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ABSTRACT
Rapid machine learning (ML) adoption across a range of industries
has prompted numerous concerns. These range from privacy (how is
my data being used?) to fairness (is this model’s result representative?)
and provenance (who is using my data and how can I restrict this
usage?).

Now that ML is widely used, we believe it is time to re-think se-
curity, privacy, and incentives in the ML pipeline by re-considering
control. To this end, we consider today’s distributed multi-party
ML proposals and identify their shortcomings. We then propose an
alternative arrangement that we dub brokered learning, in which
we distinguish the role of a curator (who determines the training
set-up) from that of the broker coordinator (who runs the training
process). We consider the implications of this setup and present
evaluation results from implementing and deploying TorMentor,
an example of a brokered learning system that implements the first
distributed ML training system with anonymity guarantees.

1 INTRODUCTION
Data has emerged as a premium resource in the modern age of ana-
lytics. Entire industries are built on firstly collecting and organizing
data, and then computing and deploying machine learning (ML)
models for a variety of tasks. However, in the modern cloud-based
architecture, the ML pipeline lives in a single administrative domain.
Although this is efficient, the benefits are one-sided. We propose
that the modern ML pipeline fundamentally does not need to be
centrally located or even centrally administered. In fact, decompos-
ing the control of the ML pipeline across more than one party leads
to a design that benefits all the parties.

As a review, at the most abstract level, the ML pipeline includes
the following stages:
(1) Collect training data. A data provider collects training data
and houses it in an accessible location. Ideally, the data is collected
from a variety of sources to gain as much information as possible
to model the expected behavior of the outside world.
(2) Inner training loop:
(2a) Calculatemodel updates. In themost general case, amodel
update is computed on some or all of the collected data. This
calculation requires both a set of training data and a view of the
current model’s state. In this work, we assume the calculation by
stochastic gradient descent (SGD) [8].
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Figure 1: Summary of prior work in distributed ML, from
centralized to decentralized.

(2b) Aggregate and iterate. The model updates are collected
from all calculating sources and aggregated. In online learning
or highly parallelized settings, some staleness of model state
is acceptable in this process [30], allowing looser consistency
models. Once the model updates are applied, the new state of the
model is provided for the next iteration, completing the inner
loop in the pipeline.

(3) Deploy model in production. After a fixed number of iter-
ations, or once convergence heuristics are met, the training loop
terminates. The final state of the model is deployed, usually as a
service, for use in prediction.

An emerging area in distributed ML is distributed multi-party
ML, which enables learning from data across a large number of
users. In contrast to the centralized data center parameter server
model [22], federated learning [24] enables multi-party ML by main-
taining training data on the provider’s device and aggregating
model updates at a trusted central coordinator. Federated learning
decentralizes the ML pipeline (Figure 1) by having data providers
perform the above stages (1) and (2a), while a central coordinator
runs stages (2b) and (3). There have been claims of stronger pri-
vacy and security in federated learning [7], though recent work has
challenged these claims [4, 14, 17, 25].

In the quest to train an optimal model as quickly and efficiently
as possible, the central coordinator in federated learning is not
incentivized to provide privacy to data providers [29], yet it is
most empowered to provide it. The advance of privacy-preserving
ML has, so far, been restricted by this view. A single institution
administers the entire ML process, and an illusion of control is
provided to the data providers.

On the opposite end of centralization, data marketplaces are
exchanges that use blockchains to decentralize the ML process
(Figure 1). These exchanges facilitate the purchase and exchange
of valuable training data (stage 1), and distribute the ML process
(stages 2a and 2b) across a blockchain network [20, 33]. These
systems use smart contracts [35] to ensure the secure exchange
of data and may include methods to appraise training data in a
differentially private manner [21]. Since the system lacks trust
in any party to perform ML, these systems perform training in
trusted execution environments (TEEs) [20] or use cryptographic
techniques for ML [33], both of which have high performance
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overheads for ML [28]. Full decentralization is an extreme proposal,
and we believe that intermediate design points on the centralization
spectrum better balance privacy and performance (Figure 1).

