
Synergizing Specification Miners
through Model Fissions and Fusions

Tien-Duy B. Le1, Xuan-Bach D. Le1, David Lo1, and Ivan Beschastnikh2
1School of Information Systems

Singapore Management University, Singapore
2Department of Computer Science

University of British Columbia, Canada
{btdle.2012,dxb.le.2013,davidlo}@smu.edu.sg, bestchai@cs.ubc.ca

Abstract—Software systems are often developed and released
without formal specifications. For those systems that are formally
specified, developers have to continuously maintain and update
the specifications or have them fall out of date. To deal with the
absence of formal specifications, researchers have proposed tech-
niques to infer the missing specifications of an implementation in
a variety of forms, such as finite state automaton (FSA). Despite
the progress in this area, the efficacy of the proposed specification
miners needs to improve if these miners are to be adopted.

We propose SpecForge, a new specification mining approach
that synergizes many existing specification miners. SpecForge
decomposes FSAs that are inferred by existing miners into simple
constraints, through a process we refer to as model fission. It
then filters the outlier constraints and fuses the constraints back
together into a single FSA (i.e., model fusion). We have evaluated
SpecForge on execution traces of 10 programs, which includes 5
programs from DaCapo benchmark, to infer behavioral models
of 13 library classes. Our results show that SpecForge achieves an
average precision, recall and F-measure of 90.57%, 54.58%, and
64.21% respectively. SpecForge outperforms the best performing
baseline by 13.75% in terms of F-measure.

Keywords—Specification Mining, Synergizing Miners, Model
Fission, Model Fusion

I. INTRODUCTION

The short time-to-market and rapid evolution of software
has led to software systems and libraries that are released
without any documented specifications. Even when a system
includes formal specifications, these specifications may be-
come quickly out of date as the software evolves [37]. Finally,
developers often lack the necessary skill and motivation to
write formal specifications, as this takes significant time and
manual effort [12]. The unavailability of specifications nega-
tively impacts the maintainability and reliability of systems.
Without specifications developers find code comprehension
more difficult, and software becomes more error-prone as
bugs are introduced due to mistaken assumptions. Furthermore,
without a formal specification, developers cannot take advan-
tage of some state-of-the-art bug finding and testing tools that
require formal specifications as an input [5], [28].

To address the unavailability of formal specifications, re-
searchers have proposed a number of specification mining
techniques. In this work, we focus on techniques that extract
a model in the form of a finite state automaton (FSA) by
analyzing the execution traces of systems or libraries of
interest. Krka et al. [13], Beschastnikh et al. [2], [1], Lo et
al. [6], [21], Mariani et al. [27], and many others have proposed

FSA-based specification mining algorithms. However, despite
the many studies that have inferred FSAs from execution
traces of systems, work in this area must improve for these
techniques to be adopted in practice. For example, FSAs
inferred using the k-tail algorithm are usually inaccurate for
execution traces containing methods that frequently co-occur
in particular orders, but are not required to occur exactly in
these orders [13].

In this work we propose SpecForge, an automated ap-
proach to synergize the many existing FSA-based specification
mining algorithms. SpecForge first uses existing specification
miners to infer a set of FSAs. It then uses these to generate
a superior FSA. SpecForge first performs model fissions to
extract important constraints that are common across the mined
FSAs. SpecForge then performs model fusions to combine
the extracted constraints into one FSA model. Both model
fission and model fusion processes are completely automated.
In this work, we use a set of 6 constraint templates to generate
constraints, some of which were proposed by Dwyer et al. [8]
and Beschastnikh et al. [1]. SpecForge checks whether one or
more instances of these constraint templates are observed in a
mined model. Constraints corresponding to models generated
by various specification miners are then merged together while
the outlier constraints are identified and omitted.

We evaluated SpecForge on execution traces of 10 pro-
grams, including 5 programs from the DaCapo benchmark
dataset. This benchmark includes programs and their test cases.
We use the test cases to generate execution traces for our
evaluation. Our experiments demonstrate that SpecForge can
achieve an average precision, recall, and F-measure of 90.57%,
54.58%, and 64.21%, respectively. Compared to the constituent
approaches that we combine together, our proposed approach
improves on their F-measure, which is the harmonic mean
of precision and recall, by at least 13.75%. We have also
experimented with manual tuning of SpecForge parameters,
which produced a best-case SpecForge precision, recall, and
F-measure of 83.35%, 71.82%, and 72.82% respectively.

To summarize, we make the following three contributions:

1) We propose SpecForge, a new research direction to syner-
gize multiple specification mining algorithms to mine bet-
ter specifications. This meta-approach to model inference
takes advantage of the extensive prior work on developing
new model inference algorithms.

2) We propose a novel approach to synergize multiple spec-

ification mining algorithms by performing model fissions
and fusions. Each FSA generated by the multiple spec-
ification miners is broken down into simple constraints
that characterize the FSA. These sets of constraints are
then analyzed to form the final set of constraints which
are then fused together to create the final FSA.

3) We have evaluated the effectiveness of SpecForge to infer
specifications of 13 library classes from execution traces
of 10 different programs. Our experimental results show
that SpecForge can achieve a reasonably high average
precision, recall, and F-measure of 90.57%, 54.58%, and
64.21%. The F-measure of our approach outperforms the
best-performing baselines by 13.75%.

The structure of the remainder of this paper is as follows.
In Section II we describe a number of existing FSA-based
specification mining algorithms that we synergize in this work.
In Section III, we present an example that illustrates the power
of SpecForge. In Section IV we describe SpecForge. The
experimental settings and evaluation results are detailed in
Section V. We discuss related work in Section VI and conclude
and describe future work in Section VII.

II. EXISTING FSA-BASED SPECIFICATION MINERS

This section briefly introduces a number of existing speci-
fication mining algorithms from prior work. SpecForge is built
on top of the specification mining algorithms described below.

k-tails: k-tails is a classic algorithm proposed by Biermann
and Feldman [3] to infer a FSA from execution traces. The
algorithm takes as input a set of execution traces and a
parameter k. To infer a FSA that describes the input execution
traces, k-tails first builds a prefix tree acceptor (PTA) that
accepts all of the input traces. A PTA is an automaton in the
form of a tree, where every common prefix among the input
traces corresponds to one state. Next, k-tails merges every two
states of the PTA that have identical sequences of the next k
method invocations (i.e., k-tails). The effectiveness of the k-
tails algorithm depends the choice of k and the quality of its
input traces. If the value of k is small, k-tails might lead to
incorrect state merges. If the value of k is large, then there are
fewer merges, which limits the generalization of the inferred
specifications. Similarly, if the number of input traces is small,
then the inferred FSA might not accurately capture the correct
specifications. In this work, we are interested in two variants
of k-tails with the value of k ∈ {1, 2}. We refer to these two
variants as traditional 1-tails and traditional 2-tails.

CONTRACTOR++: CONTRACTOR++ is a recently proposed
algorithm by Krka et al. [13] that uses inferred value-based
program invariants to aid the construction of a FSA from
execution traces. CONTRACTOR++ first runs Daikon [9] to
infer several families of value-based program invariants; these
include relational invariants (e.g., x > 5), null invariants (e.g.,
x is null), and size invariants (e.g., x.size() > 5). It then calls
CONTRACTOR [7] which is able to construct a FSA from
a set of invariants by running SMT solvers. CONTRACTOR
characterizes each state in the constructed FSA by a set of
methods that are enabled on that state. A legal state is a state in
which the preconditions of the enabled methods are consistent
with one another. CONTRACTOR creates a transition for a
method from a source state to a target state if that method has

S0

S1

STN

S11STN S12

STN

HMTT

S2HMTT

NT

S3
HMTF

NT

Fig. 1: StringTokenizer’s Traditional 2-tail Model.
“STN”: StringTokenizer(). “HMTT”: hasMoreTokens() = true.
“HMTF”: hasMoreTokens() = false. “NT”: nextToken().

