
Building an Infrastructure for Urgent

Computing

Pete BECKMAN a Ivan BESCHASTNIKH b Suman NADELLA c and

Nick TREBON c

a Mathematics and Computer Science Division, Argonne National Laboratory

9700 S. Cass Avenue, Argonne, IL 60439
b Computer Science and Engineering, University of Washington

Box 352350, Seattle, WA 98195
c Computation Institute, The University of Chicago

5801 S. Ellis Avenue, Chicago, IL 60637

Abstract.

Large-scale scientific computing is playing an ever-increasing role in critical

decision-making and dynamic, event-driven systems. While some computation can

simply wait in a job queue until resources become available, key decisions con-

cerning life-threatening situations must be made quickly. A computation to pre-

dict the flow of airborne contaminants from a ruptured railcar must guide evacua-

tion rapidly, before the results are meaningless. Although not as urgent, on-demand

computing is often required to leverage a scientific opportunity. For example, a

burst of data from seismometers could trigger urgent computation that then redi-

rects instruments to focus data collection on specific regions, before the opportunity

is lost. This paper describes the challenges of building an infrastructure to support

urgent computing. We focus on three areas: the needs and requirements of an ur-

gent computing system, a prototype urgent computing system called SPRUCE cur-

rently deployed on the TeraGrid, and future technologies and directions for urgent

computing.

Keywords. Urgent Computing, On-Demand, Emergency, Disaster Response

Introduction

Since the days of the first supercomputers, computation has been playing an ever-

increasing role in science. While the earliest supercomputers were used primarily to in-

crease the speed of basic calculations that could otherwise be performed by hand, modern

scientific simulation and modeling programs are extremely sophisticated. Often, large-

scale codes represent decades of programmer effort. As the computer models have in-

corporated better computational methods and improved physics and chemistry, they have

become more accurate. Their ability to accurately model and predict complex systems

has led to advances in areas ranging from weather prediction to better traffic planning.

For example, the latest report from the Intergovernmental Panel on Climate Change [1]

relies heavily on computer models to peer into the future and explore what the Earth will

be like as warming continues. While decision makers would like simulation results as



soon as possible, there is often little urgency or a deadline to complete the computation.

Developing public policy is rarely fast.

However, there is a growing number of problem domains where key decisions must

be made quickly with the aid of large-scale computation. In these domains, “urgent com-

puting” is essential, and late results are useless. A computer model capable of determin-

ing where tornadoes will form must provide early warning to local residents. A computa-

tion to predict coastline flooding or avalanche danger must guide evacuation while there

is still time. Furthermore, on-demand computing is often required to take advantage of

a scientific opportunity, for example, to process data and steer activities during an ex-

periment or observation of an unpredictable natural event. Without immediate access to

large computational resources, the opportunity may be lost.

These on-demand, large-scale computations cannot wait endlessly in a job queue for

Grid resources to become available. However, neither can the scientific community afford

to keep multimillion dollar infrastructures idle until needed by an urgent computation.

Instead, we must develop technologies that can support urgent computation dynamically

and yet preserve overall machine utilization and the productivity of the scientists working

daily on the systems.

1. The Needs of Urgent Computing

Urgent computing stems from dynamic work-flows and deadline-driven activities. Some

computation needs more interactivity and immediate attention, while other computation

is more time tolerant and suitable for traditional batch computing environments. This

notion is not at all new; and in our daily computing, we have a rich range of models.

Many new Web-based applications, from instant messengers to wikis, require users to

be connected to the Internet. These applications are tolerant to network delays, how-

ever, and response delays can be several seconds before the user experience is signif-

icantly impacted. Even more tolerant are mail programs and source code repositories

that queue transactions for later. At the other end of the spectrum are applications where

users need near-instant feedback, such as voice-over-IP, remotely editing documents, or

using a mouse to control the rendering and display of a large parallel data-set. Unfor-

tunately, this rich continuum of responsiveness that we have come to expect from our

Internet-based computing is not supported at most high-performance computing (HPC)

centers. For most HPC systems, jobs are submitted to a batch queue where they will sit

for some unknown length of time, or the user can request a reservation. Reservations fix

the start time for the job; but because the scheduler uses worst-case execution times to

guarantee the reservation, start times are pessimistic and often worse than what a user

would experience by simply submitting to the batch queue.

Urgent computation is event-driven and deadline-based. To build an international in-

frastructure to support such computation, however, we must address more than the tech-

nical challenges. While questions such as “Which applications have execution deadlines

not met by standard batch queues?” and “Under what circumstances should executing

jobs be preempted?” are difficult to answer, we must begin to build a framework for dis-

cussing these topics and formulating fair policies to support the diverse user community.



2. A Framework for Urgent Computing

An urgent computing system requires more than a mechanism for elevating job priority.

Some existing queueing systems and schedulers permit users to begin jobs sooner by us-

ing extra accounting units or by contacting an administrator for the computing resource.

But effective urgent computing must be supported within a larger framework that sup-

ports interactions with user communities, applications, job queues, and decision makers.

We believe it must also specifically address five important concepts: urgent computing

session, priority policies, participation flexibility, allocations, and verification drills.

2.1. Session Activition

We are all familiar with on-demand, urgent situations at work and in our community.

From the warning light on an automobile dashboard to an automated phone pager alert

that a supercomputer is down, urgent situations begin with a trigger. Based on operat-

ing protocols, the event may initiate a response, or “session.” Once initiated, the session

is not concluded until someone evaluates the circumstances and determines that special

actions are no longer required. Likewise, urgent computing jobs must occur within a

clearly defined session. For some applications, hundreds or thousands of jobs might be

submitted and run during a session. For others, a workflow requiring several machines

and instruments might be required. The details surrounding the activation of an urgent

session must be carefully logged and recorded. In all cases, an audit trail that can be

later scrutinized and used to improve policies and response times must be created. For

urgent computing, system administrators must be notified when sessions begin, permit-

ting periods of increased attentiveness and, if needed, human intervention to provide

the resources required. When the session completes, everyone must also be notified that

operations have returned to regular service.

