Artificial Intelligence 278 (2020) 103196

Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Scalable constraint-based virtual data center allocation N

Sam Bayless **, Nodir Kodirov ¢, Syed M. Igbal?, Ivan Beschastnikh ?,
Holger H. Hoos ™2, Alan J. Hu?

2 University of British Columbia, Canada
b Universiteit Leiden, the Netherlands

Check for
updates

ARTICLE INFO

ABSTRACT

Article history:

Received 14 December 2017

Received in revised form 19 October 2019
Accepted 25 October 2019

Available online 31 October 2019

Keywords:
Constraint solver
Data center
Virtual data center
Allocation

Constraint-based techniques can solve challenging problems arising in highly diverse
applications. This paper considers the problem of virtual data center (VDC) allocation,
an important, emerging challenge for modern data center operators. To address this
problem, we introduce NETSOLVER, a system for VDC allocation that is based on constraint
solving. NETSOLVER represents a major improvement over existing approaches: it is sound,
complete, and scalable, providing support for end-to-end, multi-path bandwidth guarantees
across all the layers of hosting infrastructure, from servers to top-of-rack switches to
aggregation switches to access routers. NETSOLVER scales to realistic data center sizes and
VDC topologies, typically requiring just seconds to allocate VDCs of 5-15 virtual machines
to physical data centers with 1000+ servers, maintaining this efficiency even when the data
center is nearly saturated. In many cases, NETSOLVER can allocate 150% — 300% as many
total VDCs to the same physical data center as previous methods. Finally, we show how
NETSOLVER can be extended with additional optimization constraints, such as VM affinity
and hotspot minimization, demonstrating the flexibility of our approach.
The performance and flexibility of NETSOLVER are made possible by our formalization of the
VDC allocation problem in terms of multi-commodity flows, and the corresponding efficient
handling of network flow problems in the underlying constraint solvers. This shows the
importance of supporting flow-based constraints, which are more mature in ILP- vs. SMT-
based constraint solving.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Constraint-based techniques, such as Integer Linear Program (ILP) and SAT modulo theory (SMT) solvers, play a key role
in state-of-the-art approaches for solving challenging problems across a wide range of applications (see, e.g., [1-4]). In this
work, we demonstrate how virtual data center (VDC) allocation, a prominent and increasingly important problem arising
in the operation of modern data centers, can be tackled using a pair of high-performance constraints solvers: Gurobi [5]
and MONOSAT [6]. We obtain substantial improvements in performance and functionality over previous VDC allocation
techniques. Central to our results is the formalization of VDC allocation in terms of multi-commodity flows, allowing us to
exploit the efficient handling of network-commodity flow problems in Gurobi and MoNOSAT. We are the first to demonstrate
that constraint solvers can be successfully applied to this setting at full data center scales (1000+ servers), while also

improving on the state-of-the-art.

* Corresponding author.
E-mail address: sbayless@cs.ubc.ca (S. Bayless).

https://doi.org/10.1016/j.artint.2019.103196
0004-3702/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.artint.2019.103196
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
http://creativecommons.org/licenses/by/4.0/
mailto:sbayless@cs.ubc.ca
https://doi.org/10.1016/j.artint.2019.103196
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2019.103196&domain=pdf

2 S. Bayless et al. / Artificial Intelligence 278 (2020) 103196

Physical

Data Center ToR1 [T

Virtual /
Data Center K

’
/

[r]e~2+m]«

1 core] 1 core] 1 core]
2GB 2GB 2GB

Fig. 1. (Top) Example physical data center topology with three physical servers, two top-of-rack (ToR) switches, and two aggregation switches (AggSw).
Circled numbers on links denote available bandwidth in Gbps. (Bottom) Example Hadoop VDC with one master (m) and three slave VMs (s1-s3) with a
required throughput of 2 Gbps between each slave and the master (shown in circles). Each VM also requires a certain number of CPU cores and RAM. The
problem is to find an allocation of the VDC to the physical data center, for example, as illustrated with the dashed lines. Note that s1 and m are mapped
to the same physical server, while the virtual link m —s2 is allocated a multi-path route.

