
Synergizing Specification Miners
through Model Fissions and Fusions
Tien-Duy B. Le1, Xuan-Bach D. Le1, David Lo1, Ivan Beschastnikh2

1 Singapore Management University
2 University of British Columbia

1

Existing miners SpecForge

Synergizing Specification Miners
through Model Fissions and Fusions
Tien-Duy B. Le1, Xuan-Bach D. Le1, David Lo1, Ivan Beschastnikh2

1 Singapore Management University
2 University of British Columbia

2

Existing miners SpecForge

Software Specifications

Software systems and libraries usually
lack up-to-date formal specifications.

Rapid Software Evolution Formal specifications are
non-trivial to write down

3

Software Specifications
Lack of Formal Specifications

Maintainability & Reliability Challenges

o Reduced code comprehension
o  Implicit assumptions may cause bugs
o  Difficult to identify regressions

Software Specification Mining

4

Software Specification Mining

•  Many existing specification mining algorithms
–  Most automatically infer specs from execution traces

•  Our focus: tools that mine FSAs

Finite State Automata (FSA)

Examples: k-tail, CONTRACTOR++, SEKT, TEMI, Synoptic

5

No Perfect Specification Miner

•  Existing miners make complex trade-offs
– Some use temporal constraints (k-tails)
– Others use mined data invariants (SEKT)
– Vary in their robustness to incomplete traces

6

…

•  A proliferation of spec miners
– Which one to use?

No Perfect Specification Miner

•  Existing miners make complex trade-offs
– Some use temporal constraints (k-tails)
– Some use mined data invariants (SEKT)

7

…

•  Proliferation of spec miners
– Which one to use?

Let’s take advantage of this proliferation!
Our contribution: SpecForge

SpecForge overview

•  SpecForge synergizes many FSA-based
specification mining algorithms

•  New concepts:
– Model fission & model fusion

 8

Existing miners SpecForge

Model Fission

FSA
model

9

Inferred with a
spec miner

Model Fission

FSA
model

Temporal constraint

Temporal constraint

Temporal constraint

Temporal constraint

Temporal constraint

Temporal constraint

Temporal constraint

Temporal constraint

10

Satisfied by the
FSA model

Model Fusion

FSA
model’

1. Select temporal constraints

2. Fuse constraints into a new FSA

11

SpecForge: Overall Framework

1.  Run each spec miner on traces
2.  Decompose generated models with fission
3.  Build new model using fusion

SpecForge

Execution traces FSA miners

12

Phase 1: Models Construction
•  Given N miners, construct N different

FSAs

Traces

FSA1 FSAN-1 FSA2 FSAN

Miner1 Miner2 MinerN-1 MinerN
…

…

Legend Process Data

13

Phase 2: Models Fission

•  Decompose each FSAi into a set of binary
temporal constraints

•  Each constraint is expressed in Linear
Temporal Logic (LTL)

•  In this work we use 6 LTL constraint types

14

[1] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in property
specifications for finite-state verification”. ICSE 1999
[2] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan, and M. D. Ernst, “Leveraging existing
instrumentation to automatically infer invariantconstrained models,” ESEC/FSE 2011
[3] I. Beschastnikh, Y. Brun, J. Abrahamson, M. D. Ernst, and A. Krishnamurthy, “Using declarative specification to
improve the understanding, extensibility, and comparison of model-inference algorithms,” TSE 2015

LTL Constraint Types
•  AF(a,b): a is always followed by b

•  NF(a,b): a is never followed by b

•  AP(a,b): a is always preceded by b

15

a b a b
c b b b

a b b a
c a a a

b b a a
a c a a

a b b a
c b a b

b b a a
c b b b

a b b b
c a a b

LTL Constraint Types
•  AF(a,b): a is always followed by b

•  NF(a,b): a is never followed by b

•  AP(a,b): a is always preceded by b

16

a b a b
c b b b

a b b a
c a a a

b b a a
a c a a

a b b a
c b a b

b b a a
c b b b

a b b b
c a a b

LTL Constraint Types
•  AF(a,b): a is always followed by b

•  NF(a,b): a is never followed by b

•  AP(a,b): a is always preceded by b

17

a b a b
c b b b

a b b a
c a a a

b b a a
a c a a

a b b a
c b a b

b b a a
c b b b

a b b b
c a a b

The immediate LTL Constraint Types

•  AIF(a,b): a is always immediately
 followed by b
•  NIF(a,b): a is never immediately
 followed by b
•  AIP(a,b): a is always immediately
 preceded by b