2.2. Elevated Priority for Resources

A key component to urgent computing procedures is deadline and priority-based resource

management. An ambulance with sirens blaring and lights flashing forces non critical

vehicles to slow and yield the right-of-way. An urgent computing framework must per-

mit important jobs to gain priority access to the CPU, disk, networking, and other key

components required for simulations. Tasks and activities that slow or hamper the speedy

completion of computer simulations must be avoided when time is critical. On some sys-

tems, deadline-based elevated priority may simply grant shorter wait times in the queue.

On others, it may translate to immediate, dedicated access. Furthermore, simulations are

always part of a workflow that includes setting up the problem, data acquisition, com-

putation, and analysis of the results. Some applications may require the movement of

massive quantities of data, where network bandwidth can become a limiting constraint.

In such situations, elevated priority might be implemented with prioritization of data

streams in the routers or with guaranteed bandwidth reservations.

2.3. Flexible Participation Policies

Unless deployed on a set of resources owned and managed by a single stakeholder, an

urgent computing system must be able to accommodate many types of resources and



policies. The NASA Columbia supercomputer was designed to provide simulation and

modeling support for active launch missions [2]. As such, operational policies and expec-

tations can be designed from the top down. To build an international network of diverse

resources to support urgent computation, however, participation policies must be flexi-

ble. Furthermore, the system must coexist with ongoing operations. For example, some

HPC centers may support preemption for certain applications or priorities, while other

HPC centers may provide only “next-to-run” priority following the normal completion

of existing jobs. There may also be regional influences based on stake-holders. For ex-

ample, California supercomputer centers may link all of their resources to support urgent

modeling of infrastructure, such as roadways and gas lines, immediately following an

earthquake, while supercomputer centers in the Rocky Mountains may work together to

build a capability that can quickly predict where a wildfire might travel based on current

weather data and fuel models of the terrain.

2.4. Allocation and Usage Policies

The first question that arises when discussing priority access for resources is “Who gets

it?” Naturally, a key element to supporting on-demand and urgent computing is creating

a clear set of policies for both allocation and activation. At the Urgent Computing Work-

shop held at Argonne National Laboratory in April 2007 [3], participants suggested that

science teams needing urgent computing should quantify their requirements, from the

frequency of need to the size and length of jobs, so HPC centers can better plan for their

response. They should also explain their need, so requests can be prioritized. Similarly,

even after an allocation for urgent computing is provided, clear activation policies must

be formulated. A scientist given an urgent computing allocation for calculating flood

levels should not use it to meet a paper deadline. Since urgent computing is a relatively

new concept, clear policies for allocation and usage are needed to allay user concerns of

favoritism or misuse.

2.5. Practice and Verification Drills

No system, regardless of its level of technical sophistication, can operate reliably without

careful testing and verification. A system to support urgent computation must include

support for testing and verification of components as part of the core infrastructure, not

as an afterthought. In the same way that office buildings must periodically perform fire

drills to test both the methods for alerting occupants as well as their training to evacuate

quickly and calmly, an urgent computing framework must have periodic tests of the pro-

cedures, policies, and technology. We refer to urgent computing applications that have

been periodically tested and their correctness verified as being in “warm standby.” They

are ready to run as soon as inputs are provided. Scientists must know both when the last

successful test was performed and how often the application runs correctly and to com-

pletion on a particular platform. These values can help in the prediction and selection of

computational resources.

3. SPRUCE

SPRUCE, the Special PRiority and Urgent Computing Environment, is our implemen-

tation of the underlying components required to build an urgent computing framework.



SPRUCE uses a token-based authorization system chosen to facilitate allocation and

tracking of urgent sessions. As a raw technology, there are no dictated policies within

SPRUCE; resource providers have full control and flexibility to choose the policies they

are comfortable with and implement them as they see fit. To build a complete solution for

urgent computing, SPRUCE must be combined with allocation and activation policies,

local participation policies for each resource, and procedures to support “warm standby”

drills. These application drills not only verify end-to-end correctness, they also generate

performance and reliability logs that can aid in resource selection.

3.1. Right-of-Way Tokens

Many possible authorization mechanisms could be used to let users initiate an urgent

computing session, including digital certificates, signed files, proxy authentication, and

shared-secret passwords. In time-critical situations, however, simpler is better. Rely-

ing on complex digital authentication and authorization schemes could easily become

a stumbling block to quick response. Hence, simple transferable tokens were chosen

for SPRUCE. This design is based on existing emergency response systems proven in

the field, such as the priority telephone access system supported by the U.S. Govern-

ment Emergency Telecommunications Service within the Department of Homeland Se-

curity [4]. Users of the priority telephone access system, such as officials at hospitals,

fire departments, government offices, and 911 centers, carry a wallet-sized card with an

authorization number. Cardholders can use the number to place high-priority phone calls

that jump to the top of the queue for both land- and cell-based traffic even if circuits are

completely jammed because of a disaster.

The SPRUCE tokens (see Figure 1) are unique 16-character strings that are issued to

scientists who have permission to initiate an urgent computing session. The token need

not be physical and could be hidden behind a Web portal or other middleware and used

by automated systems. When a token is created, several important attributes are set.

• Resources that can be used for urgent jobs

• Maximum urgency that can be requested on any job

• Session lifetime (period for which urgent jobs may be submitted)

• Expiration date of the token

• Project name

• People to be notified if the token is used (e.g., local administrators)

A token represents a unique “session” that can include multiple jobs and lasts for

a clearly defined period. A token can also be associated with a large group of collab-

orators; once the token is activated, anyone in the group can submit jobs with elevated

priority. Users may be added or removed from the token at any time, providing flexible

coordination. We emphasize that the right-of-way token is not related to machine access

or authentication. Users must already have an account and be able to log on and authen-

ticate in the traditional manner. The token allows the users only to begin and end an ur-

gent computing session, during which they may request elevated priority for jobs. With-

out an active session, requests for elevated job priority are logged and ignored. More-

over, job priority is not elevated by default. Only jobs submitted with special, urgent job

parameters, described in Section 3.4, receive unique treatment.