A VDC consists of multiple communicating virtual machines (VMs), each with individual server resource requirements
(e.g., CPU or RAM), along with a virtual network of pair-wise bandwidth requirements between the VMs. The VDC allocation
problem is to find a valid allocation of VMs to servers and links in the virtual network to links in the physical network.
A valid allocation satisfies the compute, memory, and network bandwidth requirements of each VM across the entire data
center infrastructure, including servers, top-of-rack (ToR) switches, and aggregation switches [7,8]. Fig. 1 shows a simple
instance of the VDC allocation problem and one solution.

Here, a virtual topology representing a 4-node Hadoop VDC (bottom) needs to be mapped onto a physical data center
with three physical servers, two ToR switches, and two aggregation switches (top). The allocation is indicated with dashed
lines. For example, the VMs for s1 and m are mapped to the same physical server and the virtual link s2 — m is allocated
a multi-path route, in which each sub-path provides 1 Gbps. As we will discuss in Section 2, support for end-to-end and
multi-path are two characteristics that distinguish capabilities of our tool, NETSOLVER, from prior tools.

In this work, we introduce NETSOLVER,! a constraint-based virtual data center allocation procedure that is scalable, sound,
and complete, with support for end-to-end, multi-path bandwidth guarantees across all the layers of the networking infras-
tructure, from servers to top-of-racks to aggregation switches to access routers. NETSOLVER efficiently allocates VDCs with a
dozen or more VMs to full-size physical data centers (with 1000+ servers), typically in seconds per allocation. Across a wide
variety of data center topologies, NETSOLVER can allocate 150% — 300% as many total VDCs to the same physical data center
as state-of-the-art heuristic methods, such as SecondNet’s VDCAlloc algorithm [9].

Furthermore, NETSOLVER offers the flexibility and extensibility characteristics of a constraint-based approach. In real-
world applications, DC operators often need to support additional constraints or optimization goals while allocating VMs
(such as ensuring that certain VMs are placed together). We demonstrate that NETSOLVER can be easily extended to support
additional VDC allocation constraints: VM affinity constraints, minimization of the total number of utilized servers, and
constraints to load-balance allocations and avoid hotspots.

This paper extends results previously published in [10] with significant new capabilities (Section 6), a new ILP-based
solver back end (Section 4.1), and broadened experimental results (Section 5). Additionally, we have improved the overall
runtime performance of NETSOLVER by ~ 15% through the use of automatic algorithm configuration [11] (Section 5 and
Appendix A), as well as upgrading the SMT solver (MoNOSAT) from version 1.4 to version 1.6. We use Gurobi 8.1.0 (linux64,
Python) for all experiments.

2. Related work

We now survey prior work with respect to features of VDC allocation that are relevant to modern data centers. As can
be seen from Table 1, all prior approaches have important limitations relative to the contributions of this paper.

1 See https://www.cs.ubc.ca/labs/nss/projects/netsolver-aij-2019.

https://www.cs.ubc.ca/labs/nss/projects/netsolver-aij-2019

S. Bayless et al. / Artificial Intelligence 278 (2020) 103196 3

Table 1

A comparison of the features of contemporary sound VDC allocation algorithms and four recent VNE algorithms: GAR-SP/PS (and
variant RW-MM), D-ViNE, and ASID, based on linear programming, mixed integer programming, and subgraph isomorphism detec-
tion, respectively.

Algorithm Sound Complete Multi-path Multi-VM VDC topology DC topology
SecondNet [9] v’ All All
Importance Sampling [12] v’ v’ All Tree
Oktopus [13] v’ v’ Star All
VDCPlanner [14] v’ v’ All All

HVC-ACE [15] v’ v’ v’ Hose All
GAR-SP/PS [16] v’ v’ v’ All <200 nodes
RW-MM-SP/PS [17] v’ v’ All < 200 nodes
D-ViNE [18] v’ v’ All <200 nodes
ASID [19] v’ All <200 nodes
VirtualRack [20] v’ v’ Hose All

Z3-AR [21] v’ v’ v’ All Tree
NETSOLVER (this paper) v’ v’ v’ v’ All All

Soundness Sound VDC allocation tools respect end-to-end bandwidth guarantees, while unsound tools only attempt to
minimize data center network traffic without a guarantee that VMs will have sufficient dedicated bandwidth.
Examples of unsound approaches to VDC allocation include [22,23], which dynamically identify VM communication
patterns through network traffic analysis.