A key observation in our work is that once data providers and
model curators agree on a learning objective for multi-party ML, there
is no need for the curator to also coordinate the learning. There is a
clear opportunity for a new model for multi-party ML that simulta-
neously respects the emerging privacy needs of data providers and
model utility needs of model curators, while logically centralizing
the aggregation stage (2b). We define this new learning setting,
called brokered learning, in which a neutral third-party coordinates
the learning process. We evaluated the plausibility of our brokered
learning model by designing one example brokered learning system
called TorMentor [13]. TorMentor is an anonymous ML system that
operates brokered learning over the Tor network [9].

In the face of growing concerns over data privacy, we believe
that new models are essential for future innovation in distributed
multi-party ML. The brokered learning model we propose has well-
aligned incentives, which can broaden ML usage even further by
pushing parts of the ML pipeline outside of organizations that today
control and administer the ML pipeline. Another advantage of our
proposal is to better align modern ML pipelines with new privacy
regulations, such as GDPR. For example, brokered learning relieves
curators from storing and even observing potentially private user
data, both of which are problematic under GDPR [32].

2 TOWARDS BROKERED LEARNING
The distributed ML process is made possible by several actors, each
providing their own unique value to the system, and each with
unique participation incentives.
Data providers contribute the most valuable resource: training
data. To train a model that generalizes well to a variety of situations,
data should be collected from a variety of users and not all data has
equal value. The contribution of training data for ML is at tension
with the rising need for privacy [1, 2]. This has prompted the de-
velopment of privacy-preserving training methods [15, 34], which
allow providers to generate privacy-preserving model updates in
stage (2a), prior to the aggregation stage (2b).

An issue with applying these methods in the private multi-party
ML setting is that, in a tunable privacy setting, data providers are
not incentivized to provide data with lower levels of privacy. As a
response, large organizations have implemented their own privacy
technologies, which is undesirable due to a lack of transparency
and potential for implementation errors [36].

On the flip side, when data providers have the freedom to com-
pute model updates locally, there is no process to audit or mandate
that the computation is correct. Recent work has shown that this
allows malicious data providers to perform attacks on both the
shared model and other data providers [4, 14, 17, 25].
Model curators define the desired ML task, and may optionally
provide the required algorithms for distributed multi-party ML.
In the model above, curators are responsible for stage (3), and
optionally may define (but not necessarily perform) stages (2a) and
(2b). Curators are incentivized to train the highest performing ML
model, and are unconcerned with privacy, which has hindered the
deployment of fair and unbiased ML systems [29]. In fact, there

Curator Provider(s)

Poisoning, Sybil

Inversion, Sybil

Inversion
SybilBroker InversionPoisoning

Figure 2: Roles in brokered learning and attack vectors.

is a direct privacy-utility trade-off when it comes to the value of
data [10], so providing stronger ML privacy guarantees directly
reduces the amount of utility extracted from training data.

The issue of privacy has hindered the ability for untrusting
parties to share data and collaborate, forcing organizations to collect
massive amounts of training data for their own isolated analysis,
and limiting the range of new data domains available to analysts.
Infrastructure providers house the update and aggregation com-
putation (stages 2a and 2b). Functionally, the infrastructure provider
does not need to know who is involved, what computation is being
executed, or what the model is being used for. They serve as a
natural point for brokering and equalizing the incentive interaction
between data providers and model curators since they cannot fa-
vor either party: in leaking private data, they lose reputation with
data providers, and in compromising model utility, they lose model
curator business.

Today, a select few curators own massive infrastructures for
large scale ML, and the long tail of curators rent infrastructure
from these providers. A variety of solutions have proposed the in-
frastructure provider as a point for introducing privacy guarantees
to data providers [7, 28]. But, these models are only available to the
largest of infrastructure providers and assume that the infrastruc-
ture provider and the model curator are operated by the same entity.
This creates a setting where private algorithms are proprietary and
opaque, and we have seen that implementation errors in privacy-
preserving techniques can result in weaker privacy guarantees [36].
If there is no incentive for model curators to provide privacy, why
would they do it, and why would they do it well [29]?

We propose brokered learning, which builds on the federated
learning setting [24], but assumes no trust or prior agreement
between data providers and model curators. In this setting the
users in the system (model curators and data providers) need not
even communicate with one another, which facilitates a minimal
trust model and strengthens user-level privacy. Brokered learning
protects data providers from model curators while maintaining
their existing federated learning API.