To support token-based session activation and access to elevated-priority resources,

the SPRUCE architecture has three main components: user workflow and client-side job



Figure 1. SPRUCE “right-of-way" token

submission tools, the SPRUCE portal for token management and urgent request authen-

tication, and local resource provider agents that respond to priority requests.

3.2. SPRUCE User Workflow

The SPRUCE workflow is designed for application teams that provide computer-aided

decision support or instrument control. Each application team is organized by a principal

investigator (PI). The PI selects the computational “first responders,” senior staff who

may initiate an urgent computing session by activating a token. First responders are re-

sponsible for evaluating the situation in light of the policies for using urgent computing.

They must decide whether usage of the urgent resources is indeed warranted and meets

the guidelines. The team must also have analysts or interpreters who can translate the

raw data and simulation output into advice for decision makers or possibly feedback to

instruments or controls. An application that models airflow across a city to evaluate con-

tamination scenarios may have many subtle details that need interpretation and presenta-

tion to city managers as they formulate response scenarios.

Figure 2 illustrates how the SPRUCE workflow is initiated. The workflow begins

as the result of a trigger, which may be automatic (e.g., an automated warning message

from a weather advisory RSS feed parser) or human-generated (e.g., a phone call to the

PI). SPRUCE token holders are expected to use tokens with discretion and according to

coordinated policies, similar to the way that citizens are expected to use good judgment

before dialing 911. Token usage will be monitored and reviewed. Administrators can

revoke tokens at any time.

The first responder begins interaction with the SPRUCE system by initiating a ses-

sion. Token activation can be done through a Web-based user portal or via a Web service

interface. Systems built from the Web service interface can be automated and incorpo-

rated into domain-specific toolsets, avoiding human intervention. Activation is described

in greater detail in Section 3.5.2. Often, running a large simulation involves numerous

scientists who are responsible for tasks ranging from acquiring the most recent data-set

to producing a visualization for analysis. The initiator of the SPRUCE session can in-



Figure 2. SPRUCE token activation

dicate which scientist or set of scientists will be able to request elevated priority while

submitting urgent jobs. This set may later be augmented or edited.

3.3. Resource Selection

Once a token is activated and the application team has been specified, scientists can or-

ganize their computation and submit jobs. Naturally, there is no time to port the appli-

cation to new platforms or architectures or to try a new compiler. Applications must be

prepared for immediate use—they must be in “warm standby.” All of the application de-

velopment, testing, and tuning must be complete prior to freezing the code and marking

it ready for urgent computation. Grids such as the TeraGrid have dozens of large-scale

computational resources. The SPRUCE architecture supports large, diverse Grids; but

ultimately, the science teams must select the best resources for their application. Main-

taining and validating the accuracy of a simulation requires programmer resources, and

often application teams narrow their efforts to a handful of favorite platforms and sites.

Additionally, these sites should have their urgent computing priority policy in place and

clearly defined. In the same way that emergency equipment, personnel, and procedures

are periodically tested for preparedness and flawless operation, SPRUCE proposes to

have applications and policies in warm standby mode, being periodically tested and their

date of last validation logged (see Figure 3).

From this pool of warm standby Grid resources, the team must identify where to

submit their urgent jobs. In a distributed Grid of independent resource providers, different

urgent computing policies will exist. For example, one site may provide only a slightly

increased priority to SPRUCE jobs, while another site may kill all the running jobs and

allow an extremely urgent computation to use an entire supercomputer. On resources

where existing jobs are not killed or preempted, current job load will affect resource

selection. For urgent applications that produce or consume massive amounts of data,

data movement may also place constraints on resource selection. Moreover, how a given



Figure 3. Example of the warm standby log, which tracks the validation history of urgent applications on

specific resources

Figure 4. The SPRUCE advisor helps choose the best resource.

application performs on each of the computational resources must also be considered. To

support resource selection, SPRUCE users may select resources manually or may use an

automated SPRUCE “advisor” (see Figure 4).

The SPRUCE advisor, currently under development, must determine which re-

sources offer the greatest probability to meet the given deadline. To accomplish this task,

the advisor must consider a wide variety of information, including the deadline, histori-

cal information (e.g., warm standby logs, local site policies), live data (e.g., current net-

work/queue/resource status), and application-specific data (e.g., the set of warm standby

resources, performance model, input/output data repositories). To determine the likeli-

hood of an urgent computation meeting a deadline on a given resource, the advisor must

calculate an upper bound on the total turnaround time for the job (i.e., the amount of time

from when a job is submitted to when the output is ready to be analyzed). Generally, the

turnaround time can be divided into three parts: the data movement for input and output

data-sets, the resource acquisition delay before the computation begins execution, and

the time executing the computation.

The data movement delay includes the time to stage data in as well as the time it

takes to transfer output to a destination for analysis. There are several approaches to pre-

dicting large file transfer delay by combining sporadic, historic transfer delay data with

frequent, lightweight network probe data [5,6]. Additionally, recent work [7] incorpo-

rated into the Network Weather Service (NWS) [8] implements two strategies for de-

termining an upper bound on the expected network bandwidth. Both approaches make



Figure 5. Time series display of the queue delay predictions for next-to-run jobs requesting 17 to 32 nodes on

the UC-TeraGrid IA-64 cluster (image courtesy Rich Wolski, UCSB).

forecasts based upon a historical time series, generated via suitably sized NWS network

probes that estimate the available bandwidth between the source and destination.