This prior work is in contrast to the approaches discussed in this paper, all of which, including our contribution,
NETSOLVER, are sound and assume that VDCs and their communication requirements are explicitly known to the
allocator.

Completeness Most VDC allocation tools that respect bandwidth guarantees are incomplete: they can fail to find feasi-
ble VDC allocations in cases where such allocations exist (even when given unlimited runtime). Oktopus [13],
VDCPlanner [14], HVC-ACE [15], and SecondNet [9] are examples of incomplete allocation algorithms. For example,
SecondNet’s algorithm is greedy in that it maps VMs to servers before checking for available paths, and allocates
bandwidth one path at a time; if either of these steps fail, it will fail to allocate the VDC.> Similarly, Hadrian [24],
Cicada [25], and CloudMirror [8] use incomplete greedy heuristic algorithms that attempt to co-locate VMs of the
VDC in the smallest physical DC sub-tree. Hadrian models VDC network allocation as a maximum flow problem,
finding the shortest network path with sufficient capacity to carry each VDC's VM-to-VM traffic. Pulsar [26] uses
Hadrian’s VDC allocation algorithm and extends it to accommodate VM-appliances (such as SSDs and encryption
devices).

In contrast with this prior work, the constraint-solver-based approaches described in [21] and NETSOLVER are
both complete: they are guaranteed to (eventually) find a feasible allocation if one exists. We will show in our
experiments that completeness does not merely represent a theoretical benefit, but can translate into substantial
gains in practical allocation capability. NETSOLVER is the first sound and complete VDC allocator that can be applied
to any VDC and data center topology without simplifying abstractions.

Multi-Path Allocations Many data centers use multi-path allocations to maximize bandwidth and to provide fault-tolerance
and load-balancing [27,28]. Lack of multi-path support in traditional L2/L3-based networks was a primary motive
for data center operators to develop networking stacks with multi-path support [29]. There are now multiple ef-
forts underway to eliminate this restriction, which include using architectures specifically designed for multi-path
routing, e.g., BCube [30], VL2 [31], and making the data center networking fabric itself multi-path [32].

Despite the increasing importance of multi-path routing, to the best of our knowledge, there is only one previ-
ous VDC allocator that supports multi-path communication between VMs: HVC-ACE [15], a sound but incomplete
allocator that uses a hose-model for VDCs (we describe hose-models below). There are also several incomplete al-
gorithms for virtual network embedding that have support for multi-path allocation for smaller physical networks
with 50-150 servers [16,18,17]. NETSOLVER is the first sound and complete multi-path tool for VDC allocation.

Multi-VM Allocations Some tools simplify VDC placement by assuming that the VMs in a VDC must all be placed on
separate servers. For example, SecondNet [9] uses bipartite graph matching to assign VMs to servers; as a result,
it can place only a single VM per server when allocating a given VDC. Similarly, VirtualRack’s [20] virtual tree
abstraction places each VM into a separate leaf node server. D-VINE [18] uses mixed-integer programming to
perform virtual network embedding, but their encoding does not support allocating multiple virtual nodes per

2 In fact, SecondNet will try this process several times on different sub-sets of the data center before giving up.
3 Note that NETSOLVER, our approach, also models VDC allocation using maximum flow, but combines this with additional constraints to achieve com-
pleteness.