3 THREAT MODEL
Brokered learning aims to mitigate both known ML attacks on fed-
erated learning and new attacks made possible by the introduction
of an honest-but-curious broker.

We assume that the broker is administered by an honest-but-
curious neutral party, meaning that it does not initiate actions and
follows the prescribed deployment instructions. For example, the
broker detects and rejects anomalous behavior and terminates the
learning process as instructed by the model curator. A malicious
broker could attempt to attack providers or curators, but this would
result in a massive breach of trust and loss of reputation.
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Figure 3: Overviewof brokered learning and its components.

We assume that data providers and model curators do not at-
tack the broker itself, rather they aim to attack other curators,
other providers, or the outcome of the learning process. Figure 2
overviews the threat model in brokered learning with who can
attack who and how.
Poisoning attack. In a poisoning attack [6], an adversary meticu-
lously creates adversarial (poisoned) training examples and inserts
them into the training data set of a target model. This may be done
to degrade the accuracy of the final model (a random attack), or
to increase/decrease the probability of a targeted example being
predicted as a target class (a targeted attack) [19]. For example, such
an attack could be mounted to avoid anomaly detectors [31] or to
evade email spam filtering [27].

In federated learning, clients possess a disjoint set of the total
training data; they have full control over this set, and can therefore
perform poisoning attacks with minimal difficulty, if not audited or
verified by an external process.
Information leakage. In an information leakage attack, such as
model inversion, an adversary attempts to recover the training
examples used to train an ML model by querying several values
against the model predictions [11, 12].

Information leakage attacks have been extended to federated
learning: instead of querying information from a fully trainedmodel,
an adversary observes model updates or infers them from changes
in the shared model during the training process [17, 25]. In doing
so, the adversary can reconstruct training examples that belong to
other clients once they collect a sufficient number of model updates.

Because of information leakage attacks, data providers cannot
directly expose data or model updates computed on private data.
This has motivated a variety of new solutions that protect the
privacy of a model update in federated learning, such as secure
aggregation [7] and differentially-private federated learning [15].
Sybil attacks. Since data providers join the system anonymously,
they can generate sybils, or multiple colluding virtual clients, to
attack the system [14]. In federated learning, all users are given
an equal stake in the system, and thus sybils make poisoning and
inversion attacks linearly easier to perform [14]. Because of this,
a method for verifying or auditing the identity of clients, or data
providers, is also critical for multi-party ML. This can either be per-
formed with external authorization or through other sybil-resilient
mechanisms common in modern blockchains [3, 16, 26].

4 BROKERED LEARNING DETAILED
A natural tension exists between data providers and model cura-
tors in their incentives: model curators want to control as much
of the process as possible to maximize utility from the available
data, and data providers want to maximize privacy by hiding their
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newly specified models

Deployment 
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Table 1: A summary of the three broker components.

computation. Brokered learning relieves this tension by allowing
model curators to parameterize the components that interface data
providers with the shared model. These components are shown in
Figure 3 and their roles are defined in Table 1, with a list of potential
options for each component observed in prior work.

Curators define the ML model. Curators may know the identi-
ties of data providers that wish to contribute to the model or may
be unaware of the providers that match their learning objectives.
Brokered learning supports both use cases.

Curators define the deployment parameters in brokered learning:
the model type, the learning task, and the services for provider and
model update verification. By defining these services, the model
curator ensures model utility and is able to thwart poisoning attacks
from data providers. This brokered deployment can be performed
securely using smart contracts [20, 35] or via a trusted interface.

Data providers contribute data to the ML task and control their
criteria for participation. Instead of fully trusting the curator, as
they would in federated learning, providers communicate with a
broker. The broker is trusted with coordinating the learning process.

Brokered learning allows these providers to contribute to a
shared global model, without being aware of nor trusting each
other. Providers interface with the broker by requesting access to
the system, and sending model updates for iterative learning. Bro-
kered learning supports a variety of synchrony models, including
total asynchronous [30], bulk synchronous [22], and hybrid SGD
models [18].