In general, the resource acquisition delay represents the time a job waits prior to

execution. For SPRUCE, this delay entirely depends upon the requested urgency and the

local policy for each resource. Since each resource provider implements a local policy

for handling urgent computation, it becomes a key variable for determining the bound on

the queue delay. A prototype implementation of a bounds-predictor for next-to-run jobs

has been created by the NWS team. The predictor analyzes the batch queue logs of a

particular resource and generates a bound with a given level of confidence on the amount

of time a next-to-run job will wait in the queue. An example of these bounds is depicted

in Figure 5. Current research is geared toward determining similar methods for bounds

calculations for other resource policy choices, such as preemption and checkpoint/restart.

Ideally, the execution time will be predicted from a performance model of the ap-

plication on a given resource. If no performance model is available, a prediction may

be generated by the warm standby validation logs that track the performance of certain

configurations of the application on all warm standby resources.

The total turnaround time can then be bounded by combining the three predicted

delays. Additionally, the advisor can consider other aspects that affect the turnaround

time, for example, “Can the likelihood of meeting a deadline be improved by increasing

or reducing the number of CPUs the urgent job requests?” Increasing the number of

CPUs used in the computation should decrease the execution time but may result in an

increase in the queue delay.

The turnaround time is not the only factor a user must consider when selecting a

resource. The reliability of the application on a given resource is also important. For

instance, the user may choose a resource that has a slower predicted turnaround time

but on which the application has performed more reliably. As part of the warm standby

mechanism, SPRUCE can create a reliability metric based on historical validation tests.

Also, the current queue state for each resource (which can be provided via MDS4 [9] on

the TeraGrid) can be analyzed. The current queue delay methodology predicts bounds

based on historical queue data for each resource, and not on the current state of the queue.



However, the user may be able to detect certain situations that may impact their decision,

such as an idle resource or a resource that just began executing a long-running job that is

consuming the entire resource.

An important question is how to handle job failures. When successful completion

of an urgent job is paramount, it may be prudent to simultaneously submit the job to

multiple resources. Not only is the likelihood of successful completion increased, but the

results may also be compared for validation. In the event that a resource fails while a job

is in the queue, the job should be automatically routed to another resource. This resource

may be selected by the advisor or specified a priori by the user. If the job fails or the

machine goes down during execution, the user should be supplied with a list of alternate

resources. We propose this approach rather than automatic rerouting, for two reasons.

First, enough time might have elapsed that it is no longer possible to meet the deadline

on any available resource; as a result, the computation would be wasted. Second, the

execution may have produced partial results that could be used to guide a subsequent

computation.

3.4. Prioritized Job Submission

SPRUCE provides support for both Globus-based urgent submissions and direct submis-

sion to local job-queueing systems. Currently SPRUCE supports all the major resource

managers such as Torque, LoadLeveler, and LSF and schedulers such as Moab, Maui,

PBS Pro, and Catalina. The system can be extended to any scheduler with little effort.

Authorized users who have active tokens need only to specify an additional “urgency”

parameter when submitting their jobs.

The Globus Toolkit [10] for Grid computing provides the TeraGrid with uniform

tools for authentication, job submission, file transfer, and resource description. By ex-

tending the Resource Specification Language (RSL) [11], which is used by Globus to

identify user-specific resource requests, the ability to indicate a level of urgency for jobs

is incorporated. A new “urgency” parameter is defined for three levels: critical (red), high

(orange), and important (yellow). These urgency levels are guidelines that help resource

providers enable varying site-local response protocols to differentiate potentially com-

peting jobs. Users with valid SPRUCE tokens can simply submit their original Globus

submission script with one additional RSL parameter (of the form ‘urgency = <level>’),

to gain priority access.

Unlike the Globus RSL, local job queue submission interfaces, such as the PBS

command qsub [12], are often not trivially extended to accept new parameters. Specifi-

cation of urgency level when submitting directly to a resource’s local job queue typically

requires a modified job submission command or a wrapper script. SPRUCE provides a

spruce_sub script that accepts an additional command line parameter specifying the job’s

requested urgency level.

From the user’s perspective, the next step after submitting the job is to analyze the re-

sults once the job successfully completes execution. On the computing resource, behind

the scenes, the job script is parsed, and a check is performed with the SPRUCE server to

verify the user has permission to run urgent jobs before taking the corresponding action

(see Section 3.5.3).



Figure 6. Internal configuration of the SPRUCE portal

3.5. SPRUCE Portal

The SPRUCE portal provides a single-point of administration and authorization for ur-

gent computing across an entire Grid. It consists of three parts:

• The Web-based administrative interface allows privileged site administrators to

create, issue, monitor, and deactivate right-of-way tokens. It features a hierarchi-

cal structure, allowing management of specific sub-domains.

• The Web service-based user interface permits token holders to activate an urgent

computing session and to manage user permissions.

• The authentication service verifies urgent computing job submissions. A local site

job manager agent queries the remote SPRUCE server to ensure that the submit-

ting user is associated with an active token that gives permission to run urgent

jobs on the given resource at the requested urgency.

The internal architecture of the SPRUCE portal is depicted in Figure 6. Both the

user interface and the authentication service communicate with the SPRUCE server via a

Web services interface. The user interface is implemented on top of Apache Axis 2 [20],

while the portal is implemented in PHP and uses MySQL. External portals and work-

flows can become SPRUCE-enabled simply by incorporating the necessary Web service

invocations.

SPRUCE users can interact with the system using a Web browser, requiring only

minimal additional training, and making SPRUCE appropriate for emergency situations.

Likewise, administrators will find the interface easy to navigate and use regardless of

their environment.

3.5.1. Administration Interface

Distributed Grids typically span multiple administration domains. For the TeraGrid, the

Grid Infrastructure Group (GIG) coordinates the software infrastructure, allocation, us-



age reporting, user support, and Grid security. While each resource provider, such as

the San Diego Supercomputer Center or the University of Chicago, has a defined “ser-

vice level agreement” for participation in the TeraGrid, they are nevertheless indepen-

dent organizations. To support multiple administrative domains and virtual organiza-

tions, SPRUCE maintains a hierarchical Web-based administration interface, organized

into three domains. Ordered by increasing privileges, these domains are the site (Grid

resource provider), virtual organization, and root administrator.