4 S. Bayless et al. / Artificial Intelligence 278 (2020) 103196

server. In many cases, it can be advantageous to place multiple VMs on one server, since communication between
the co-located VMs is cheap. Multi-VM placement is useful to take advantage of data locality between VMs and
can be explicitly requested by a tenant. Conversely, a tenant may want single-VM placement for higher fault
tolerance. For example, VMs hosting different database replicas can be assigned to different servers to decrease
fate-sharing. Section 6 discusses a VDC used in a commercial setting that requires the multi-VM property as part
of the tenant’s request. By default, NETSOLVER performs multi-VM placement. However, NETSOLVER also supports
anti-affinity constraints (as well as other advanced placement options, discussed in Section 6), which can be used
to force some or all of the VMs in a given VDC to be placed on disjoint servers.

Unrestricted Topologies Many VDC allocators simplify the problem, either by abstracting VDC topologies into simpler ones
that are easier to allocate, or by restricting the physical data center to simpler topologies. For example, the
abstraction-refinement encodings from [21] only apply to tree-topology data centers. Oktopus [13] abstracts VDCs
into virtual clusters, which are VMs connected to central virtual switch in a star topology. VirtualRack [20] and
HVC-ACE [15] use a less-restricted hose-model [33] abstraction for VDCs. A hose-model only allows one to specify
aggregate, rather than pairwise, bandwidth requirements for virtual machines - that is, each VM is guaranteed a
certain amount of ingress and egress bandwidth into the virtual network as a whole, but is not guaranteed to have
any specific amount of bandwidth to any specific VM. Hose-models generalize the star-topology used in Oktopus,
but cannot, for example, model virtual networks that include cycles or (non-trivial) trees. NETSOLVER is the first
sound and complete VDC allocation approach that supports arbitrary VDC and data center topologies.

As observed by Ballani et al. [24], VDC allocation is closely related to virtual network embedding (VNE) [34,35]. The
VNE literature, however, has focused on allocating virtual networks onto substrate networks that are representative of
medium-sized ISPs, with 50-150 servers and few or no intermediate switches (e.g, recent VNE tools: GAR-SP/PS [16],
RW-MM-SP/PS [17], D-VIiNE [18], ASID [19], and [36] all fall into this range). In contrast, work on VDC allocation has
typically focused on allocating to larger physical networks with topologies representative of typical data centers, often with
thousands (or even hundreds of thousands) of servers, along with intermediate switches [9,37]. Therefore, even though
the problem definitions in the VNE and VDC literature often overlap, VDC tools have made different trade-offs to focus on
scalability. We compare NETSOLVER to several representative VNE approaches in Section 5.4 and confirm that these tools
perform poorly on typical VDC instances.

3. The multi-path VDC allocation problem

The problem we consider in this work is defined as follows. We are given the description of a physical network (PN)
and a virtual data center (VDC). The PN is specified through a set of servers S, switches N, and a directed (or undirected)
graph (S U N, L), with capacities c(u, v) for each link in L. The VDC consists of a set of virtual machines VM and a set
R C VM x VM x Z* of directed (or undirected) bandwidth requirements between those machines. For each server s € S, we
have CPU core, RAM, and storage capacity specifications, cpu(s), ram(s), storage(s), and for each virtual machine v € VM, we
are given CPU core, RAM, and storage requirements cpu(v), ram(v), storage(v).

The objective in the multi-path VDC allocation problem is to find an assignment A : VM S of virtual machines v € VM
to servers s € S along with an assignment of non-negative bandwidth B, y(l) to links [€ L for each bandwidth requirement
(u, v,b) € R, satisfying the following constraints:

e Local VM allocation constraints (L) ensure two properties: First, that each virtual machine is assigned to exactly one
server:

VweVM:) (A(v)=s)=1
ses

Secondly, that each server provides sufficient CPU core, RAM, and storage resources to accommodate the requirements
of all VMs allocated to it:

VseS: Z cpu(v) <cpu(s) | A
veV(s)

Z ram(v) <ram(s) | A

veV(s)

Z storage(v) < storage(s) |,
veV(s)
where V(s) ={ve VM| A(v) =s}.
Resource requirements are modeled using integer values, and VMs do not share resources.