AIF, NIF, and AIP are extensions
of AF, NF, and AP

18

Model Fission

FSA1 FSAN-1 FSA2 FSAN

Constraint
Candidates1

Constraint
Candidates2

Constraint
CandidatesN

Constraint
CandidatesN-1

…

…

LTL
Constraints1

LTL
Constraints2

LTL
ConstraintsN-1

LTL
ConstraintsN

…

Model Checker

 Phase II:
Model Fission

Legend Process Data

19

FSA à LTL Constraints

•  For each constraint type
–  Enumerate constraint candidates (e.g., possible

method call combinations)
–  Verify each candidate on FSA with a model checker
–  Retain just the constraints that hold in FSA

FSA
Constraint
Candidates

Model
Checker LTL Constraints

satisfied

Legend Process Data

20

i

i

i

i

i

FSA à LTL Constraints

•  Model checking is costly
•  Define a time threshold when checking

constraint candidates
– Terminate SPIN if running time > threshold

F potentially miss important LTL constraints L

FSA
Constraint
Candidates

Model
Checker LTL Constraints

satisfied

21

Legend Process Data

Phase 3: Model Fusion
LTL

Constraint1

LTL
Constraint2

LTL
ConstraintN-1

LTL
ConstraintN

…

Constraints Selector

 Phase III:
Model Fusion

 Phase II:
Model Fission

Selected LTL Constraints

Legend Process Data

22

Selecting Constraints to Fuse

•  Select subset of LTL constraints
– These determine the final SpecForge model

•  Unclear which constraints work best
•  We propose 4 heuristics

– union
– majority
– satisfied by ≥ x
–  intersection

23

Use entire bag of constraints

Use constraints satisfied by ALL inferred FSAs

Constraint Selection
•  Union

– Assume all LTL constraints are correct
– Returns all LTL constraints of all miners

LTL
Constraints

1

LTL
Constraints

2

LTL
Constraints

3

Union

24

Constraint Selection
•  Satisfied by ≥ x

– Select LTL constraints that satisfy at least x
FSAs inferred by x miners.

•  Majority
– Assume correct LTL constraints satisfy

majority of FSAs
– ~ Satisfied by

•  Intersection
– Assume correct LTL constraints satisfy all of

FSAs
– ~ Satisfied by N

25

Model Fusion

Final FSA
Specification

LTL
Constraint1

LTL
Constraint2

LTL
ConstraintN-1

LTL
ConstraintN

…

Constraints Selector

 Phase III:
Model Fusion

 Phase II:
Model Fission

Constraints to FSA Translator + FSA intersection

Selected LTL Constraints

Legend Process Data

26

LTL Constraints à FSA

•  Convert each constraint into an FSA
– Each FSA has two events (e.g., a and b) in a

given alphabet ∑
– Each constraint type has its own way to

construct the FSA

27

• AIF(a,b): a is always immediately
followed by b

LTL Constraints à FSA
• AF(a,b): a is always followed by b

Final state
∑: alphabet (i.e., set of method calls
might occur in execution traces)

28

• NIF(a,b): a is never immediately
followed by b

LTL Constraints à FSA
• NF(a,b): a is never followed by b

Final state
∑: alphabet (i.e., set of method calls
might occur in execution traces)

29

• AIP(a,b): a is always immediately
preceded by b

LTL Constraints à FSA
• AP(a,b): a is always preceded by b

Final state
∑: alphabet (i.e., set of method calls
might occur in execution traces)

30

LTL Constraints à FSA

•  LTL Constraints à constraint FSAs
•  Final model = intersection of constraint FSAs

– Final FSA satisfies all of the selected LTL
constraints

31

1.  Run each spec miner on traces
2.  Decompose generated models with fission
3.  Build new model using fusion

SpecForge summary:

Evaluation Research Questions

1.  How effective is SpecForge?

2.  Does SpecForge improve over existing spec
miners?

3.  What is the impact of constraint templates
 on model quality?

4. What is the impact of constraint selection
 heuristic on model quality?

32

Dataset [13 library classes]
Target Library Classes Client Programs
java.util.ArrayList Dacapo fop

java.util.HashMap Dacapo h2

java.util.HashSet Dacapo h2

java.util.Hashtable Dacapo xalan

java.util.LinkedList Dacapo avrora

java.util.StringTokenizer Dacapo batik

org.apache.xalan.templates.ElemNumber
$NumberFormatStringTokenizer

Dacapo xalan

DataStructures.StackAr StackArTester

java.security.Signature Columba, jFTP

org.apache.xml.serializer.ToHTMLStream Dacapo xalan

java.util.zip.ZipOutputStream JarInstaller

org.columba.ristretto.smtp.SMTPProtocol Columba

java.net.Socket Voldemort
33

Dataset

•  Execution traces generated by client
program tests, paired with Daikon invariants

•  Ground-truth models
– Krka et al. [1]
– Pradel et al. [2]
F Manually improved ground-truth models

34

[1] Krka, Y. Brun, and N. Medvidovic, “Automatic mining of specifications from invocation traces
and method invariants,”FSE 2014

[2] M. Pradel, P. Bichsel, and T. R. Gross, “A framework for the evaluation of specification
miners based on finite state machines,” ICSM 2010

Evaluation Metrics
•  Precision: fraction of inferred model traces that

are accepted by the ground truth model
•  Recall: fraction of ground truth traces that are

accepted by the inferred model
•  F-measure: 2 x (Precision x Recall) / (Precision + Recall)

35

Inferred FSA
traces

Ground truth
traces Precision Recall

2

2
2

4

2

4
2

2

F-mesure

2

3

2

3

[1] David Lo and Siau-Cheng Khoo, “Smartic: towards building an accurate, robust and scalable specification miner”, FSE 2006

Default Configuration

•  We use all of the 6 constraint types
– AF, AIF, NF, NIF, AP, and AIP

•  Intersection heuristic for constraint
selection

•  Trace generation
– Each FSA edge covered by at least 10 traces
– Limit number of traces to 10K per library
– Limit trace length to 100 transitions

36

Baseline Specification Miners

•  Traces-only
– Traditional 1-tails & Traditional 2-tails [1]

•  Invariants-only
– CONTRACTOR++ [2]

•  Invariant-Enhanced-Traces
– SEKT 1-tails & SEKT 2-tails [2]

•  Trace-Enhanced-Invariants
– Optimistic TEMI & Pessimistic TEMI [2]

37

[2] Krka, Y. Brun, and N. Medvidovic, “Automatic mining of specifications from invocation traces
and method invariants,”FSE 2014

[1] A. W. Biermann and J. A. Feldman, “On the synthesis of finite- state machines
from samples of their behavior,” IEEE Transactions on Computers,1972

RQ1: SpecForge’s Effectiveness
Target Class Library Precision Recall F-measure
ArrayList 100.00% 65.08% 78.85%

HashMap 100.00% 44.02% 61.13%

HashSet 100.00% 55.44% 71.33%

Hashtable 100.00% 44.11% 61.22%

LinkedList 100.00% 82.80% 90.59%

StringTokenizer 60.00% 74.15% 66.33%

NFST 92.00% 30.63% 45.96%

SMTPProtocol 93.73% 45.00% 60.81%

Signature 100.00% 24.32% 39.13%

Socket 77.07% 40.86% 53.41%

StackAr 54.62% 100.00% 70.65%

ToHTMLStream 100.00% 60.00% 75.00%

ZipOutputStream 100.00% 43.18% 60.32%

Average 90.57% 54.58% 64.21%
38

RQ2: SpecForge vs. Baselines
Approach Avg. Precision Avg. Recall Avg. F-measure
Traditional 1-tails 92.26% 17.38% 27.22%
Traditional 2-tails 93.58% 14.08% 23.44%
CONTRACTOR++ 95.59% 49.17% 56.45%
SEKT 1-tails 96.86% 15.45% 25.43%
SEKT 2-tails 96.98% 13.77% 23.18%
Optimistic TEMI 95.07% 47.74% 54.93%
Pessimistic TEMI 97.92% 31.67% 38.94%
SpecForge 90.57% 54.58% 64.21%

39

•  Hints at the underlying trade-offs between spec miners
•  SpecForge has the best recall and F-measure