All administrators have the ability to create and distribute tokens that are limited to

particular resources and levels of priority within their domain, along with the privilege to

revoke any tokens they created. They also have access to the token activation and urgent

job submission history, user logs, and related statistics for their respective domain.

To permit distinct resource and management policies at each site, SPRUCE main-

tains sites within a virtual organization as independent entities. This strategy enables the

site administrator to use SPRUCE in the wider context of a large multisite Grid, as well

as privately for local machines and users. A virtual organization, such as the TeraGrid,

spans multiple sites. An administrator in this domain may issue tokens that are valid

across any sites that are a part of the virtual organization. Additionally, virtual organi-

zation administrators can add new sites. The most privileged administrative domain is

the SPRUCE super-user, who is responsible for managing the virtual organizations. We

note that SPRUCE does not support tokens that span multiple virtual organizations. The

reason is that one of the defining features of a virtual organization is that their users are

uniquely identified (e.g., certificate-based Distinguished Name, UNIX user name). How-

ever, sites belonging to distinct virtual organizations that utilize different user identity

mechanisms and wish to allow cross-site tokens may form a new virtual organization

with a shared identity mechansim.

3.5.2. User Interface

The intended users of the SPRUCE Web interface are scientists responsible for organiz-

ing the application team. Their tasks include monitoring the status of tokens, activating

sessions, and organizing the team that will participate in an urgent computing session.

This interface must be simple, fast, and modeled after the workflow described earlier in

Section 3.2.

The Web services architecture enables SPRUCE integration with existing scientific

Web portals and workflows. Users who prefer to use a Web-based interface can use the

SPRUCE user portal. When a token is activated, the urgent computing session begins

immediately; it terminates once the lifetime of the token has lapsed. We note that the

session lifetime refers only to the period when urgent jobs can be submitted. Once the

session ends, jobs that are currently executing will be allowed to continue uninterrupted.

For convenience, members of the team who can submit jobs can be organized (added or

removed) before the token is activated or any time during an active session. Changes to

the set of users associated with a token are propagated without delay. All SPRUCE users

may monitor basic statistics such as the remaining lifetime of the token and can query

SPRUCE to find out the tokens with which they are currently associated.

3.5.3. Job Authentication Interface

At the core of the SPRUCE architecture is the invariant that urgent jobs may be submit-

ted only while a right-of-way token is active. In order to support this invariant across a



distributed Grid system, a remote authentication step must be inserted into the job sub-

mission tool-chain for each resource supporting urgent computation. Since the SPRUCE

portal contains the updated information regarding active sessions and users permitted to

submit urgent jobs, it is also the natural point for authentication.

When an urgent computing job is submitted via Globus or the local queue system,

the urgent priority parameters trigger authentication. This authentication is not related

to a user’s access to resource, which has already been handled by the traditional Grid

certificate or by logging into the Unix-based resource. Rather, it is a “Mother, may I”

request for permission to enqueue a high-priority job. This request is sent to the SPRUCE

portal, where it is checked against active tokens, resource names, maximum priority, and

associated users. Permission is granted if an appropriate right-of-way token is active and

the job parameters are within the constraints set for the token. All transactions, successful

and unsuccessful, are logged.

3.6. Resource Providers

To provide urgent computing capabilities for a supercomputer with SPRUCE, the re-

source providers must take three actions: register with the SPRUCE portal, formu-

late a resource specific policy for responding to urgent computing requests, and install

SPRUCE components that interface with the job manager and the queueing system.

3.6.1. Portal Registration

Sites that use SPRUCE need an administrative account on the SPRUCE portal. Using this

account, administrators can specify the details for each of the computational resources

supporting urgent job submissions. The site administrator will also provide important

contact information that can be used for emergency notifications when tokens are acti-

vated or critical errors occur. Once a site is registered, the administrator may begin gener-

ating and issuing right-of-way tokens. If the site is a member of a larger distributed Grid

system that is already a part of SPRUCE, it may be incorporated into the corresponding

virtual organization.

3.6.2. Responding to Urgent Computation

The SPRUCE architecture does not define or assume any particular policy for how sites

respond to urgent computing requests. This approach complicates some usage scenarios,

but it is unavoidable given the way we build Grids from distributed resources of indepen-

dent autonomous centers, and the diversity of resources and operating systems available

for computing.

When small-memory vector computers were the standard for HPC computing, pre-

empting jobs was natively supported. Long-running jobs were routinely suspended,

not to support urgent decision calculations, but to permit shorter jobs to achieve fast

turnaround times during compile or debug sessions. Unfortunately, almost all modern

supercomputers have lost this key feature, and therefore the SPRUCE architecture cannot

simply standardize the strategy for responding to urgent computation as immediate pre-

emption. Instead, we are left with many possible choices for supporting urgent computa-

tion depending on the systems software and middleware as well as on constraints based

on accounting of CPU cycles, machine usability, and user acceptance. Given the current



technology for Linux clusters and more tightly integrated systems such as the Cray XT3

and the IBM Blue Gene, the following responses to an urgent computing request are

possible:

• Scheduling the urgent job as “next-to-run” in a priority queue. This approach

is simple and is highly recommended as a possible response for all resource

providers. All modern queueing and job management systems support priority

queues that are used for selecting the next job to run. No running computation

is killed; and from the perspective of the user community, the impact on normal

use is low. The urgent job will begin when all of the running jobs complete for a

given set of CPUs.

• Suspending running jobs and immediately launching the urgent job. Some sys-

tems allow jobs to be suspended but remain resident in memory (via STOP sig-

nal). Running the urgent job will then force some memory paging, but the sus-

pended job could be resumed later. Some applications that use external data

sources and network connections may fail (connections time out and reset) if they

are suspended. If a node crashes, both the suspended and the urgent jobs will

be lost. The benefit of this policy is that urgent computation will begin almost

immediately, making this option very attractive in some cases.