S. Bayless et al. / Artificial Intelligence 278 (2020) 103196 5

o Global bandwidth allocation constraints (G) ensure that sufficient bandwidth is available in the physical network to
satisfy all bandwidth requirements between pairs of VMs. We formalize this by requiring that for all (u, v,b) € R, the
bandwidth assignments By ,(I) must form a valid network flow with its source at the node that u is allocated in,
A(u), and its sink at the node that v is allocated in, A(v). Further, we require that network flow to be no smaller
than the required bandwidth b, and that none of the link capacities [in the physical network is exceeded: VI € L :
Z(u,v,b)eR By v() <c(l). Bandwidths are represented by integer values; bandwidth between VMs allocated on the same
server is unlimited.

It has been previously observed [38,39,16,18] that when allowing path-splitting, the global bandwidth allocation constraints
give rise to a multi-commodity flow problem, which is strongly NP-complete even for undirected integral flows [40]. Con-
versely, any multi-commodity flow problem maps directly into bandwidth constraints above, establishing the NP-hardness
of the multi-path VDC allocation problem [18].4

4. NetSolver

Previous work on constraint-based virtual machine placement has drawn on techniques from two communities: integer
linear programing (ILP), and SAT modulo Theories (SMT). In this section, we will describe how the VDC allocation can
be implemented and efficiently solved using either Gurobi, a state-of-the-art Integer Linear Program (ILP) solver [5], or
MONOSAT, a SAT modulo theory (SMT) solver [6].

4.1. Encoding multi-path VDC allocation in ILP

ILP solvers are commonly used for solving maximum flow and multi-commodity flow problems, and are widely cited
in the literature for that use-case, across a broad range of applications (e.g., [41,42,25]). CPLEX and Gurobi, for example,
are able to automatically recognize properly encoded multi-commodity flow problems and handle them internally using
special-cased techniques [43,5]. The details of how these solvers handle flow problems are proprietary, but examples of
such approaches are discussed in the literature (e.g., [44]).

The local and global constraints L and G defined in Section 3 are directly expressible as integer linear programming
constraints. We describe these fully below:

For each v € VM and each s € S, we introduce a binary variable A, s to represent whether v is placed on s, and add
constraints to enforce that each virtual machine is placed on exactly one server:

YWeVM: Y Ays=1

seS

Then, for each of the three resource constraints (CPU, RAM, Storage) we enforce the resource constraints:

VseS: (Z Ays -cpu(v)) <cpu(s)

veVM

VseS: (Z Ay -ram(v)) <ram(s)

veVM

VseS: (Z Ays -storage(v)) < storage(s)

veVM

Together, the above constraints enforce the local constraints L.

Similarly, we directly encode the global constraints G as multi-commodity flow constraints: For each v € VM, and each
link I = (a, b) € L, we introduce a non-negative integer variable B, 4, representing the bandwidth on link ! on the physical
data center originating from VM v. We then assert that for each link, the sum of all bandwidth originating from all VMs
does not exceed the capacity of that link.”

Va.b)yeL:(Y (Byap)) <c(@b)

veVM

4 In principle, this multi-commodity flow problem can be solved efficiently via linear programming for real-valued flows, but this approach does not
support the local VM allocation constraints. Approaches that express the global constraints as a linear program therefore either require an additional
mechanism to perform local server allocation [16] or use mixed integer programming [18].

5 Note: this constraint assumes that the links of the physical network are directed (e.g., full duplex). If the physical network has undirected links, we can
instead enforce that the sum of the bandwidth in both directions on each link [= (a, b) does not exceed c(l).

6 S. Bayless et al. / Artificial Intelligence 278 (2020) 103196

o) o)
\2‘& 12}
) (e(1,2) > (2, 3)A 1/2 7

. N @23)+e(1,3) =20
AR5 G AV £

(a) Directed graph G (b) Formula to satisfy (c) Satisfying flow

Fig. 2. (a) Example symbolic graph, with variable capacities c(u, v) on each edge includes the capacity assigned to each edge, as well as the flow along that
edge. (b) A formula constraining the graph. (c) A solution, assigning a flow and a capacity (f/c) to each edge.