TABLE I: Execution Traces. “STN”: StringTokenizer().
“HMTT”: hasMoreTokens() = true. “HMTF”:
hasMoreTokens() = false. “NT”: nextToken().

ID Execution Trace
T1 STN - HMTT - NT - HMTF
T2 STN - HMTT - NT - HMTT - NT - HMTF
T3 STN - HMTT
T4 STN - HMTF
T5 STN - HMTF - HMTF
T6 STN - HMTT - HMTT - NT - HMTF
T7 STN - NT - HMTF
T8 STN - HMTT - NT - NT - HMTF

both its precondition satisfied in the source state as well as its
postcondition satisfied in the target state.

SEKT: State-enhanced k-tails (SEKT) is another recently pro-
posed algorithm by Krka et al. [13]. Similar to CONTRAC-
TOR++, it also makes use of inferred value-based invariants to
construct a better FSA from execution traces. SEKT first runs
Daikon to infer value-based invariants and then runs a variant
of k-tails [3] that utilizes the inferred invariants. Similar to k-
tails, SEKT also requires that every two states that are merged
together have the same sequences of the next k invocations.
However, different from k-tail, SEKT also requires that the
merged states must share the same value-based invariants.
This additional merging requirement allows SEKT to avoid
problematic merges. In our study, we consider two variants of
SEKT with its parameter k set to 1 and 2. The two variants
are referred to as SEKT 1-tails and SEKT 2-tails.

TEMI: Trace-enhanced MTS1 inference (TEMI) is yet another
recently proposed algorithm by Krka et al. [13]. TEMI has two
main phases. In the first phase, TEMI runs an algorithm similar
to CONTRACTOR++ to build a FSA. It considers transitions
in the FSA built in the first phase as maybe transitions.
In the second phase, TEMI converts maybe transitions that
are observed in the execution traces to required transitions.
TEMI has two variants: optimistic (it outputs all maybe and
required transitions) and pessimistic (it outputs only required
transitions).

III. MOTIVATING EXAMPLE

This section provides an example that illustrates the power
of SpecForge in improving the specifications learned by several
other specification miners.

1Modal Transition System

S0

S1

STN

S2

STN

NT

NT

S3

HMTT

S8
HMTT

S15

HMTT

S17

HMTF

S5

HMTF

NT
NT

NT

NT

NT

NT

HMTF

Fig. 2: StringTokenizer’s CONTRACTOR++ Model.
“STN”: StringTokenizer(). “HMTT”: hasMoreTokens() = true.
“HMTF”: hasMoreTokens() = false. “NT”: nextToken().

Figures 1 and 2 demonstrate the behavior models that
traditional 2-tails [13] and CONTRACTOR++ [13] learn for
java.util.StringTokenizer from execution traces that are col-
lected during the execution of Dacapo batik [4]. There are
only three methods of StringTokenizer that are invoked by Da-
capo batik. They are StringTokenizer() (i.e., the constructor),
hasMoreToken(), and nextToken(). Therefore, the output FSAs
only include interactions among these three methods.

Table I shows a list of correct traces that should be accepted
by correct models (T1-T7) and one trace that should be rejected
by correct models (T8) for illustration purpose. Notice that
the model inferred by traditional 2-tails (in Figure 1) accepts
T1, T4, T7, but not T2, T3, T5, T6, and T8. This model is
restricted to accepting traces that contain no repetitions of any
methods. On the other hand, the CONTRACTOR++ model (in
Figure 2) is less restrictive, as it accepts T1, T2, T4, T7, T8,
but not T3, T5, T6. However, the CONTRACTOR++ model
inaccurately specifies that execution traces must end with an
invocation of hasMoreToken() that returns false. In practice,
developers can stop using StringTokenizer objects anytime,
even if there are still extractable tokens. Another issue with
the CONTRACTOR++ model is that it allows nextToken() to
be invoked consecutively, which may cause an exception.

To handle the inaccuracies of existing miners, our solution,
SpecForge, forges many specification miners together. It first
uses model checking to decompose FSAs learned by various
miners into simple temporal constraints. For example, from
the traditional 2-tails model in Figure 1, SpecForge discovers
that nextToken() is never immediately followed by itself, and
hasMoreToken() returning true is never immediately followed
by hasMoreToken() returning false. By using appropriate con-
straint selection heuristics (see Section IV-C), SpecForge can
omit wrong, or poorly supported, constraints and retain those
that are correct.

After the constraints have been selected, SpecForge can
re-construct a FSA that accepts behaviors that do not violate
any selected constraints. A sample FSA that is inferred by
an instance of SpecForge built on top of the 7 specification

S0

S1

NT

HMTT

S2

HMTF

HMTF

S3 S4
STN

HMTT

NT

HMTF

Fig. 3: StringTokenizer’s SpecForge Model. “STN”:
StringTokenizer(). “HMTT”: hasMoreTokens() = true.
“HMTF”: hasMoreTokens() = false. “NT”: nextToken().

S0 S1
STN

S2

HMTT

S3HMTF

HMTT

S4

NT

HMTF

HMTT

HMTF

Fig. 4: StringTokenizer’s Ground Truth Model. “STN”:
StringTokenizer(). “HMTT”: hasMoreTokens() = true.
“HMTF”: hasMoreTokens() = false. “NT”: nextToken().

miners described in Section II, which uses one of the constraint
selection heuristics, is shown in Figure 3. This FSA accepts
trace T1, T2, T3, T4, T5, T6, T7, but not T8 (see Table I).
Compared to the models produced by traditional 2-tails and
CONTRACTOR++, SpecForge model is more accurate. The
SpecForge model closely approximates the ground truth model
shown in Figure 4.

IV. PROPOSED APPROACH: SPECFORGE

A. Overall Architecture

Figure 5 illustrates the architecture of SpecForge. Spec-
Forge takes as input a set of execution traces of an API and
outputs a finite state automaton (FSA). SpecForge has three
steps: (1) model construction, (2) model fission, and (3) model
fusion.

In the model construction step, the input traces are fed
as inputs to N different FSA-based specification miners.
Each miner infers a FSA according to its underlying mining
algorithm: FSA1, . . . , FSAN . Many different specification
mining algorithms have been proposed in the literature and
in this work we focus on the N = 7 algorithms described in
Section II.

Once the specification miners infer their respective FSAs,
SpecForge unifies these FSAs into one model. First, each
inferred FSA is deconstructed into a set of constraints (model
fission). Based on some criteria, the strongly supported con-
straints are selected from this set. Finally, the selected con-
straints are fused to form the final specification (model fusion).

Traces

FSA1 FSAN-1FSA2 FSAN

LTL

Constraint1

LTL

Constraint2

LTL

ConstraintN

LTL

ConstraintN-1

Final FSA

Specification

Miner1 Miner2 MinerN-1 MinerN

Legend Process Data

…

…

…

Satisfied

Constraint1

Satisfied

Constraint2

Satisfied

ConstraintN-1

Satisfied

ConstraintN

…

LTL Satisfiability Checker

Constraints Selector &

Constraints to Unified FSA Translator

Phase I:

Model

Construction

Phase II:

Model

Fission

Phase III:

Model

Fusion

Fig. 5: SpecForge Overview

In the next two sections we further describe the model fission
and model fusion steps.