While training, each provider only needs to be concerned about
its personal privacy parameters and is not obligated to reveal more
than they are comfortable with. Some providers may be more con-
cerned with privacy than others. As in federated learning, data
providers can submit privacy-preserving versions of their updates
to the broker through differentially private SGD [15].

A broker is a short-lived process that coordinates the training
of a multi-party ML model. The broker exposes interfaces that are
responsible for brokering the agreement between data provider
and model curator and resolves the tension between between data
providers and model curators by dividing their APIs: as long as
model curators specify validation services that adequately ensure
utility, and data providers send model updates that adequately
provide privacy, both parties will be satisfied. As shown in Figure 3,
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Figure 4: Overview of the TorMentor protocol.

these interfaces sit as protective and expressive layers on top of the
machine learning model that would otherwise be vulnerable and
non-negotiable in federated learning.

In our service-based vision, brokers are not intended to be long
lasting, and their sole function should be to broker the specific
agreement between users to facilitate multi-party ML for a sin-
gle dataset. Brokers may be explicitly managed by governments,
blockchains or businesses, all of whom are incentivized to provide
privacy, anonymity and fairness in distributed ML.

5 TORMENTOR DESIGN
Since data providers and model curators no longer have to directly
interact to perform multi-party ML, we envision an extreme exam-
ple that showcases a novel opportunity that would be impossible
under the current model of federated learning: anonymous multi-
party ML. In this setting, data providers and model curators operate
through an anonymous marketplace for distributed multi-party
machine learning. We built TorMentor, an example brokered learn-
ing system that realizes this novel anonymous setting1. In lieu of
trusted cloud infrastructure or a governing organization, brokers
are run as hidden Tor services [9]. Data providers and model cu-
rators communicate with a hidden Tor service endpoint, which
satisfy the roles defined in Table 1 and expose the API in Table 2.
Design overview. Each TorMentor broker is deployed as a Tor
hidden service with a unique and known .onion domain. As in
brokered learning, data providers may join the learning process
if they satisfy the validation requirements defined by the model
curator. Each broker is associated with a pool of providers that
perform SGD.

Without existing reputation scores or trust between brokers
and data providers, TorMentor runs its own validator process to
ensure the integrity of model updates sent by providers to the
broker. The validator uses 2 elements to verify the integrity of
provider activity in the system. First, a validation dataset is used

1Here we overview TorMentor’s design; a more complete description is available [13].

to verify a proportion of the incoming stream of model updates.
This validation is provided by the model curator and used as the
ground truth for the model; any update that causes a significant
degradation in validation accuracy will be rejected in a Reject on
Negative Influence (RONI) [5]. Secondly, the validator exposes a
cryptographic proof of work puzzle [3] that providers are required
to solve before joining the system and again when submittingmodel
updates. The difficulty of this puzzle increases when providers fail a
RONI test; this alleviates the risk of sybils by significantly increasing
the cost required to execute sybil-based poisoning attacks [14].
As a default, we validate 10% of all model updates and use an
initial difficulty of 3. When a provider fails a RONI validation, their
difficulty goes up by 1.

5.1 Curator API
The curator uses the curate call (Table 2) to bootstrap a new model
by defining a common learning objective: the model type, the desired
training interface and a RONI validation dataset, as described above.

For each model defined by a curator, a single broker is created
and deployed as a hidden service and the system waits for providers
to contact the service with a message to join. In TorMentor, the val-
idation dataset is used as an example of a mechanism for rejecting
adversaries, but can be replaced with any curator desired require-
ments, in a programmable form such as a smart contract [35].

5.2 Provider API
A provider uses the join call (Table 2) to join a curated model. A
provider’s data is validated against the objective when joining. Our
prototype only checks that the size of the model update matches
those of the provider, but a differentially-private method for data
valuation [21] can also be used to verify provider integrity.

To comply with proof-of-work validation, the provider uses the
solve call to join the model and submit model updates, similar to
that of the Bitcoin [26] protocol, in which a cryptographic SHA-
256 admission hash is inverted, the solution is verified to contain
a required number of trailing ‘0’ digits, and a new puzzle is pub-
lished [3]. Once the proof-of-work is completed, the provider is
accepted as a contributor to the model. Once the desired number
of providers have been validated, collaborative model training is
performed through the brokered learning protocol: each provider
computes their SGD update on the global model and pushes it to
the parameter server through the gradientUpdate function.