Next, we enforce the network flow constraints on the switches for each originating VM. Since VMs cannot be placed on
switches, this simply enforces that the incoming flow equals the outgoing flow for each switch and each source VM:

YWeVMVneN: Y Bynp= Y Byan
(n,b)el (a,mel

Finally, we enforce the network flow constraints on each server. Here we add two extra terms that account for the flow
entering the network at the server that the source VM is placed on, and the flow exiting the network at servers that
destination VMs are placed on:

YveVM,VseS:
Z Bynpt+ Z (R(Va w) - Av,s) - Z (R(W’ v) - Av,s) = Z By.an
(n,b)el weV\v weV\v (a,n)el

Gurobi has the ability to incrementally re-solve a system of equations after changing the co-efficients. In the above
equations, the constants that define the resource requirements and bandwidth requirements of the VDC, and that define the
capacities of each physical server and link in the physical network, appear as constants. So long as there is a bound on the
number of virtual machines per VDC, the same set of constraints can be re-used for subsequent allocations, after updating
each of those constant values appropriately (for example, to subtract used bandwidth from the capacities of the links of
the physical data center, or to alter the bandwidth requirements between two VMs). Our implementation makes use of
this incremental solving capability when encoding successive VDC allocations; doing so results in a substantial performance
improvement.

4.2. Encoding multi-path VDC allocation into SMT

In contrast to ILP solvers, SMT solvers have not traditionally been applied to large multi-commodity flow problems. As a
result, techniques for handling network flow problems efficiently in SMT are less mature and require some additional discus-
sion. In this section, we will describe how MoNOSAT, a recently introduced SMT solver with support for single-commodity
network flow problems, can be used to solve multi-commodity network flow problems in a practically useful way.

MoONOSAT is a SAT modulo theory (SMT) solver that extends quantifier-free first-order Boolean logic with highly efficient,
built-in support for a wide set of finite monotonic predicates [6]. MONOSAT is different from other SMT solvers in that it
has built-in predicates for (single-commodity) s-t maximum flow. While this does not directly provide support for multi-
commodity flows, we will show that by expressing multi-commodity flows as a combination of single-commodity maximum
flow predicates, we can use MONOSAT to solve large multi-commodity flow problems - a first for SMT solvers.

By combining this encoding for the global constraints G with a pseudo-Boolean encoding of the local constraints L, we
are able to tackle the full multi-path VDC allocation problem in MONOSAT.

Intuitively, a finite monotonic predicate is a predicate for which increasing the value of its arguments can never change
the value of the predicate from true to false, e.g., adding links to a network can only increase the connectedness of the
network. MONOSAT supports many common graph constraints, such as reachability, shortest paths, minimum spanning trees,
and maximum flows. MONOSAT also supports a subset of the theory of fixed-width bitvectors.

MoNOSAT accepts formulas with one or more directed symbolic graphs, each of which comprises a fixed set of nodes
and symbolic edges (u, v). Each edge has an integer capacity, c(u, v), which may be either a constant or a variable (a
fixed-width bitvector). Finally, MONOSAT supports a number of common graph predicates, of which only one is relevant
here: maxFlows ¢ ¢ > f, where G is a directed graph, s and t are nodes in G, and f is a constant integer or a bitvector term.
This predicate is TRUE iff the maximum s-t flow in G, under assignment to the edge capacities associated with G, is greater or
equal to f.

As an example, consider the directed graph G shown in Fig. 2a, with variable integer capacities c(u, v), and the formula
in Fig. 2b. In this example, MONOSAT finds edge capacities that satisfy the constraints and also produces a flow satisfying
the maximum flow predicate in Fig. 2c.

In the remainder of this section, we will first describe how we model integer-value multi-commodity flow in terms of
the built-in maximum flow predicates supported by MoNoOSAT; then we will show how to use these multi-commodity flow
constraints to express VDC allocation. More extensive discussion about MoNOSAT can be found in [6,45].