• Forcing a checkpoint/restart of running jobs and enqueueing the urgent job as the

next to run. This response is similar to the previous response but safely moves

the checkpoint to a location where it can then be used to restart on alternate re-

sources, and is safe from node reboots. Some architectures support system-based

checkpoint/restart; and, where it is reliable, it could be used to support urgent

jobs. The urgent job begins execution when the checkpoint completes, which for

large-memory systems could take 30 minutes or more depending on I/O and disk

rates.

• Killing all running jobs and enqueueing the urgent job as next to run. Clearly this

response is drastic and frustrating to the users who will lose their computation.

Nevertheless, for extremely urgent computation, what user would demand that a

black-hole simulation complete before launching an emergency hurricane or flood

modeling scenario? In this response, an urgent job would begin immediately after

running jobs are killed. Often, the delay to start is only several minutes.

Another factor in choosing the response policy is accounting and stakeholder ac-

countability. Certain machines are funded for specific activities, and only a small amount

of discretionary time is permitted. In some cases, there may be no specific “charge code”

for urgent computing cycles. Furthermore, in order to improve fairness, some form of

compensation could be provided to jobs that are killed to make room for an urgent job.

For example, users could be refunded their CPU hours, given extra time for their trouble,

and rescheduled with higher priority in order to avoid being relegated to the back of the

job queue.

Another idea is to provide discounted CPU cycles for jobs that are willing to be

terminated to make room for urgent computations. Some users have extremely robust

and well-integrated problem solving environments that can perform checkpoint/restart

easily. Some users design their software so only one or two hours of work is lost should a

CPU fail or the entire system go down. Such users should be rewarded, and a discounted

rate would allow them to recover lost work and run more inexpensively.



Figure 7. Resource provider architecture

The calculation of “maximum time to begin” (i.e., resource acquisition delay) dis-

cussed in Section 3.3 may play an important role in choosing a response strategy.

For checkpoint/restart and killing of running jobs, the maximum time to begin can be

bounded, possibly on the order of a few minutes to tens of minutes. If it is easy to cal-

culate or determine, it can be used in conjunction with the computation deadline for se-

lecting resources. Unfortunately, jobs with next-to-run priority could wait hours or days

before running jobs complete. In any case, resource providers are encouraged to map all

three levels of urgency—critical, high, and important—to clearly defined responses.

3.6.3. Handling Urgent Job Submissions

Figure 7 gives an overview of how the job requests are handled at the resource provider.

In the Globus architecture, incoming jobs are routed through a job manager. When

SPRUCE is installed on the resource, a job manager tailored to handle the additional ur-

gency job parameters is added. This generates a job script dynamically when the urgent

job is submitted and passes it to the native resource manager such as PBS Pro or Torque.

It then authenticates the request against the SPRUCE portal (see Section 3.5.3). For ex-

ample, in the case of the Torque scheduler, a submit-filter [13] script specific to SPRUCE

is run every time a job is submitted. This filter authenticates the job script and confirms

that it was prepared by the job manager rather than a malicious user attempting to submit

a job into the high-priority queue without SPRUCE validation. If the user does not have

sufficient permission, the request is rejected. If the request passes the verification stage,

the actions needed to grant urgent access are performed based on the local site policy



and the requested priority level. After verification, the native job scheduler sends the job

ID back to Globus, and when the requested resources become available, the queued job

is launched.

Local sites can also support the command line version of the urgency job submission

mechanism in the form of spruce_sub. Submission requests of this type are also routed

through the SPRUCE job manager; the implementation mechanism remains the same.

The only difference between these two submission methods is the interface.

3.7. Future Work

The SPRUCE system is currently running in production on many sites. Our current re-

search focus is the automated “advisor” (see Section 3.3). This capability will need

some job-specific information such as running time, data dependencies, and other pos-

sible computer-specific characterizations that can be collected periodically via verifica-

tion drills. Work is under way to create a framework that can automatically handle these

warm standby runs to verify application and policy readiness. We plan to leverage the

INCA monitoring system [14] and MDS4 of the Globus Toolkit for this purpose. An im-

portant challenge is to be able to “encode” local site policies in such a way that they can

be probed by the advisor.

Another goal is to incorporate more flexibility into job submissions and tokens. Cur-

rently, users can specify only the urgency level in their RSL. The inclusion of more in-

formation such as deadline can help the advisor select a suitable resource for the job to

run. Some applications, such as hurricane and tornado modeling, have a lead time before

they will need priority access. In such cases, the policy would need to be able to clear

off the queues within the lead time, rather than providing next-to-run or preemptive ac-

cess. Additionally, token holders might want the ability to aggregate tokens, rather than

manage back-to-back separate sessions.

Yet another aspect that we are considering is providing a priority resubmit coupon to

users whose jobs have been preempted during an urgent session. This coupon is similar

to a token but would be valid for a single submission that is constrained to be similar to

the preempted job (e.g., similar number of requested CPUs, requested wallclock time,

etc.). The coupon would allow users to return to the top of the queue rather than the

bottom, where they may wait days before getting back on the machine. This strategy

provides a straightforward bound on the delay incurred when users are preempted - they

will be inconvenienced no longer than is required for the urgent job to complete.

Currently, SPRUCE does not provide tools for prioritized data movement, which is

crucial for many high-performance computations. Existing data movement strategies and

tools such as the GridFTP project [15] will facilitate SPRUCE in the future. In addition,

network provisioning that reserves bandwidth may be needed for applications with large

data requirements [16].

One drawback of the current design is that there exists a single point of failure - the

SPRUCE portal. If the portal is experiencing downtime or the user fails to access it, the

only alternative is to abort an urgent submission. In order to counteract this weakness,

the portal and the backend database will require redundancy and remote fail-over loca-

tions. The existing version of the portal is also subject to the same variety of attacks as

other Internet Web servers, including denial of service, spoofing, and abuse of software

vulnerabilities. These and other research topics have received considerable attention; we

hope to take advantage of these efforts in our future work.