B. Model Fission

The goal of this phase is to break a single FSA (e.g.,
FSAi) into a set of basic building blocks that can be compared
to blocks from other FSAs and used to build new FSAs. A
key observation in our work is that a FSA can be thought of
as a collection of ordering constraints among events. These
ordering constraints can be shared by more than one FSA and
are suitable building blocks for other FSAs. A classic for-
malism for specifying ordering constraints is Linear Temporal
Logic (LTL) [31]. We use LTL in this work to specify ordering
constraints between events.

The model fission process consists of two steps: constraint
enumeration and constraint checking. In the first step, we
generate a set of LTL constraint that may or may not be
satisfied by the FSA. In the constraint checking step we filter
out those LTL constraints that are not satisfied by the FSA.

Constraint Enumeration: It is impossible to check all pos-
sible LTL constraints. We therefore consider just the LTL
constraints that fit the following six templates, each of which
relates two events:

• a is always followed by b (denoted by AF(a, b): an
occurrence of event a must be eventually followed by
an occurrence of event b in the execution trace. In
LTL, this rule is expressed as: G(a→ XF b).

• a is never followed by b (denoted by NF(a, b)): there
are no occurrences of event b after an occurrence of

event a in the execution trace. In LTL, this rule is
expressed as: G(a→ XG(¬b)).

• a is always preceded by b (denoted by AP(a, b)): an
occurrence of event a must be preceded by event b in
the execution trace. In LTL, this rule is expressed as:
¬a W b.

• a is always immediately followed by b (denoted
by AIF(a, b)): an occurrence of event a must be
immediately followed by an occurrence of event b in
the execution trace. In LTL, this rule is expressed as:
G(a→ X b).

• a is never immediately followed by b (denoted
by NIF(a, b)): there are no occurrences of event b
immediately after any occurrence of event a in the
execution trace. In LTL, this rule is expressed as:
G(a→ X(¬b)).

• a is always immediately preceded by b (denoted
by AIP(a, b)): an occurrence of event a must be
immediately preceded by an occurrence of event b in
the execution trace. In LTL, this rule is expressed as:
F (a)→ (¬a U(b ∧Xa))

Two of the six templates (i.e., always followed by, and
always preceded by) correspond to two of the most commonly
used LTL constraints (i.e., response and precedence) based on
the survey by Dwyer et al. [8]. Another two templates (i.e.,
never followed by, and never immediately followed by) were
introduced by Beschastnikh et al. [1] and have been demon-
strated to be useful for describing FSA mining algorithms.
The last two templates (i.e., always immediately followed by,
and always immediately precedes) are newly introduced in this
work. As a result, the bottom three templates are variations
of the first three templates with the additional “immediately”
requirement.

Given a set of execution traces, SpecForge enumerates all
possible event pairs that appear in the traces. For each pair
of events, e.g., a and b, we construct six possible LTL con-
straints corresponding to AF(a,b), NF(a,b), AP(a,b), AIF(a,b),
NIF(a,b), and AIP(a,b). These constraints form the input to the
constraint checking step.

Constraint Checking: This step checks the satisfiability of
each of the generated LTL constraints in the enumeration step
in the FSA model. For this checking we use the SPIN model
checker [11], converting the FSA model into SPIN’s Promela
language. This process filters out those LTL constraints that
are not satisfied by the FSA. At the end of this step the FSA
is decomposed into a set of LTL constraints based on the six
templates listed above; each constraint is satisfied by the FSA.

C. Model Fusion

The model fusion phase in SpecForge takes as input the
sets of LTL constraints for each of the inferred FSAs. For the
inferred FSAs FSA1, . . . , FSAN , we denote the correspond-
ing sets of LTL constraints as C1, . . . , CN . That is, Ci is a set
of constraints {Ci1, . . . CiMi

} such that Cij is based on one
of the templates above and is satisfied by FSAi.

The fusion process first selects LTL constraints from these
input sets and then fuses the selected constraints into a new
FSA. The fusion process contains the following three steps: (1)

constraint selection, (2) constraint to model translation, and (3)
unified model construction. We described each of these steps
below.

Constraint Selection: The goal of this step is to select a sub-
set of LTL constraints from the sets of all input constraints.
In this work, we consider the following four heuristics for
selecting constraints:

• Union: This heuristic assumes that all of the generated
constraints are correct and any one set is incomplete. It
returns the union of all the constraint sets: ∪1≤i≤NCi.

• Majority: Unlike the Union heuristic this heuristics
assumes that some of the constraints are incorrect, but
it assumes that those constraints that are in common
across a majority of the constraint sets are correct.
This heuristic returns the union of all constraints
that are satisfied by the majority of the FSAs. Let
num-containing(Cij) be the number of input con-
straint sets containing Cij . This heuristic returns the
set {Cij |num-containing(Cij) ≥ N/2}.

• Satisfied By ≥ x: This heuristics generalizes the
above heuristics. We deem a constraint as correct if
it is satisfied by at least x FSAs. For x > N/2 this
heuristics is at least as strict as the Majority heuristic.
Otherwise, it is more lenient. This heuristic returns the
set {Cij |num-containing(Cij) ≥ x}.

• Intersection: The final heuristic is the most conser-
vative. It assumes that a correct constraint must have
been satisfied by all inferred FSAs. It returns the set
{Cij |num-containing(Cij) = N}.

Constraint to Model Translation: At the end of the previous
step we have a set of selected constraints. In this step, we
convert each constraint into a simple FSA (see Figure 7). Each
simple FSA involves two distinct events in a given alphabet
(e.g., a and b). Note that in Figure 7 not all rejecting states
are shown for each FSA.

For example, Figure 7 (a) represents the FSA correspond-
ing to the LTL constraint AF(a, b). In Figure 7 (a), accepting
state is represented by a double circle and rejecting state is
represented by a single circle. The initial state is S1 and
whenever the event a happens, state S2 is entered. Next,
whenever event b happens from state S2, state S1 is entered
again. For example, this FSA accepts the sentence aabab.

In addition to the six simple FSAs in Figure 7, we consider
one special FSA which describes the rule “a is never imme-
diately followed by a” (the two events are the same event). In
this case, we construct a FSA (see Figure 6) which is slightly
different from Figure 7 (d).

S1

Σ\{a}

S2a
Σ\{a}

Fig. 6: FSA for “a is never immediately followed by a.”

Unified Model Construction: In this step, SpecForge com-
bines the constraint FSA models generated in the previous

S1

Σ\{a}

S2a
b

Σ\{b}

(a)

S1

Σ\{a}

S2a

Σ\{b}

S1

Σ\{a, b}

S2b

Σ

S1

Σ\{a}

S2a
Σ\{a, b}

a

S1

Σ\{a}

S2a
b

S1

Σ\{a, b}

S2b
Σ\{b}

b
(c)

(e)

(b)

(d)

(f)

Fig. 7: Translations of LTL expressions to FSAs: (a) a is
always followed by b, (b) a is never followed by b, (c) a is
always preceded by b, (d) a is never immediately followed by
b, (e) a is always immediately followed by b, (f) a is always
immediately preceded by b.

TABLE II: List of Target Library Classes and Analyzed
Programs.

Target Library Classes Client
Full Name Short Name Programs
java.util.ArrayList ArrayList Dacapo fop
java.util.HashMap HashMap Dacapo h2
java.util.HashSet HashSet Dacapo h2
java.util.Hashtable Hashtable Dacapo xalan
java.util.LinkedList LinkedList Dacapo avrora
java.util.StringTokenizer StringTokenizer Dacapo batik
org.apache.xalan.templates.ElemNumber$

NFST Dacapo xalanNumberFormatStringTokenizer
DataStructures.StackAr StackAr StackArTester
java.security.Signature Signature Columba, jFTP
org.apache.xml.serializer.ToHTMLStream ToHTMLStream Dacapo xalan
java.util.zip.ZipOutputStream ZipOutputSt JarInstaller
org.columba.ristretto.smtp.SMTPProtocol SMTPProtocol Columba
java.net.Socket Socket Voldemort

step into a unified FSA. Each model specifies a language
or a set of execution traces that it accepts. We want the
unified FSA to accept an intersection of these languages (i.e.,
a set of sentences in which each is accepted by all of the
simple models). To construct such a unified FSA, SpecForge
performs intersection over the FSAs corresponding to the
selected constraints using the dk.bricks.automaton library [29].
The unified FSA will always be a connected FSA since it
is always possible to represent a set of sentences as one
connected FSA.