S. Bayless et al. / Artificial Intelligence 278 (2020) 103196 7

[1core] ~ToR

(a) b A \X
i 3/EI\T 2 q/j:\
¥

[bj+—2

[1core] [1core] [2 core] [2core]

Fig. 3. (a) A VDC with 3 VMs, and 4 directed bandwidth constraints. In this example, each VM requires 1 core, and has no RAM requirements. VM a requires
3 Gbps of outgoing bandwidth to VM b, and 2 Gbps to VM c. VM c also has bandwidth requirements to VM a and b, while VM b requires no outgoing
bandwidth. (b) A physical datacenter with two servers and one Top-of-Rack (ToR) switch. Each server has 2 cores, and has 4Gbps of bandwidth available
to and from the switch.

4.2.1. Multi-commodity flow in MONOSAT

While there are many obvious ways to encode multi-commodity flows in SMT solvers, the one we present here is, to
the best of our knowledge, the only SMT encoding to scale to multi-commodity flow problems with thousands of nodes. As
there are many applications to which SMT solvers are better suited than ILP solvers (and vice-versa), this SMT formulation
has many potential applications beyond VDC allocation.

Given a directed graph G = (V, E), an integer capacity c(u, v) for each edge (u,v) € E, and a set of commodity de-
mands K, where a commodity demand i € K is a tuple (s;, tj, d;), representing an integer flow demand of d; between source
s; € V and target t; € V, the integral multi-commodity flow problem is to find a feasible flow such that each demand d; is
satisfied, while for each edge (u, v) the total flow of all demands (summed) is at most c(u, v):

fi(u,v)>0, V(u,v)eE,iekK
Zfi(u,v)fc(u,v), Y(u,v)eE

ieK
0,ifu ¢ {s;, ti}
Zfi(u,v)—Zfi(v,u)z d,ifu=s; V(i t,di) € K
vev veV —d;,ifu=t

We instantiate symbolic graphs Gk with the same topology as G. We set the capacities of each edge (u, v); € G; to a
new integer variable, c(u, v);, with constraint 0 < c(u, v); <c(u, v). Next, we assert that the capacities in each graph sum to
no more than the original edge capacity: Zli‘l c(u, v); <c(u,v). Together, these constraints partition the original capacity
graph into K separate graphs, one for each demand. To complete the encoding, for each commodity demand (s;, tj, d;), we
use MoNOSAT’s built-in maximum flow constraints to assert that the maximum s;-t; flow in G; is at least d;.

In our formulation, we explicitly enforce only that the maximum s;-t; flow in G; is > d;, as opposed to enforcing that
the maximum flow is exactly d;. Notice that a flow that is greater than d; will necessarily contain a flow that is equal to d;,
and that an exact d; flow can be easily recovered if necessary (e.g., with one extra application of any standard maximum
flow algorithm). Alternatively, an extra, external ‘source’ node can be added to the graph, with exactly one edge of capacity
d; leading to the original source node from this new, extra ‘source’ node. This will ensure that the maximum possible s;-t;
flow is at most d;.

We implement our constraints in this way to improve the performance of the underlying constraint solver. In MONOSAT,
it is typically more efficient to enforce one-sided (>, >, <, <) constraints, rather than two-sided (=, #) constraints. This is
because all theory predicates in MONOSAT must be monotonic, and so equality needs to be implemented as two (individually
monotonic) one-sided comparison atoms.

4.2.2. Multi-path VDC allocation in MonoSAT

In this section, we will show how the global and local constraints described in Section 3 can be encoded into MoNo-
SAT, and used to perform VDC allocation. As a running example, we will consider a small VDC and physical data center
(Fig. 3). These examples are much smaller than the ones we will consider in Section 5: In a typical application, the physical
datacenter might have 1000s of servers, while the VDC might have 10-30 VMs.

The global constraints G (Section 3) can be encoded as a multi-commodity flow as described in the previous section,
with up to |VM|? commodity demands (one for each bandwidth tuple (u, v, bandwidth) € R).°® However, we can greatly
improve on this by merging bandwidth constraints that share a common source into a single commodity demand: Given a
set of bandwidth constraints (u, v;, bandwidth;) € R with the same source u, we can convert these into a single commodity
demand, by adding an extra node w ¢ VM, along with edges (v;, w) with capacity bandwidth;. The commodity demands

6 Note that in our approach, bandwidth values are required to be integers, as we are restricted to finding integer maximum flows. In practice, this is not
a limitation, as data centers typically only offer a small number of (integer-valued) bandwidth/CPU choices to clients.

