Programmable Match-action Processing in Hardware for SDN. In Proceedings
of the 2013 Conference of the ACM Special Interest Group on Data Communication
(SIGCOMM ’13). ACM, 99–110. http://doi.acm.org/10.1145/2486001.2486011

[5] Peng Cheng, Fengyuan Ren, Ran Shu, and Chuang Lin. 2014. Catch the Whole
Lot in an Action: Rapid Precise Packet Loss Notification in Data Centers. In
Proceedings of the 11th USENIX Conference on Networked Systems Design and
Implementation (NSDI ’14). USENIXAssociation, 17–28. http://dl.acm.org/citation.
cfm?id=2616448.2616451

[6] The P4 Language Consortium. 2017. P4 16 Language Specification. Retrieved
Oct. 30, 2019 from https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.pdf

[7] Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fernando Pedone, and Robert
Soulé. 2015. NetPaxos: Consensus at Network Speed. In Proceedings of the Sym-
posium on SDN Research (SOSR ’15). ACM, 5:1–5:7. http://doi.acm.org/10.1145/
2774993.2774999

[8] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman Kononov,
Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wentao Shang, and
Jinnah Dylan Hosein. 2016. Maglev: A Fast and Reliable Software Network
Load Balancer. In Proceedings of the 13th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI ’16). Santa Clara, CA, 523–535. https:
//www.usenix.org/conference/nsdi16/technical-sessions/presentation/eisenbud

[9] ETSI. 2013. NFV Whitepaper. Retrieved Oct. 30, 2019 from portal.etsi.org/NFV/
NFV_White_Paper2.pdf

[10] The Linux Foundation. 2011. Process Counter Monitor. Retrieved Oct. 30, 2019
from https://github.com/opcm/pcm

[11] Swati Goswami, Nodir Kodirov, Craig Mustard, Ivan Beschastnikh, and Margo
Seltzer. 2020. Parking Packet Payload with P4. arXiv:cs.NI/2006.05182 https:
//arxiv.org/abs/2006.05182

[12] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee. 2015. Network function virtualization:
Challenges and opportunities for innovations. IEEE Communications Magazine
53, 2 (2015), 90–97. https://doi.org/10.1109/MCOM.2015.7045396

[13] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon. 2010. PacketShader:
A GPU-accelerated Software Router. In Proceedings of the 2010 Conference of
the ACM Special Interest Group on Data Communication (SIGCOMM ’10). ACM,
195–206. http://doi.acm.org/10.1145/1851182.1851207

[14] IETF. 2003. Benchmarking Methodology for Firewall Performance. Retrieved
Oct. 30, 2019 from https://tools.ietf.org/html/rfc3511

[15] IETF. 2003. Service Function Chaining Use Cases In Data Centers. Retrieved
Oct. 30, 2019 from https://tools.ietf.org/html/draft-ietf-sfc-dc-use-cases-06

[16] Yimin Jiang, Yong Cui, Wenfei Wu, Zhe Xu, Jiahan Gu, K. K. Ramakrishnan,
Yongchao He, and Xuehai Qian. 2019. SpeedyBox: Low-Latency NFV Service
Chains with Cross-NF Runtime Consolidation. In International Conference on
Distributed Computing Systems (ICDCS ’19). IEEE, 68–79. https://doi.org/10.1109/
ICDCS.2019.00016

[17] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,
Changhoon Kim, and Ion Stoica. 2017. NetCache: Balancing Key-Value Stores
with Fast In-Network Caching. In Proceedings of the 26th Symposium on Operating
Systems Principles (SOSP ’17). ACM, 121–136. http://doi.acm.org/10.1145/3132747.
3132764

[18] Raj Joshi, Ting Qu, Mun Choon Chan, Ben Leong, and Boon Thau Loo. 2018.
BurstRadar: Practical Real-time Microburst Monitoring for Datacenter Networks.
In Proceedings of the 9th Asia-Pacific Workshop on Systems (APSys ’18). ACM,
8:1–8:8. http://doi.acm.org/10.1145/3265723.3265731

[19] Georgios P. Katsikas, Tom Barbette, Dejan Kostić, Rebecca Steinert, and Gerald
Q. Maguire Jr. 2018. Metron: NFV Service Chains at the True Speed of the
Underlying Hardware. In Proceedings of the 15th USENIX Conference on Networked
Systems Design and Implementation (NSDI ’18). USENIX Association, 171–186.
https://www.usenix.org/conference/nsdi18/presentation/katsikas