Figure 8. Screenshot of SPRUCE integrated into the LEAD automated workflow

3.8. Experiences

Currently, SPRUCE is deployed at the University of Chicago/Argonne National Labo-

ratory (UC/ANL), Purdue University, Texas Advanced Computing Center (TACC), San

Diego Supercomputer Center (SDSC), and the National Center for Supercomputing Ap-

plications (NCSA) and is being deployed at Indiana University. Virginia Tech Univer-

sity is one of our early non-TeraGrid adopters planning to use this system for simulating

epidemiological spread patterns as a part of EPISIMS [17]. Louisiana State University is

also considering installing SPRUCE on it’s local cluster for the SCOOP [18] project.

Collaboration between the LEAD weather forecasting and analysis project [19] and

the UC/ANL TeraGrid resources resulted in real-time, on-demand severe weather mod-

eling and forecasting during May and June 2007. Additionally, the UC/ANL IA64 ma-

chine currently supports preemption for the highest priority urgent jobs. As an incentive

to use the platform even though jobs may be killed, users are charged at a rate of 90

percent of the standard CPU service unit billing. Deciding which jobs are preempted is

determined by an internal scheduler algorithm that considers several aspects, such as the

elapsed time for the existing job, number of nodes and jobs per user. The complete policy

mapping on the IA64 UC/ANL resource is as follows.

• Yellow - elevated priority

• Orange - next-to-run status

• Red - preemptive access

The LEAD collaboration clearly demonstrates the capability that SPRUCE can pro-

vide to existing workflows. LEAD was given a limited number of tokens for use through-



out the tornado season. Urgent runs are triggered automatically by parsing the RSS feed

of advisories published by National Weather Service for possible warning flags. A right-

of-way token at the required urgency level is activated based on the warning, and a list of

users is added onto the token automatically via the Web service interface to the SPRUCE

server. Alternatively, community users can activate tokens given to them from the LEAD

portal directly, without logging into the SPRUCE portal (see Figure 8).

A significant challenge involved allowing local sites to establish their own policies

while keeping the SPRUCE installation as simple as possible. Each site needs a cus-

tomized version of the job manager (dependent on the site policy and scheduler), which

cannot be bundled into a common distribution. Hence, site administrators must make

minor modifications to the distributed SPRUCE job manager to integrate SPRUCE into

their systems. All these changes are well documented.

4. Discussion

Apart from the framework, urgent computing needs to focus on three key areas in the

long run: Policy, Planning and Technology.

4.1. Policy

Most resource providers and users support the basic ideas of on-demand and urgent com-

puting. However, the realities of resource utilization, user expectations, and current poli-

cies make supporting urgent computing challenging. At this time, funding agencies such

as the NSF and DOE evaluate HPC centers on utilization and delivered flops per dollar.

Viewed in this narrow scope, support for urgent computing has few benefits to the par-

ticipants in this market. Warm standby computing drills and eager scheduling of urgent

jobs depress resource utilization. Urgent runs can disrupt running jobs and delay those

waiting in the queue. Drill runs to provide application warm standby are also costly, with

no clear answer as to which allocation should be charged for the continual testing of an

urgent application. However, these issues stem from the priorities and metrics used by the

stakeholders. Traditionally, the General Accounting Office has asked large government-

funded supercomputer centers for measures including system utilization, cost, and aver-

age time waiting in a queue. Hand-in-hand with building support for urgent computing

we must create new metrics and policies to reflect priorities other than peak flops per

dollar.

Because urgent computing is by its very design disruptive to the normal operation of

a center, incentives and pricing models must be explored to encourage user participation

and adoption. For example, urgent computing can create incentives for application devel-

opers to develop codes that can be checkpoint/restarted or preempted. Providing rewards

or CPU-pricing incentives to use special “interruptible” job queues can help free more

resources for urgent computing. In return, jobs from these queues will be offered a dis-

counted rate. There is also an implicit benefit for applications to be compatible with ur-

gent computing because it encourages development of code that is robust to interruptions

and failures.

Another challenge is the human response to disruptions caused by urgent comput-

ing. For example, SPRUCE changes the established model of resource control. In hand-



ing out a SPRUCE token to a resource, the administrator is making a promise to a po-

tential future computation. The administrator is also delegating the decision to preempt

jobs to someone else. It removes some of the hands-on control administrators are used

to. Outstanding SPRUCE tokens increase the probability of an urgent computing job dis-

rupting regular use of the resource. Since urgent computations are unplanned, they also

jeopardize resource utilization in the long run. To participate in an urgent computing net-

work, the rewards for the resource provider must outweigh the reduced utilization and

decreased predictability of the system.

4.2. Planning

During security breaches, professionals rely on playbooks to dictate a swift course of

action. Likewise, emergencies require fast and thoughtful response based on early plan-

ning and organization. Playbooks, or step-by-step instructions on a course of action dur-

ing emergency scenarios, are especially valuable in this regard. Urgent computing is not

something that can be organized on the fly, and we believe that resource providers, ur-

gent application programmers, scientists, and decision makers should all maintain urgent

computing playbooks for preparedness. Besides thorough instructions, an urgent com-

puting playbook can contain essential contact information for all the participants in a

scenario response to mitigating the overhead of organizing a team during an emergency.

Playbooks can also increase awareness of how applications and their output contribute

to a coherent response plan that may span multiple organizations, and many time zones.

For many situations where urgent computing could provide insight, the set of rele-

vant codes can be organized in advance. However, there will always be situations outside

the planned scenarios or playbooks. Locating application codes and science teams rele-

vant to a particular scenario can take a prohibitively long time. During emergencies, of-

ficials should know what relevant applications and scientists might be able to help guide

a response scenario. To facilitate this process, we envision a database that aggregates

information about applications that could be useful for constructing a dynamic response.