RQ3: Different LTL Constraints
Constraint Avg. Precision Avg. Recall Avg. F-measure
ALL(default) 90.57% 54.58% 64.21%
ALL - AF 87.58% 60.52% 68.21%
ALL - NF 90.68% 54.98% 64.83%
ALL - AP 15.01% 54.58% 21.36%
ALL - AIF 90.73% 54.58% 64.33%
ALL - NIF 86.60% 62.62% 66.71%
ALL - AIP 89.85% 63.22% 70.75%
AF + NF + AP 83.35% 71.82% 72.82%
AF + NF + AP + AIP 86.57% 62.62% 66.70%
AF + NF + AP + NIF 89.85% 63.22% 70.75%
AF + NF + AP + AIF 83.35% 71.82% 72.82%
AIF + NIF + AIP 14.44% 60.92% 21.94%

40

•  Constraint types really matter

RQ4: Different Constraint Selection
Heuristics
Selection Heuristic Precision Recall F-measure
Union 56.19% 10.26% 15.40%
Satisfied by x>= 2 78.51% 12.01% 18.36%
Satisfied by x>= 3 83.62% 17.81% 25.36%
Majority 93.00% 20.24% 28.98%
Satisfied by x>= 5 89.80% 34.98% 45.34%
Satisfied by x>= 6 88.82% 48.56% 59.48%
Intersection (default) 90.57% 54.58% 64.21%

41

•  Union is too permissive (terrible Recall)
•  Intersection is most constraining (best Recall and F-measure)

•  Conservative: do not admit a property from one spec miner
unless it is validates by others

Advantages
•  Transparently combines FSA spec miners
•  Trivial to extend with new spec miners, LTL

constraints and selection heuristics

•  Deals with the end-result; does not reason

about internals of the spec miners
•  Complex to tune

– Spec miners
– LTL constraint types
– selection heuristic

42

Limitations

Contributions

•  Introduced SpecForge to combine strengths of existing
FSA specification miners
–  Key techniques: model fission and fusion

•  Applied SpecForge to 13 lib classes and 7 spec miners
•  SpecForge outperforms the best baseline by 14%

43

Proliferation of specification miners SpecForge: a hybrid miner

Motivating Example

• java.util.StringTokenizer
•  k-tail (k=2)
•  CONTRACTOR++

44

•  StringTokenizer’s 2-tail model accepts execution
traces that have
–  No repetitions of any methods Q
–  No NT methods executed consecutively R

STN: StringTokenizer() NT: nextToken()
HMTT: hasMoreTokens() = true HMTF: hasMoreTokens() = false

45

•  StringTokenizer’s CONTRACTOR++ model
–  accepts traces that must end with HMTF Q
–  allows nextToken()methods executed consecutively Q
–  allows repetitions of methods R
STN: StringTokenizer() NT: nextToken()
HMTT: hasMoreTokens() = true HMTF: hasMoreTokens() = false

46

Motivating Example

•  SpecForge
– Model Fission

47

•  Inferred Temporal Constraints
F nextToken() is never immediately followed by itself
F hasMoreToken() = true is never immediately

followed by hasMoreToken() = false
F …

STN: StringTokenizer() NT: nextToken()
HMTT: hasMoreTokens() = true HMTF: hasMoreTokens() = false

48

•  Inferred Temporal Constraints
F hasMoreTokens() = true must be immediately

followed by nextToken()
F …

STN: StringTokenizer() NT: nextToken()
HMTT: hasMoreTokens() = true HMTF: hasMoreTokens() = false

49

Motivating Example

•  SpecForge
– Model Fission
– Model Fusion

50

Motivating Example
•  Use a heuristic to select temporal constraints

o  C1: nextToken() is never immediately followed by
itself

o  C2: hasMoreToken() = true is never
immediately followed by hasMoreToken() = false

o  C3: hasMoreTokens() = true must be
immediately followed by nextToken()

o  …

•  C1,C2 from 2-tail model improves limitations of
CONTRACT++’s model

•  C3 from CONTRACT++’s model improves 2-tail
model

51

Motivating Example

•  Construct a FSA satisfies the selected
constraints

STN: StringTokenizer() NT: nextToken()
HMTT: hasMoreTokens() = true HMTF: hasMoreTokens() = false

52

STN: StringTokenizer() NT: nextToken()
HMTT: hasMoreTokens() = true HMTF: hasMoreTokens() = false

Ground-truth model

SpecForge model

vs.

53