[20] Bojie Li, Kun Tan, Layong (Larry) Luo, Yanqing Peng, Renqian Luo, Ningyi Xu,
Yongqiang Xiong, Peng Cheng, and Enhong Chen. 2016. ClickNP: Highly Flexible
and High Performance Network Processing with Reconfigurable Hardware. In
Proceedings of the 2016 Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM ’16). ACM, 1–14. http://doi.acm.org/10.1145/2934872.
2934897

[21] Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and Dan R. K.
Ports. 2016. Just Say No to Paxos Overhead: Replacing Consensus with Network
Ordering. In Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation (OSDI’16). USENIX Association, 467–483. http://dl.
acm.org/citation.cfm?id=3026877.3026914

[22] Ming Liu, Simon Peter, Arvind Krishnamurthy, and Phitchaya Mangpo
Phothilimthana. 2019. E3: Energy-Efficient Microservices on SmartNIC-
Accelerated Servers. In Proceedings of the 2019 USENIX Conference on Usenix An-
nual Technical Conference (USENIX ATC ’19). USENIX Association, USA, 363–378.

[23] James McCauley, Aurojit Panda, Arvind Krishnamurthy, and Scott Shenker. 2019.
Thoughts on Load Distribution and the Role of Programmable Switches. SIG-
COMM Comput. Commun. Rev. 49, 1 (Feb. 2019), 18–23. https://doi.org/10.1145/
3314212.3314216

[24] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu.
2017. SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap Us-
ing Switching ASICs. In Proceedings of the 2017 Conference of the ACM Special
Interest Group on Data Communication (SIGCOMM ’17). ACM, 15–28. http:
//doi.acm.org/10.1145/3098822.3098824

[25] David Naylor, Alessandro Finamore, Ilias Leontiadis, Yan Grunenberger, Marco
Mellia, Maurizio Munafò, Konstantina Papagiannaki, and Peter Steenkiste. 2014.
The Cost of the "S" in HTTPS. In Proceedings of the 10th ACM International on
Conference on Emerging Networking Experiments and Technologies (CoNEXT ’14).
ACM, 133–140. http://doi.acm.org/10.1145/2674005.2674991

[26] Barefoot Networks. 2019. Tofino ASIC. Retrieved Oct. 30, 2019 from https:
//www.barefootnetworks.com/products/brief-tofino/

[27] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audzevich, Sergio
López-Buedo, and Andrew W. Moore. 2018. Understanding PCIe Performance
for End Host Networking. In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication (SIGCOMM ’18). ACM, 327–341.
https://doi.org/10.1145/3230543.3230560

[28] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Ratnasamy, and
Scott Shenker. 2016. NetBricks: Taking the V out of NFV. In Proceedings of
the 12th USENIX Conference on Operating Systems Design and Implementation
(OSDI’16). USENIX Association, 203–216. http://dl.acm.org/citation.cfm?id=
3026877.3026894

[29] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin Murthy, Albert Green-
berg, David A. Maltz, Randy Kern, Hemant Kumar, Marios Zikos, Hongyu Wu,
Changhoon Kim, and Naveen Karri. 2013. Ananta: Cloud Scale Load Balancing.
In Proceedings of the 2013 Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM ’13). ACM, 207–218. https://doi.org/10.1145/2486001.
2486026

[30] Rishabh Poddar, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy. 2018.
SafeBricks: Shielding Network Functions in the Cloud. In Proceedings of the 15th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
’18). USENIX Association, 201–216. https://www.usenix.org/conference/nsdi18/
presentation/poddar

[31] Vyas Sekar, Norbert Egi, Sylvia Ratnasamy, Michael K. Reiter, and Guangyu Shi.
2012. Design and Implementation of a Consolidated Middlebox Architecture.
In Proceedings of the 9th USENIX Conference on Networked Systems Design and
Implementation (NSDI ’12). USENIXAssociation, 24–24. http://dl.acm.org/citation.
cfm?id=2228298.2228331

[32] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy, Sylvia Rat-
nasamy, and Vyas Sekar. 2012. Making Middleboxes Someone else’s Problem:
Network Processing As a Cloud Service. In Proceedings of the 2012 Conference of
the ACM Special Interest Group on Data Communication (SIGCOMM ’12). ACM,
13–24. http://doi.acm.org/10.1145/2342356.2342359

[33] Chen Sun, Jun Bi, Zhilong Zheng, Heng Yu, and Hongxin Hu. 2017. NFP: Enabling
Network Function Parallelism in NFV. In Proceedings of the 2017 Conference of
the ACM Special Interest Group on Data Communication (SIGCOMM ’17). ACM,
43–56. http://doi.acm.org/10.1145/3098822.3098826