V. EMPIRICAL EVALUATION

In this section, we first describe our methodology in
evaluating SpecForge against a number of baselines. We then
describe four research questions and present our experimental
results that answer these questions. We finish the section by
discussing remaining, untapped potentials, of our approach and
threats to validity.

A. Methodology

Target Library Classes: In this work, we evaluate the ef-
fectiveness of the SpecForge specification miner in generating
behavioral models of 13 library classes. The list of 13 library
classes is listed in Table II. The 7 underlying specification
miners on top of which SpecForge is built require a set of
execution traces to infer FSAs. These traces were obtained by
running a set of test cases. We use traces from passing test
cases as they are likely to capture correct program behaviour.
We make use of a number of execution traces made available
by Krka et al. and generate additional execution traces by
running programs in the DaCapo benchmark. The list of client
programs that had been run to generate the traces are also
listed in Table II.

Ground Truth Models: To evaluate the quality of a generated
FSA, we need a ground truth FSA. Our ground truth FSAs are
taken from those that were created by Krka et al. [13] and
Pradel et al. [32]. Following Krka et al., we remove edges
and nodes from the FSAs that do not appear in the execution
traces that we use to mine the model. Also, since the models
were not created by library creators, to ensure correct ground
truths, we check the ground truth models against documented
specifications of library usage. We corrected a few errors in the
ground truth FSAs that were manually created by Krka et al.
and Pradel et al. that do not follow the documented specifica-
tions. We exclude net.sf.jftp.net.wrappers.SftpConnection from
our experiments (which was considered by Krka et al.) due to
the lack of documentation, which prevented us from verifying
its ground truth model. We exclude some library classes whose
models are made available by Pradel et al. due to difficulties
in running Daikon to collect execution traces from some of the
JDK libraries2. The corrected ground-truth models are publicly
available: https://github.com/ModelInference/SpecForge

Evaluation Metrics: To measure the effectiveness of Spec-
Forge, we use precision and recall introduced by Lo and
Khoo [6]. These have been previously used to evaluate many
different specification mining algorithms, e.g., [13], [6]. Pre-
cision and recall are computed by comparing the language
that is accepted by an inferred FSA with the language that
is accepted by a ground truth FSA. Precision refers to the
proportion of sentences that are accepted by the inferred model
that is also accepted by the ground truth model. Recall refers
to the proportion of sentences that are accepted by the ground
truth model that is also accepted by the inferred model. We also
compute F-measure, which is the harmonic mean of precision
and recall and is defined as:

F-measure = 2× Precision× Recall
Precision + Recall

There is often a tradeoff between precision and recall: one
can gain precision by sacrificing recall (and vice versa). For
example, SpecForge we omit more constraints in the model
fusion phase (resulting in a more general model that accepts
more traces) to achieve higher recall. However, this may reduce

2We have checked with Daikon developers who responded: “there is not an
easy way to generate invariants within the JDK; we assume that the libraries
are correct” [33].

precision (if correct constraints are removed in the process)3. In
the extreme, if only one correct rule is selected, the precision
will be 100%, but recall will be low. F-measure is often used
as a summary measure that evaluates if an increase in precision
outweighs a reduction in recall (and vice versa). Thus, we use
F-measure as a final yardstick to evaluate the effectiveness of
specification mining algorithms.

In the evaluation of precision and recall, we need to
generate a set of sentences that characterize the language
that is accepted by a FSA. To generate sufficient number of
sentences that characterize the language that is accepted by an
FSA, we follow the procedure described by Lo et al. in their
recent empirical study paper that compares the effectiveness
of various existing specification mining algorithms [22]. We
generate a set of sentences that are accepted by the FSA such
that each edge of the FSA is covered at least 10 times (10-
transition-coverage). Since some of the inferred automata is an
NFA (Non-deterministic Finite Automata) and are very large,
to keep the number and length of traces manageable, we limit
the number of traces to 10,000 and the length of traces to 100.

Default Configuration: Our proposed approach has a number
of parameters that can be tuned. The first parameter is the
selection of constraint templates that are used in the constraint
enumeration step. The second parameter is the selection of
heuristic used in the constraint selection step. By default,
we make use of all the six constraint templates for the
constraint enumeration step, and the Intersection heuristic for
the constraint selection step.

B. Research Questions

RQ1: How effective is the SpecForge specification mining
approach?

The effectiveness of a specification mining approach affects
the usefulness of the mined specification for program compre-
hension and for automated program analysis. To answer this
research questions, we measure the precision, recall, and F-
measure of SpecForge in inferring behavioral models of the
13 library classes described in Section V-A.

RQ2: How much does SpecForge improve over existing
specification mining approaches?

Many specification mining approaches that analyze exe-
cution traces and output a finite state automaton have been
proposed in the literature. SpecForge is built on top of 7
existing approaches. To answer this research question, we
compare the precision, recall, and F-measure of SpecForge
with those of the 7 existing approaches for each of the 13
library classes that we investigate in this work.

RQ3: What is the impact of changing the constraint
templates used in the constraint enumeration step?

In this paper, we consider six different constraint templates.
Some constraints may capture important properties in a FSA
that a miner successfully “generalizes” from a set of execution
traces, while others may capture the idiosyncrasies of a FSA
miner which “overfit” the execution traces. In this research
question, we investigate if some constraint templates are prone

3If only bad constraints are removed, then precision will also improve.

https://github.com/ModelInference/SpecForge

TABLE III: Precision, Recall, and F-measure: Our Approach
with Default Configuration.

Target Library Classes Precision Recall F-measure
ArrayList 100.00% 65.08% 78.85%
HashMap 100.00% 44.02% 61.13%
HashSet 100.00% 55.44% 71.33%
Hashtable 100.00% 44.11% 61.22%
LinkedList 100.00% 82.80% 90.59%
StringTokenizer 60.00% 74.15% 66.33%
NFST 92.00% 30.63% 45.96%
SMTPProtocol 93.73% 45.00% 60.81%
Signature 100.00% 24.32% 39.13%
Socket 77.07% 40.86% 53.41%
StackAr 54.62% 100.00% 70.65%
ToHTMLStream 100.00% 60.00% 75.00%
ZipOutputStream 100.00% 43.18% 60.32%

Average 90.57% 54.58% 64.21%

to capturing incorrect constraints. To answer this question, we
evaluate the effectiveness of SpecForge when only some of
the constraint templates are considered. We then highlight the
effect of adding and omitting some constraint templates.

RQ4: What is the impact of changing the heuristics used
in the constraint selection step?

In this work, we propose a number of heuristics that we can
adopt when selecting constraints that have been extracted from
the input FSAs. These heuristics, presented in Section IV-C,
include: union, intersection, majority, and satisfied by ≥ N.
For this research question, we evaluate the effectiveness of
our approach when using each of these heuristics. To simplify
analysis, we do not vary the constraint templates and use the
templates from the default configuration.

C. Results

In the following subsections, we detail the experimental
results that answer each of the four research questions.