5.3 Training process
Training in TorMentor (Figure 4) is performed via SGD, similar to
that of federated learning: each provider pulls the global model
from the broker, locally computes a model update, and returns
the update to the broker after proof of work and RONI validation.
Providers are free to leave the training process at any time.

5.4 Protecting providers and curators
Since providers compute gradient updates locally, providers may
alsomaintain a personal privacy level ε when calculating differentially-
private updates during model training [15]. With the privacy-utility
tradeoff in mind, it is natural for providers and curators to have
different preferences regarding provider privacy. Some providers
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API call Description
address← curate(mID, validSet) Curate a new model. Curator provides modelID, and validation set. TorMentor

returns a hidden service address for a newly specified broker.
Padmit ← join(mID) Provider joins a curated model. Provider provides modelID; TorMentor returns

a SHA-256 admission hash puzzle Padmit .
conn,Mt ← solve(mID, Sadmit ) Provider finds the solution Sadmit to Padmit and joins. Provider provides

modelID and initial solution to puzzle; TorMentor returns a connection and
global model state.

Mд,t+1, Pi,t+1 ← gradientUpdate(mId, Si,t , ∆i,t ) Provider pushes a local model update to the global model state. Provider i
provides modelID, solution to previous SHA-256 puzzle Si,t and gradient update
∆i,t at iteration t ; TorMentor returns new global model stateMд,t+1, and the
next SHA-256 puzzle Pi,t+1.

Table 2: TorMentor API. The curate call (top row) is the only curator API call. The bottom three calls are for providers.

may value privacy more than others and thus will tune their own
privacy risk, while curators want to maximize their model utility.
As in the brokered learning specification, if this requirement is
not met by either party, the curator-defined provider validation
step will fail, and the model update will be rejected, keeping both
the data provider and the model curator safe. TorMentor is the first
system to support anonymous ML in a setting with heterogeneous
user-controlled privacy goals.

6 EVALUATION
Credit card dataset. In our evaluation we envision multiple credit
card companies collaborating to train a model that predicts defaults
on credit card payments. However, the information in the dataset is
private to each credit card company. In this context, a credit agency
can act as the curator, the broker is a commercial trusted service
provider, and data providers are the credit card companies.

To evaluate this use-case we used a credit card dataset [37] from
the UCI machine learning repository [23]. The dataset has 30,000
examples and 24 features. The features represent information about
customers, including their age, gender and education level, along
with information about the customer’s payments over the last 6
months. The dataset also contains information about whether or
not the given customer managed to pay their next credit card bill,
which is used as the labeled output for the model.

Prior to training, we normalized, permuted, and partitioned the
datasets into a 70% training and 30% testing shard. For each ex-
periment, the training set is further sub-sampled to create a single
data provider’s dataset, and the testing shard is used as the curator-
provided validation set. Training error, our primary metric, is cal-
culated as the error when classifying the entire 70% training shard.
However, note that in brokered learning no single data provider
would have access to the entire training dataset.
Wide-area (WAN) deployment on Azure. We evaluated bro-
kered learning at scale by deploying TorMentor on a geo-distributed
set of 25 Azure VMs, each running in a separate data center, span-
ning 6 continents. Each VM was deployed using Azure’s default
Ubuntu 16.06 resource allocation. Each VM had a single core Intel
Xeon E5-2673 v3 2.40GHz CPU, and 4 GB of RAM. Tor’s default
stretch distribution was installed on each VM. We deployed the

# of Data Providers TorMentor w/o Tor
10 819 s 210 s
50 210 s 34 s
100 135 s 18 s
200 67 s 13 s

Table 3: Time to train the model with TorMentor, with and
without Tor, over a varying number of data providers.

broker at our home institution as a hidden service on Tor. The me-
dian ping latency (without using Tor) from the VMs to the broker
was 133.9ms with a standard deviation (SD) of 61.9ms. With Tor,
the median ping latency increased to 715.9ms with a SD of 181.8ms.