[34] Dingming Wu, Ang Chen, T. S. Eugene Ng, Guohui Wang, and Haiyong Wang.
2019. Accelerated Service Chaining on a Single Switch ASIC. In Proceedings of
the 18th ACM Workshop on Hot Topics in Networks (HotNets ’19). ACM, 141–149.
https://doi.org/10.1145/3365609.3365849

[35] Wei Zhang, Guyue Liu, Wenhui Zhang, Neel Shah, Phillip Lopreiato, Gregoire
Todeschi, K.K. Ramakrishnan, and Timothy Wood. 2016. OpenNetVM: A Plat-
form for High Performance Network Service Chains. In Proceedings of the 2016
Workshop on Hot Topics in Middleboxes and Network Function Virtualization (Hot-
Middlebox ’16). ACM, 26–31. http://doi.acm.org/2940147.2940155

[36] Yang Zhang, Bilal Anwer, Vijay Gopalakrishnan, Bo Han, Joshua Reich, Aman
Shaikh, and Zhi-Li Zhang. 2017. ParaBox: Exploiting Parallelism for Virtual
Network Functions in Service Chaining. In Proceedings of the Symposium on SDN
Research (SOSR ’17). ACM, 143–149. http://doi.acm.org/10.1145/3050220.3050236

280

http://doi.acm.org/10.1145/2486001.2486011
http://dl.acm.org/citation.cfm?id=2616448.2616451
http://dl.acm.org/citation.cfm?id=2616448.2616451
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.pdf
http://doi.acm.org/10.1145/2774993.2774999
http://doi.acm.org/10.1145/2774993.2774999
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/eisenbud
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/eisenbud
portal.etsi.org/NFV/NFV_White_Paper2.pdf
portal.etsi.org/NFV/NFV_White_Paper2.pdf
https://github.com/opcm/pcm
https://arxiv.org/abs/cs.NI/2006.05182
https://arxiv.org/abs/2006.05182
https://arxiv.org/abs/2006.05182
https://doi.org/10.1109/MCOM.2015.7045396
http://doi.acm.org/10.1145/1851182.1851207
https://tools.ietf.org/html/rfc3511
https://tools.ietf.org/html/draft-ietf-sfc-dc-use-cases-06
https://doi.org/10.1109/ICDCS.2019.00016
https://doi.org/10.1109/ICDCS.2019.00016
http://doi.acm.org/10.1145/3132747.3132764
http://doi.acm.org/10.1145/3132747.3132764
http://doi.acm.org/10.1145/3265723.3265731
https://www.usenix.org/conference/nsdi18/presentation/katsikas
http://doi.acm.org/10.1145/2934872.2934897
http://doi.acm.org/10.1145/2934872.2934897
http://dl.acm.org/citation.cfm?id=3026877.3026914
http://dl.acm.org/citation.cfm?id=3026877.3026914
https://doi.org/10.1145/3314212.3314216
https://doi.org/10.1145/3314212.3314216
http://doi.acm.org/10.1145/3098822.3098824
http://doi.acm.org/10.1145/3098822.3098824
http://doi.acm.org/10.1145/2674005.2674991
https://www.barefootnetworks.com/products/brief-tofino/
https://www.barefootnetworks.com/products/brief-tofino/
https://doi.org/10.1145/3230543.3230560
http://dl.acm.org/citation.cfm?id=3026877.3026894
http://dl.acm.org/citation.cfm?id=3026877.3026894
https://doi.org/10.1145/2486001.2486026
https://doi.org/10.1145/2486001.2486026
https://www.usenix.org/conference/nsdi18/presentation/poddar
https://www.usenix.org/conference/nsdi18/presentation/poddar
http://dl.acm.org/citation.cfm?id=2228298.2228331
http://dl.acm.org/citation.cfm?id=2228298.2228331
http://doi.acm.org/10.1145/2342356.2342359
http://doi.acm.org/10.1145/3098822.3098826
https://doi.org/10.1145/3365609.3365849
http://doi.acm.org/2940147.2940155
http://doi.acm.org/10.1145/3050220.3050236

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain S. Goswami et al.

(b) SRAM Used (%)

G
oo

dp
ut

 (G
bp

s)

(a) Packet Size (Bytes)

C
D

F

(c) Send Rate Gbps

G
oo

dp
ut

 (G
bp

s)

A
vg

. L
at

en
cy

 (µ
s)

(L

og
 s

ca
le

)

Figure 8: (a) Packet size CDF for replaying PCAP, (b) (Higher is better) Effect of % reserved memory on goodput gain with
FW->NAT chain and 40 GE NIC, (c) Goodput and latency with packet recirculation with FW->NAT chain and 10 GE NIC. The
vertical red (X=10 Gbps) and blue (X ≈ 11 Gbps) lines highlight maximum send rate that baseline and PayloadPark can sustain
without recirculation.