1) RQ1: Effectiveness of SpecForge: The precision, recall,
and F-measure of SpecForge for the different target library
classes are shown in Table III. We note that precision ranges
from 54.62% to 100%, and that recall ranges from 24.32%
to 100%, while F-measure ranges from 39.13% to 100%.
Noticeably, the precision is higher than the recall in most of
the cases (11 out of 13 classes). Thus, most of the behaviors
captured in the inferred models are correct but some correct
behaviors are not captured successfully. Furthermore, there are
8 library classes for which our approach achieves a precision
of 100%, and 1 library class for which its recall is 100%. Our
approach achieves the best F-measure for LinkedList (i.e.,
90.59%) and it achieves the worst F-measure for Signature
(i.e., 39.13%). Overall, SpecForge achieves an average preci-
sion, recall, and F-measure of 90.57%, 54.58%, and 64.21%,
respectively.

We have manually investigated the inaccuracies of models
generated with SpecForge. We found that the main cause of the
low F-measures is due to wrong temporal rules being selected
and fused into the overall model. Sections V-C3 and V-D
describe how we can further improve the F-measure.

2) RQ2: Our Approach vs. Baselines: In this research,
we compare the effectiveness of SpecForge against the 7
existing baselines described in Section II. These baselines

TABLE VI: Average Precision, Recall, and F-measure: Our
Approach with Different Constraint Templates.

Constraint Average
Templates Precision Recall F-measure
ALL (default) 90.57% 54.58% 64.21%
ALL − AF 87.58% 60.52% 68.21%
ALL − NF 90.68% 54.98% 64.83%
ALL − AP 15.01% 54.58% 21.36%
ALL − AIF 90.73% 54.58% 64.33%
ALL − NIF 86.60% 62.62% 66.71%
ALL − AIP 89.85% 63.22% 70.75%
AF + NF + AP 83.35% 71.82% 72.82%
AF + NF + AP + AIP 86.57% 62.62% 66.70%
AF + NF + AP + NIF 89.85% 63.22% 70.75%
AF + NF + AP + AIF 83.35% 71.82% 72.82%
AIF + NIF + AIP 14.44% 60.92% 21.94%

are: traditional 1-tails, traditional 2-tails, CONTRACTOR++,
SEKT 1-tails, SEKT 2-tails, optimistic TEMI, and pessimistic
TEMI. Tables IV and V show the precision, recall, and F-
measure of the baselines.4 Table IV shows the precision, recall,
and F-measure of SEKT 1-tails, SEKT 2-tails, Optimistic
TEMI, and Pessimistic TEMI, while Table V shows the pre-
cision, recall, and F-measure of traditional 1-tails, traditional
2-tails, and CONTRACTOR++. From the tables, we find that
CONTRACTOR++ has the best average F-measure of 56.45%,
and SEKT 2-tails has the least average F-measure of 23.18%.

Comparing Table III with Tables IV and V, our approach
outperforms the average F-measures of all the baselines by
13.75% to 177.02%. The average precision of our approach is
slightly lower than those of the baselines (by up to 8.11%),
however its recall is substantially higher than those of the
baselines (by up to 296.37%). Overall, the above statistics
show that our approach is more effective than all of the
baselines.

3) RQ3: Different Constraint Templates: Table VI com-
pares the effectiveness of SpecForge when different constraint
templates are used in the constraint enumeration step. Due to
space constraints, we do not show all possible combinations.
From the table, we note that there are several combinations
of constraint templates that result in higher average precision,
recall and F-measure compared to the default setting. Among
the combinations shown in Table VI, AF + NF + AP and
AF+NF+AP+AIF have the highest average precision, recall,
and F-measure respectively, which are 83.35%, 71.82% and
72.82%.

On the other hand, ALL−AP and AF+NF+AP have the
least average F-measure of approximately 22%. The decrease
in F-measure shows that the absence of the always preceded
by constraints has a significant impact on the effectiveness
of SpecForge. Overall, choosing a suitable combinations of
constraint templates is important for improving effectiveness.

4) RQ4: Different Constraint Selection Heuristics: Ta-
ble VII compares SpecForge’s performance for different con-
straint selection heuristics. The table lists the selection heuris-
tics in increasing order of strictness in selecting constraints.

4Krka et al. have also estimated the precision and recall of these ap-
proaches [13]. We use a more rigorous evaluation setting to generate sentences
from inferred and ground truth models, i.e., 10-transition coverage (see
Section V-A). Therefore, the results shown in Tables V and IV are different
from the ones calculated by Krka et al. [13].

TABLE IV: Precision, Recall, and F-measure: Traditional 1-tail, Traditional 2-tail, and CONTRACTOR++. “P” = Precision, “R”
= Recall, and “F” = F-measure.

Target Library Class Traditional 1-tails Traditional 2-tails CONTRACTOR++
P R F P R F P R F

ArrayList 100.00% 11.15% 20.06% 100.00% 10.45% 18.92% 100.00% 46.15% 63.15%
HashMap 100.00% 22.68% 36.97% 100.00% 19.08% 32.05% 100.00% 4.32% 8.28%
HashSet 100.00% 20.76% 34.38% 100.00% 13.50% 23.79% 100.00% 100.00% 100.00%
Hashtable 100.00% 30.23% 46.43% 100.00% 21.89% 35.92% 100.00% 1.55% 3.05%
LinkedList 100.00% 29.49% 45.55% 100.00% 26.49% 41.88% 100.00% 79.39% 88.51%
StringTokenizer 68.18% 39.46% 49.99% 71.21% 21.77% 33.34% 71.38% 16.33% 26.57%
NFST 100.00% 1.80% 3.54% 100.00% 0.90% 1.79% 87.27% 40.54% 55.36%
SMTPProtocol 100.00% 17.50% 29.79% 100.00% 17.50% 29.79% 85.71% 50.00% 63.16%
Signature 100.00% 8.11% 15.00% 100.00% 8.11% 15.00% 100.00% 75.68% 86.15%
Socket 97.15% 10.18% 18.43% 98.69% 8.86% 16.26% 100.00% 0.22% 0.44%
StackAr 34.04% 14.52% 20.36% 51.69% 14.52% 22.67% 98.35% 100.00% 99.17%
ToHTMLStream 100.00% 20.00% 33.33% 100.00% 20.00% 33.33% 100.00% 100.00% 100.00%
ZipOutputStream 100.00% 0.00% 0.00% 95.00% 0.00% 0.00% 100.00% 25.00% 40.00%

Average 92.26% 17.38% 27.22% 93.58% 14.08% 23.44% 95.59% 49.17% 56.45%

TABLE V: Precision, Recall, and F-measure: SEKT 1-tail, SEKT 2-tail, Optimistic TEMI, and Pessimistic TEMI. “P” = Precision,
“R” = Recall, and “F” = F-measure.