4.3. Technology

Virtualization technologies such as VMWare [21] and Xen [22] hold considerable

promise for urgent computing. Virtualization has the benefit of standardizing a runtime

environment that can be transported to a resource without worrying about an applica-

tion’s library and architecture dependencies. Urgent codes maintained in virtual ma-

chines can be deployed to the resource and begin execution immediately without any

overhead of manual configuration. This will lower turnaround time and simplify applica-

tion maintenance and drill procedures. Another benefit of using virtual machines is that

they minimally impact already running virtualized applications through graceful degra-

dation. In a virtualized environment, checkpointing or killing a running job is not nec-

essary to simultaneously execute an urgent job, since the urgent job can time share the

CPU and other resources. Or, the virtual machine for a preempted job could be moved to

a smaller or slower resource. One drawback to using virtual machines, however, is their

large memory and disk footprint. A virtual machine image needs to include libraries,

configuration settings, and other data that is usually not bundled with the application.

In building and deploying SPRUCE we have concentrated our efforts primarily on

federally sponsored supercomputing centers. However, there are commercial alternatives



to computing and storage resources. For example, Amazon provides the EC2 (Elastic

Compute Cloud) service [23] and S3 (Simple Storage Service) [24] frameworks. Al-

though they are “best effort” resources, these commercial services can be potential re-

sources during urgent need, especially in cases when other infrastructure is unavailable.

Amazon’s services are competitive alternatives because, unlike other resource providers,

they fully support virtualization and can prioritize and coordinate large reservations for

customers who are willing to pay the premium.

5. Conclusions

Urgent computing is a new and evolving field made possible by the improved fidelity and

utility of high-performance computing to decision making and near-real-time instrument

steering and control. To support this new field, scientists must work together to develop

not only the technology but also the policies to support research and development for

emerging urgent computing applications. The community must organize policies that

can be used to help guide answers to the questions of “who,” “why,” and “under what

circumstances” application teams will receive permission to initiate urgent computing

sessions. To build an international infrastructure to support urgent computing, we must

solve both challenges: political and technical. We believe that by deploying prototype

systems such as SPRUCE, the community can test and explore this new way to use

applications and resources.

6. Acknowledgments

This work was supported by the Mathematical, Information, and Computational Sciences

Division subprogram of the Office of Advanced Scientific Computing Research, Office

of Science, U.S. Dept. of Energy, under Contract DE-AC02-06CH11357.

References

[1] “IPCC Summary for Policymakers,” http://www.ipcc.ch/SPM040507.pdf.

[2] National Aeronautics and Space Administration, “High-End Computing at NASA,” Technical Report,

2006.

[3] “Urgent Computing Workshop 2007,” http://spruce.uchicago.edu/workshop/urgent07.php.

[4] “Telecommunications Service Priority (TSP) program,” http://tsp.ncs.gov.

[5] S. Vazhkudai and J. Schopf, “Using Regression Techniques to Predict Large Data Transfers,” in Inter-

national Journal of High Performance Computing Applications, 2003, pp. 249–268.

[6] M. Swany and R. Wolski, “Multivariate Resource Performance Forecasting in the Network Weather

Service,” in Proceedings of the 2002 ACM/IEEE conference on Supercomputing, 2002, pp. 1–10.

[7] R. Wolski, “Experiences with Predicting Resource Performance On-Line in Computational Grid Set-

tings,” ACM SIGMETRICS Performance Evaluation Review: SPECIAL ISSUE: Special section on Grid

computing, 2003, pp. 41–49.

[8] R. Wolski, N. Spring, and J. Hayes, “The Network Weather Service: A Distributed Resource Perfor-

mance Forecasting Service for Metacomputing,” Future Generation Computer Systems, pp. 757–768,

1999.

[9] J. Schopf, M. D’Arcy, N. Miller, L. Pearlman, I. Foster, and C. Kesselman, “Monitoring and Discovery

in a Web Services Framework: Functionality and Performance of the Globus Toolkit’s MDS4,” Argonne

National Laboratory, Preprint ANL/MCS-P1248-0405, April 2005.



[10] I. Foster, “Globus Toolkit Version 4: Software for Service-Oriented Systems,” in IFIP International

Conference on Network and Parallel Computing, 2005, pp. 2–13.

[11] “Globus Resource Specification Language,” http://www.globus.org/toolkit/docs/2.4/gram/rsl_spec1.html.

[12] “PBS ‘qsub’ Job Submission Tool,” http://www.clusterresources.com/torquedocs21/commands/qsub.shtml.

[13] “Torque Submit Filter,” http://www.clusterresources.com/products/torque/docs20/a.jqsubwrapper.shtml.

[14] “Test Harness and Reporting Framework (INCA),” http://inca.sdsc.edu.

[15] “GridFTP Project,” http://www.globus.org/grid_software/data/gridftp.php.

[16] L. Gommans, F. Travostino, John, Vollbrecht, C. de Laat, and R. Meijer, “Token-based Authorization of

Connection Oriented Network Resources,” in GRIDNETS Conference Proceedings, October 2004.

[17] “EPISIMS and Simfrastructure,” http://ndssl.vbi.vt.edu/episims.html.

[18] “Sura Coastal Ocean Observing and Prediction,” http://www.scoop.lsu.edu/gridsphere/gridsphere.

[19] “Linked Environments for Atmospheric Discovery (LEAD),” http://lead.ou.edu/.

[20] “Apache Axis 2,” http://ws.apache.org/axis2/.

[21] “VMWare,”, http://www.vmware.com/.

[22] “Xen Virtualization Software,” http://www.xensource.com/.

[23] “Amazon EC2, Amazon Elastic Compute Cloud,” http://aws.amazon.com/ec2.

[24] “Amazon S3, Amazon Simple Storage Service,” http://aws.amazon.com/s3.



The submitted manuscript has been created by UChicago Argonne, LLC, Operator of

Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Of-

fice of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The

U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclu-

sive, irrevocable worldwide license in said article to reproduce, prepare derivative works,

distribute copies to the public, and perform publicly and display publicly, by or on behalf

of the Government.