In our WAN experiments we evenly distribute a varying number
of data providers across the 25 VMs and measure the training error
over time. Each provider joins the system with a bootstrapped
sample of the original training set (n = 21,000 and sampled with
replacement), and participates in asynchronous model training.

6.1 Scalability and overhead
We evaluated TorMentor’s scalability by varying the number of
data providers. We evaluate the latency overhead in TorMentor by
deploying a new broker and initializing the training process once
all providers have joined the system. These experiments were done
both with and without Tor. All nodes were honest, held a subsample
of the original dataset, and performed asynchronous SGD.

Figure 5 shows that, when updating asynchronously, the model
convergences at a faster rate as we increase the number of providers.

We also compared the convergence time on TorMentor with a
baseline brokered learning instance. For the baseline brokered learn-
ing service, we used the same deployment, but bypassed Tor. This
models a data marketplace in which anonymity is not a concern,
but users still do not want to share their data.

The results in Table 3 show that on average, the overhead in-
curred from using Tor ranges from 5-10x. Model training is per-
formed in a reasonable time over a wide-area network, showing
that an anonymous instance of brokered learning achieves similar
performance to its federated learning counterpart.
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Figure 5: TorMentor model convergence in deployments
with 10, 50, 100, and 200 data providers.
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Figure 6: TorMentor without Tor model convergence in de-
ployments with 10, 50, 100, and 200 data providers.

6.2 Poisoning defenses evaluation
We evaluate the ability of RONI and proof of work as validation
processes in brokered learning when defending against random
poisoning attacks. To do this, we deployed TorMentor in a setting
with 8 providers. We then included malicious providers with la-
bel flipped data [6] and varied both the proportion of malicious
providers in the system and the required drop in model influence
for a flagged RONI validation. Each time a provider failed a RONI
validation, the difficulty of their proof of work puzzle was increased
bu 1. Figure 7 shows the training error for the first 250 seconds for
a RONI threshold of 2%, while varying the proportion of poisoning
attackers from 25% to 75%, while validating 10% of model updates.

As the number of poisoners increases, different effects can be
observed. When the number of poisoners is low (below 25%), the
model still converges, albeit at a slower rate than normal. With 50%
poisoning, the model begins to move away from the optimum, but
is successfully defended by the provider validator, which increases
the proof of work required for all of the poisoners within 30 seconds.
From this point, the poisoners struggle to outpace the honest nodes,
and the model continues on a path to convergence. Lastly, when
the proportion of poisoners is 75%, the increase in proof of work
is too slow to react; the model accuracy is greatly compromised
within 20 seconds and struggles to recover.

Figure 8 shows the execution of model training with 50% poi-
soning providers for different RONI validation thresholds. As the
threshold decreases, adversaries are removed from the system more
quickly, allowing the model to recover from the poisoning damage.
Setting the RONI threshold too low is dangerous as it increases
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Figure 7: Training error over time, when attacked by a vary-
ing proportion of poisoners. RONI threshold is fixed at 2%.
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Figure 8: Training error over time, when attacked by 50% poi-
soners. RONI threshold is varied from 0.5% to 5%.

the effect of false positives: Figure 8 shows that the model initially
performs poorly due to incorrectly penalizing honest providers.

From this evaluation, we note that, if a poisoner was able to
detect this defense, and attempt to leave and rejoin the model, an
optimal proof of work admission puzzle should require enough
time such that this strategy becomes infeasible.

This evaluation shows that even a simple heuristic, such as val-
idation error, can be effective in verifying the integrity of model
updates sent by data providers in brokered learning. In practice, a
model curator can supply an arbitrary function to validate providers,
using elements like external reputation scores or data valuation [21].

7 CONCLUSION
We are increasingly relying on ML for our everyday activities, yet
the ML training process is highly centralized. In this paper we
proposed brokered learning as the next step in evolving federated
learning: decoupling the role of the curator that defines the model,
from the aggregator that trains the model. We also described the
design of TorMentor, an example brokered learning system, that
pushes the limits of multi-party ML by providing anonymity to
curators and data providers through Tor. We hope that learning
inspires further research in privacy-preserving ML systems that
better consider the incentives of data providers and model curators.
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