Target Library Class SEKT 1-tails SEKT 2-tails Optimistic TEMI Pessimistic TEMI
P R F P R F P R F P R F

ArrayList 100.00% 10.50% 19.00% 100.00% 10.28% 18.64% 100.00% 31.03% 47.36% 100.00% 18.92% 31.82%
HashMap 100.00% 21.75% 35.73% 100.00% 19.02% 31.96% 100.00% 4.32% 8.28% 100.00% 1.71% 3.36%
HashSet 100.00% 20.76% 34.38% 100.00% 13.50% 23.79% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Hashtable 100.00% 27.44% 43.06% 100.00% 20.79% 34.42% 100.00% 0.16% 0.32% 100.00% 1.58% 3.11%
LinkedList 100.00% 28.45% 44.30% 100.00% 25.96% 41.22% 100.00% 79.39% 88.51% 100.00% 34.51% 51.31%
StringTokenizer 63.64% 21.77% 32.44% 75.94% 20.41% 32.17% 52.89% 14.29% 22.50% 78.99% 17.01% 27.99%
NFST 100.00% 0.00% 0.00% 100.00% 0.00% 0.00% 89.61% 40.54% 55.83% 94.00% 30.63% 46.21%
SMTPProtocol 100.00% 17.50% 29.79% 100.00% 17.50% 29.79% 94.81% 50.00% 65.47% 100.00% 5.00% 9.52%
Signature 100.00% 8.11% 15.00% 100.00% 8.11% 15.00% 100.00% 75.68% 86.15% 100.00% 75.68% 86.15%
Socket 100.00% 10.11% 18.36% 100.00% 8.86% 16.28% 100.00% 0.22% 0.44% 100.00% 18.00% 30.51%
StackAr 95.55% 14.52% 25.21% 84.85% 14.52% 24.80% 98.55% 100.00% 99.27% 100.00% 1.79% 3.53%
ToHTMLStream 100.00% 20.00% 33.33% 100.00% 20.00% 33.33% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
ZipOutputStream 100.00% 0.00% 0.00% 100.00% 0.00% 0.00% 100.00% 25.00% 40.00% 100.00% 6.82% 12.77%

Average 96.86% 15.45% 25.43% 96.98% 13.77% 23.18% 95.07% 47.74% 54.93% 97.92% 31.67% 38.94%

TABLE VII: Average Precision, Recall, and F-measure: Our
Approach with Different Constraint Selection Heuristics.

Selection Heuristics Precision Recall F-measure
Union 56.19% 10.26% 15.40%
Satisfied By ≥ x = 2 78.51% 12.01% 18.36%
Satisfied By ≥ x = 3 83.62% 17.81% 25.36%
Majority 93.00% 20.24% 28.98%
Satisfied By ≥ x = 5 89.80% 34.98% 45.34%
Satisfied By ≥ x = 6 88.82% 48.56% 59.48%
Intersection (default) 90.57% 54.58% 64.21%

From the table, we notice that intersection is the most effective
selection heuristic with an F-measure of 64.21%, while union
is the least effective heuristic with an F-measure of 15.40%.
The results also show that stricter selection heuristics tend
to improve SpecForge’s F-measure. Note that with a stricter
heuristic, SpecForge only selects a subset of constraints which
enlarges the language accepted by the final inferred FSA.
This potentially increases recall (if more correct sentences
are accepted by the inferred FSA) – in the worst case recall
will remain the same (if no additional correct sentences are
accepted). Selecting fewer constraints may reduce precision (if
many incorrect sentences are accepted by the inferred FSA).
However, in the results, we note that precision, in general,
increases with stricter heuristics – this shows that the additional
sentences in the accepted languages of inferred FSAs include
no or few incorrect sentences.

D. Discussion

Untapped Potentials. In this paper we evaluated SpecForge
based on the 7 specification mining techniques discussed in
Section II. Currently, our meta-approach works better than
existing baselines on average, however, it does not perform
the best in all cases. In our future work, we plan to improve
SpecForge’s performance in two concrete ways:

1. We plan to extend SpecForge with other specification mining
techniques, such as Synoptic [2] and Perfume [30]. This can
help SpecForge exclude more incorrect constraints, which is
the main reason why currently SpecForge performs poorly
on some target classes. As just one example, if we drop 4
incorrect constraints that are used to construct the FSA for
java.util.Hashtable we can boost the F-measure of the inferred
model from 61.22% to 72.30%.

2. We also plan to investigate alternative selection heuristics.
Currently SpecForge applies the same constraint selection
heuristic across all the constraint templates. However, it is pos-
sible to apply a different selection heuristic to each template.
This will allow us to vary the strictness of the heuristics used
for the constraint selection process. One promising direction
is to use machine learning approaches to identify the best
heuristics to apply for each template by learning over a large
training dataset.

Threats to Validity: There are several threats that potentially
affect the validity of our study: threats to internal validity,
threats to external validity, and threats to construct validity.

Threats to internal validity relates to experimental errors
and biases. We have checked our code several times to find
errors and have fixed those that we have found. However,
there could be errors that we did not notice. We make use
of ground truth models that were created by Krka et al. [13]
and Pradel et al. [32]. We have checked their models against
actual specifications published by the library authors (e.g., the
Javadocs of the library classes) and fixed errors in the ground
truth models that we have found. Still, it is possible that the
API documentation against which we checked the ground truth
models is incorrect.

Threats to external validity relates to the generalizability
of our findings. In this work, we have analyzed 13 different
target classes. This is larger than the number of target classes
used to evaluate many prior studies, e.g., [13], [22], [21]. In
the future, we plan to add more target classes to further reduce
this threat to external validity.

Threats to construct validity relates to the suitability of
our evaluation metrics. We have followed a popular approach
to measure the effectiveness of a specification mining algo-
rithm [18] that were followed in many prior works, e.g., [1],
[2], [13], [6], [17], [21]. In the calculation of precision and
recall, following a recent empirical study that compares the
performance of various specification mining algorithm [22],
we ensure that a sufficient number of sentences were generated
to characterize the language that is accepted by a FSA. We do
so by continuing to generate sentences from a FSA until 10-
transition-coverage is satisfied or until the number of generated
sentences reaches 10,000. In this work, we use F-measure
(i.e., F1) as a summary yardstick. F1 gives equal weight to
precision and to recall, considering them equally important.
There are other alternatives, such as F2 (gives more weight
to recall) and F0.5 (gives more weight to precision). When a
mined specification is used as a formal specification in bug
finding or testing tools, both low recall and low precision
lead to uncaught errors and false alarms (depending on how
the specifications are used). As we do not have a specific
application in this paper, we have no reason to weigh precision
and recall differently. We therefore use F1 as our summary
measure.

VI. RELATED WORK

In this section, we describe related work on specification
mining. We start by describing existing studies that mine
finite state automaton from execution traces in Section VI-A.
We then describe existing studies that mine specifications in
other formalisms, such as temporal properties and sequence
diagrams, in Section VI-B.

A. Mining Finite State Automaton

Specification Miners:
Krka et al. propose several specification mining algorithms

that can infer a FSA from execution traces by leveraging value-
based invariants that are inferred by Daikon [13]. They propose
a number of algorithms namely CONTRACTOR++, state-
enhanced k-tails (SEKT), and trace-enhanced MTS inference

(TEMI). A brief descriptions of these algorithms are presented
in Section II. SpecForge builds on these algorithms and the two
variants of k-tails. Our experiments have compared the effec-
tiveness of SpecForge and these algorithms and demonstrated
that SpecForge outperforms all of them.

Our work has been partly inspired by work of Beschastnikh
et al. who have proposed an approach to specify FSA inference
algorithms declaratively [1]. A specification consists of a
set of property types (variable-labeled FSAs) that resemble
our constraint templates and a composition function. Property
instances matching the property type are mined from the traces
(resulting in event-labeled FSAs) and these are then composed
using the composition function into one FSA. The composition
function resembles our model fusion step. However, we have
a fundamentally different goal — to synergize existing model
inference algorithms, rather than to describe existing or new
inference algorithms. As a result, in our work we mine property
instances that match the prescribed templates from the inferred
models, rather than from the input traces. Additionally, our
templates and fusion step are less generic than their property
types and composition function as their aim is to express a
variety of FSA inference algorithms.

Lo et al. propose an approach named SMArTIC that infers
a finite state automaton from a set of execution traces [6]. This
approach is built on a variant of k-tails automaton learning
method that infers a probabilistic FSA and employs trace
filtering and clustering. Erroneous traces are removed from
the input execution traces and rather than learning a model
from all the traces, the traces are clustered into groups and
a separate FSA is learned from each group. These FSAs are
later combined together into one FSA by identifying equivalent
transitions – the goal is to get a larger FSA that accepts all
the sentences accepted by the smaller FSAs. This is similar to
the model fusion step of SpecForge. However, the aim of our
work is to combine models from multiple specification mining
algorithms.