A IMPACT OF SWITCH MEMORY
The amount of memory that PayloadPark reserves on the switch
presents a trade-off between goodput gain and memory available
for implementing additional P4 functionality. We use OpenNetVM
framework with the Firewall → NAT chain and a workload of
384 byte packets to stress the memory resources at the switch. We
set the expiry threshold to 1 and increase the traffic rate until Pay-
loadPark begins to evict packets prematurely. Premature payload
evictions must be zero to ensure functional equivalence between
PayloadPark and baseline deployment. We test with EXP=1 because
if there are no premature payload evictions with an aggressive
payload eviction policy (EXP=1), the system will be functionally
equivalent with more conservative (EXP>1) payload eviction poli-
cies.

Fig. 8(b) shows the peak traffic send rate that exhibits no prema-
ture payload evictions with different switch memory allocations.
First, we see that the PayloadPark optimization provides goodput gain
with less than 26% Tofino chip memory. Additionally, with a little
more than 17% of switch memory resources, the prototype can
sustain at most 3.44 Gbps goodput. Beyond this rate, the expiry
threshold is not high enough to prevent premature evictions. For
example, at an incoming traffic goodput rate of 3.55 Gbps (send rate
of 32.45 Gbps), we observed that 0.03% of incoming payloads are
being prematurely evicted (not shown in figure).

B EFFECT OF PACKET RECIRCULATION
In our prototype, we increase the number of stored payload bytes
from 160 bytes to 352 bytes by recirculating packets in the packet
processing pipeline. Recall that we store payload blocks by striping
them across Stages 3 to N of a single pipe (see Fig. 4). Using packet
recirculation, we stripe payloads in all the stages of a second pipe,
in addition to the payload blocks stored in the first pipe.

Fig. 8(c) shows the goodput and latency with FW → NAT → LB
using NetBricks framework with 10GE NIC. The vertical red and
blue lines highlight the peak send rate that the baseline and our pro-
totype can sustain (without recirculation). We observe 28% goodput
improvement – approximately 2x improvement over the prototype
without recirculation. A single packet recirculation induces latency
penalty of the order of 10s of ns [34]. But, we do not observe any
end-to-end latency penalty thanks to the reduced PCIe latency
caused by the additional payload bytes stored in the switch. With-
out recirculation, we observe 12% reduction in PCIe bus load at all
send rates before baseline link gets saturated. With recirculation,

NF server’s PCIe bus load deceases by 23% in comparison to the
baseline. With these results, we conclude that goodput improves
and PCIe load decreases with an increase in the number of payload
bytes stored in the switch.

C MULTIPLE NF SERVERS AND
FUNCTIONAL EQUIVALENCE

This section examines howPayloadPark benefitsmultiple NF servers,
since performance isolation is important in multi-tenant clouds.
We simulate such a setup by connecting the switch to 8 NF servers
(two on each pipe on the Tofino chip). We increase the reserved
memory resources on the switch to about 40% and slice the mem-
ory equally amongst NF servers. Each NF server runs on an 8 core,
dual NUMA node, 2.4 GHz Intel Xeon E5-2407 v2 machine. Each
NF server runs a MAC address swapper using OpenNetVM and
services traffic with 384 byte packets. We used small packets, be-
cause for a fixed link throughput, they exert more memory pressure
on the switch than larger packets. All 8 NF servers exhibit con-
sistent performance improvement with an average goodput
gain of 31.22% and latency win of 9.4%. We have omitted the
graphs for brevity. The latency savings are on the PCIe bus, because
PayloadPark copies less data between the NIC and the CPU. This
experiment also shows that PayloadPark efficiently uses the on-chip
memory resources, because it can service traffic for multiple NF
servers. Static slicing of memory resources ensures performance iso-
lation and protects payloads from being evicted by other customer’s
traffic.

We also validated functional equivalence by comparing the pack-
ets upon return from the NF server in the PayloadPark and baseline
deployments. The packets captured using DPDK-pdump are identi-
cal, and switch metrics report no premature payload evictions.

281

	Abstract
	1 Introduction
	2 Background: RMT Switches
	3 PayloadPark Overview
	3.1 PayloadPark Header
	3.2 High Level Algorithm

	4 Switch Dataplane Design
	5 Evaluation
	5.1 Performance and Ease of Integration
	5.2 Effect of Expiry Threshold
	5.3 Resource Utilization

	6 Discussion
	7 Related Work
	8 Conclusion
	9 Acknowledgements
	References
	A Impact of Switch Memory
	B Effect of Packet Recirculation
	C Multiple NF Servers and Functional Equivalence