Walkinshaw and Bogdanov propose an approach that al-
lows users to manually input temporal properties to guide a
specification mining algorithm in the inference of a FSA from
execution traces [34]. This work was extended by Lo et al. who
proposed an approach to automatically mine temporal proper-
ties from execution traces, and use these mined properties to
automatically guide or steer a specification mining algorithm
in its inference process [21]. As one step of SpecForge, we also
infer temporal properties as constraints. However, rather than
inferring them from execution traces, we infer them from FSAs
that are generated by the underlying FSA mining algorithms
on top of which SpecForge is built on. We do not use a data
mining process to infer these properties, but rather a model
checking algorithm.

Lorenzoli et al. [25], and Mariani and Pastore [26] propose
two approaches named gkTail and KLFA to mine extended
FSAs that incorporate data flow information. gkTail is able
to infer algebraic constraints which specify restrictions on the
values of some variables/arguments in the transitions of the
FSAs. KLFA includes universally quantified constraints in the
transitions of the FSAs to specify the re-occurrence of data
values. Walkinshaw et al. have recently proposed an approach
to generate algebraic constraints for transitions in a FSA by
leveraging a classification algorithm [35]. In this work, we

focus on the generation of simple FSAs without algebraic
constraints and quantified constraints.

Key Differences: None of the above-mentioned approaches
are able to combine multiple FSAs mined by different algo-
rithms together. To our knowledge, we are the first to propose
this research direction. Our work can also integrate the above-
mentioned miners: they can be used to learn new FSAs which
can then be used as input to SpecForge. The goal of our work
is to synergize many existing miners to build a more effective
miner.

Miner Assessments:
A number of papers have also proposed methodologies to

evaluate the quality of a specification mining algorithm that
generates FSAs. Lo and Khoo propose a framework named
QUARK to measure the quality of an inferred FSA in terms
of precision and recall [18]. Pradel et al. perform an empirical
study to evaluate the performance of specification mining
algorithms by manually constructing a number of ground truth
models for many target library classes [32]. Lo et al. extend the
work by Lo and Khoo, and Pradel et al. by evaluating many
more specification mining algorithms producing FSAs and
extended FSAs [22]. They also define the notion of n-transition
coverage in the generation of sentences from inferred and
ground-truth automata to estimate precision and recall. In this
work, we also make use of the notion of precision and recall
to measure the quality of a specification mining algorithm.
We also generate sentences from inferred and ground-truth
automata following n-transition coverage. We also make use
of models that were generated manually by Pradel et al. [32].

B. Mining Other Formalisms

Yang et al. extract two event temporal properties of a form
similar to our always-followed-by constraints from execution
traces [36]. Lo et al. extend Yang et al.’s work to mine temporal
properties of arbitrary lengths that specify that “whenever a
series of events occur, eventually another series of events will
occur” [19]. Lo et al. also extend Yang et al.’s work by mining
quantified temporal properties where data flow relationships
among events in a rule is specified [23]. Recent work by
Lemieux et al.[16] presents a tool for general LTL specification
mining. Recently, Le and Lo investigate the effectiveness of
various interestingness measures proposed in the data mining
community (in addition to the commonly used support and
confidence measures) to mine correct temporal properties from
execution traces [14]. Fahland et al. mine modal sequence
diagrams in the form of Live Sequence Charts from execution
traces of systems [10]. Ernst et al. propose a well-known tool
named Daikon to mine algebraic invariants (e.g., constraints on
the values of arguments and global variables) from execution
traces [9].

Different from these studies, we mine specifications in the
form of FSA. SpecForge can potentially be integrated with the
above mentioned studies, especially studies that mine temporal
properties. These temporal properties can be combined with
constraints that we infer from the mined FSAs and can be
used to mine a more accurate FSA.

Recently, a number of more advanced techniques have been
proposed to mine more complex rules. Lo et al. mine rules
enriched with quantification [23]. With quantification, users

can mine rules that specify data flow constraints between two
method invocations, e.g., the output of one method invocation
is the xth input of another method invocation. Lo et al. also
mine rules following the semantics of Live Sequence Charts
(LSCs) which are enriched with Daikon-style constraints to
serve as guards [20]. For all of the above studies, support and
confidence have been used as the interestingness measures.

VII. CONCLUSION AND FUTURE WORK

Software specifications are tremendously useful, yet com-
posing them is labor-intensive and many software developers
forego this process. In response, the research community has
proposed numerous specification miners to extract likely soft-
ware specifications. Unfortunately, due to the complexity of the
specification mining problem, many existing miners employ
techniques that impose certain trade-offs. For example, some
miners rely on temporal properties, others employ statistical
techniques, while still others utilize data invariants. In this
work we propose SpecForge, a framework to synergize across
previously proposed FSA specification miners by utilizing
model fission and model fusion. SpecForge uses FSA specifi-
cations inferred by other specification miners to build a single
superior FSA.

We have evaluated SpecForge by inferring specifications of
13 target library classes from the execution traces of their client
applications. We demonstrated that the FSAs constructed with
SpecForge are superior to those inferred by any one specifica-
tion mining approach. Our experiments show that SpecForge
(with default configuration) can achieve an average precision,
recall, and F-measure of 90.57%, 54.58%, and 64.21% respec-
tively. Although the average precision of SpecForge is slightly
lower than the baselines (by up to 8.11%), its average recall is
significantly better (by up to 296.37%). In terms of average F-
measure, the harmonic mean of precision and recall, SpecForge
improves over the best performing baseline by 13.75%. We
have also tried to adjust the configuration of SpecForge, and
the best configuration can achieve an average precision, recall,
and F-measure of 83.35%, 71.82%, and 72.82% respectively.
We believe that SpecForge generalizes and can easily include,
and build on, other FSA specification mining approaches.

In the future, we plan to improve the effectiveness of
SpecForge further by increasing the number of underlying FSA
miners synergized together, increasing the number of constraint
templates, and developing an approach that can infer good
configurations of constraint templates and selection heuristics
based on training data. We also plan to reduce the threats
to external validity further by experimenting with additional
target library classes and execution traces. Moreover, we plan
to extend SpecForge to mine parametric specification following
the work by Lee et al. [15] and Lo et al. [24], [23].

ACKNOWLEDGEMENTS

We would like to thank Ivo Krka and Michael Pradel for
sharing their manually constructed ground truth models for a
number of library classes online. We would also like to thank
Ivo Krka for publicly releasing the implementations of the 7
specification mining algorithms that we forge together in this
work.

REFERENCES

[1] I. Beschastnikh, Y. Brun, J. Abrahamson, M. D. Ernst, and A. Krishna-
murthy, “Using declarative specification to improve the understanding,
extensibility, and comparison of model-inference algorithms,” IEEE
Trans. Software Eng., vol. 41, no. 4, pp. 408–428, 2015.

[2] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan, and M. D. Ernst,
“Leveraging existing instrumentation to automatically infer invariant-
constrained models,” in Proceedings of the 19th ACM SIGSOFT sym-
posium and the 13th European conference on Foundations of software
engineering. ACM, 2011, pp. 267–277.

[3] A. W. Biermann and J. A. Feldman, “On the synthesis of finite-
state machines from samples of their behavior,” IEEE Transactions on
Computers, vol. 100, no. 6, pp. 592–597, 1972.

[4] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKin-
ley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann,
“The DaCapo benchmarks: Java benchmarking development and anal-
ysis,” in OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN
conference on Object-Oriented Programing, Systems, Languages, and
Applications. New York, NY, USA: ACM Press, Oct. 2006, pp. 169–
190.

[5] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled, Model Checking.
Cambridge, MA, USA: MIT Press, 1999.

[6] David Lo and Siau-Cheng Khoo, “Smartic: towards building an accu-
rate, robust and scalable specification miner,” in Proceedings of the 14th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2006, Portland, Oregon, USA, November 5-11, 2006,
2006, pp. 265–275.

[7] G. de Caso, V. A. Braberman, D. Garbervetsky, and S. Uchitel,
“Automated abstractions for contract validation,” IEEE Trans. Software
Eng., vol. 38, no. 1, pp. 141–162, 2012.

[8] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in property
specifications for finite-state verification,” in Proceedings of the 1999
International Conference on Software Engineering, ICSE’ 99, Los
Angeles, CA, USA, May 16-22, 1999., 1999, pp. 411–420.

[9] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao, “The daikon system for dynamic detection of
likely invariants,” Sci. Comput. Program., vol. 69, no. 1-3, pp. 35–45,
2007.

[10] D. Fahland, D. Lo, and S. Maoz, “Mining branching-time scenarios,” in
2013 28th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2013, Silicon Valley, CA, USA, November 11-15,
2013, 2013, pp. 443–453.

[11] G. J. Holzmann, “The Model Checker SPIN,” IEEE Transactions on
Software Engineering (TSE), vol. 23, no. 5, pp. 279–295, May 1997.
[Online]. Available: http://dx.doi.org/10.1109/32.588521

[12] J. C. Knight, C. L. DeJong, M. S. Gibble, and L. G. Nakano, “Why
are formal methods not used more widely?” in Fourth NASA Formal
Methods Workshop, 1997, pp. 1–12.

[13] I. Krka, Y. Brun, and N. Medvidovic, “Automatic mining of specifi-
cations from invocation traces and method invariants,” in Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, (FSE-22), Hong Kong, China, November 16
- 22, 2014, 2014, pp. 178–189.

[14] T. B. Le and D. Lo, “Beyond support and confidence: Exploring
interestingness measures for rule-based specification mining,” in 22nd
IEEE International Conference on Software Analysis, Evolution, and
Reengineering, SANER 2015, Montreal, QC, Canada, March 2-6, 2015,
2015, pp. 331–340.

[15] C. Lee, F. Chen, and G. Rosu, “Mining parametric specifications,”
in Proceedings of the 33rd International Conference on Software
Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28,
2011, 2011, pp. 591–600.

[16] C. Lemieux, D. Park, and I. Beschastnikh, “General LTL Specification
Mining,” in Proceedings of the IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2015.

[17] D. Lo, H. Cheng, J. Han, S.-C. Khoo, and C. Sun, “Classification of
software behaviors for failure detection: a discriminative pattern mining
approach,” in Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2009,

pp. 557–566.
[18] D. Lo and S. Khoo, “QUARK: empirical assessment of automaton-

based specification miners,” in 13th Working Conference on Reverse
Engineering (WCRE 2006), 23-27 October 2006, Benevento, Italy,
2006, pp. 51–60.

[19] D. Lo, S. Khoo, and C. Liu, “Mining temporal rules for software
maintenance,” Journal of Software Maintenance, vol. 20, no. 4, pp.
227–247, 2008.

[20] D. Lo and S. Maoz, “Scenario-based and Value-based Specification
Mining: Better Together,” in Proceedings of the IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ser. ASE ’10.
New York, NY, USA: ACM, 2010, pp. 387–396.

[21] D. Lo, L. Mariani, and M. Pezzè, “Automatic steering of behavioral
model inference,” in Proceedings of the 7th joint meeting of the
European Software Engineering Conference and the ACM SIGSOFT
International Symposium on Foundations of Software Engineering,
2009, Amsterdam, The Netherlands, August 24-28, 2009, 2009, pp. 345–
354.

[22] D. Lo, L. Mariani, and M. Santoro, “Learning extended FSA from
software: An empirical assessment,” Journal of Systems and Software,
vol. 85, no. 9, pp. 2063–2076, 2012.

[23] D. Lo, G. Ramalingam, V. P. Ranganath, and K. Vaswani, “Mining
quantified temporal rules: Formalism, algorithms, and evaluation,” Sci.
Comput. Program., vol. 77, no. 6, pp. 743–759, 2012.

[24] ——, “Mining quantified temporal rules: Formalism, algorithms, and
evaluation,” in 16th Working Conference on Reverse Engineering,
WCRE 2009, 13-16 October 2009, Lille, France, 2009, pp. 62–71.

[25] D. Lorenzoli, L. Mariani, and M. Pezzè, “Automatic generation of soft-
ware behavioral models,” in 30th International Conference on Software
Engineering (ICSE 2008), Leipzig, Germany, May 10-18, 2008, 2008,
pp. 501–510.

[26] L. Mariani and F. Pastore, “Automated identification of failure causes in
system logs,” in 19th International Symposium on Software Reliability
Engineering (ISSRE 2008), 11-14 November 2008, Seattle/Redmond,
WA, USA, 2008, pp. 117–126.

[27] L. Mariani, F. Pastore, and M. Pezzè, “Dynamic analysis for diagnosing
integration faults,” IEEE Trans. Software Eng., vol. 37, no. 4, pp. 486–
508, 2011.

[28] W. Miao and S. Liu, “A formal specification-based integration testing
approach,” in SOFL, 2012, pp. 26–43.

[29] A. Møller, “dk.brics.automaton — Finite-state automata and regular
expressions for Java,” http://www.brics.dk/automaton/, 2010.

[30] T. Ohmann, M. Herzberg, S. Fiss, A. Halbert, M. Palyart, I. Beschast-
nikh, and Y. Brun, “Behavioral resource-aware model inference,” in
Proceedings of the 29th ACM/IEEE international conference on Auto-
mated software engineering. ACM, 2014, pp. 19–30.

[31] A. Pnueli, “The temporal logic of programs,” in Proceedings of the
Symposium on Foundations of Computer Science (FOCS), Providence,
RI, USA, 1977, DOI: 10.1109/SFCS.1977.32.

[32] M. Pradel, P. Bichsel, and T. R. Gross, “A framework for the evalu-
ation of specification miners based on finite state machines,” in 26th
IEEE International Conference on Software Maintenance (ICSM 2010),
September 12-18, 2010, Timisoara, Romania, 2010, pp. 1–10.

[33] M. Roberts and M. Ernst, Personal Emails.
[34] N. Walkinshaw and K. Bogdanov, “Inferring finite-state models with

temporal constraints,” in 23rd IEEE/ACM International Conference on
Automated Software Engineering (ASE 2008), 15-19 September 2008,
L’Aquila, Italy, 2008, pp. 248–257.

[35] N. Walkinshaw, R. Taylor, and J. Derrick, “Inferring extended finite state
machine models from software executions,” in 20th Working Conference
on Reverse Engineering, WCRE 2013, Koblenz, Germany, October 14-
17, 2013, 2013, pp. 301–310.

[36] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das, “Perracotta:
mining temporal API rules from imperfect traces,” in 28th International
Conference on Software Engineering (ICSE 2006), Shanghai, China,
May 20-28, 2006, 2006, pp. 282–291.

[37] H. Zhong and Z. Su, “Detecting API documentation errors,” in Proceed-
ings of the 2013 ACM SIGPLAN International Conference on Object
Oriented Programming Systems Languages & Applications, OOPSLA
2013, part of SPLASH 2013, Indianapolis, IN, USA, October 26-31,
2013, 2013, pp. 803–816.

http://dx.doi.org/10.1109/32.588521
http://www.brics.dk/automaton/
http://dx.doi.org/10.1109/SFCS.1977.32