8 S. Bayless et al. / Artificial Intelligence 278 (2020) 103196

(€a1 V eaz) A (ep1 Vep2) A (ec1 V eca) Each server is assigned to a server (1)

(m€a1 V m€q2) A (mep1 V mep2) A (mect V meca) No VM is assigned to more than 1 server (2)

(m€a1 V mep1 V mect) A (meaz V merg V mee2) Each server has sufficient CPUs for its VMs (3)
c(S1,ToR), + ¢(S1,ToR)> < 4

c(ToR, S1)1 + ¢(ToR,S1), < 4
(52, ToR)1 + ¢(52,ToR)2 < 4 Capacities on each physical edge sumto<c (4)

c(ToR,S2); + c¢(ToR,S2); < 4

Gl.maz flow(VMa,w) =5 Maximum flow from VMato win Glis=5 (5)
Gl.max flow(VMec,w) = 3 Maximum flow from VMc to win G2is =3 (6)

Fig. 4. Two symbolic graphs G1, G2, and the corresponding constraints enforcing allocation for the VDC and PN of Fig. 3. Edges eys control which VMs are
placed on which servers, and have the same assignments in the two graphs. Edges marked with integers have constant capacities; edges e have unlimited
capacity, and edges c¢ have variable, non-negative integer capacities. In this example, constraints 2 and 3 are simple enough to be expressed with a few
clauses, but for more complex examples we would use pseudo-Boolean constraints. Constraint 4 is enforced using bitvector arithmetic, while 5 and 6 use
the built-in maximum flow predicates of MONOSAT.

(u, vi, bandwidth;) can then be replaced by a single commodity demand (u, w,) _; bandwidth;). As there are at most |VM]|
distinct sources in R, this reduces the number of demands from |VM|? in the worst case to |VM| demands.’

In our example from Fig. 3, the VDC has 4 directed bandwidth requirements, but only two distinct bandwidth sources
(VMa and VMc). So we can safely merge these 4 bandwidth requirements into two multi-commodity flow constraints. In
cases where the VDC is undirected, we improve on this further by swapping sources and sinks in communication require-
ments so as to maximize the number of requirements with common sources. This can be done efficiently even for large
networks by finding an approximate minimum-cost vertex cover of R (e.g., using the 2-opt approximation from [46]).

We first construct an undirected graph of communication requirements, with an undirected edge of weight (u,v) =
bandwidth for each bandwidth requirement and find an approximate minimum-cost vertex cover. Necessarily, each edge,
and hence each communication requirement, will have at least one covering vertex. For each requirement (u, v, bandwidth),
if v is a covering vertex and u is not, we replace the requirement with (v, u, bandwidth), swapping u and v. After swapping
all uncovered source vertices in this way, we then proceed to merge requirements with common sources as above. For cases
where the VDC is directed, we skip this vertex-cover optimization and only merge together connection requirements with
the same (directed) source in the input description. Given this set of commodity demands, we construct an undirected (or
directed) graph G consisting of the physical network (S U N, L), and one node for each virtual machine in VM. If any VDC
communication requirements (u, v;, bandwidth;) have been merged into combined requirements (u, w, > bandwidth;) as
above, we add additional, directed edges (v;, w) with capacity bandwidth; to G.

In our running example, we had two multi-commodity flow constraints, so we will construct two graphs (Fig. 4), G1 and
G2. For each v € VM and each server s € S, we add a directed symbolic edge e,s from v to s with unlimited capacity to G;
this edge controls the server to which each VM is allocated. Next, we assert (using a cardinality constraint) that for each
VM v, exactly one edge eys is enabled, so that the VM is allocated to exactly one server: Yv € VM : ZS eys = 1. Using the
multi-commodity flow encoding described above, we assert that the multi-commodity flow in G satisfies (u, v, bandwidth)
for each commodity requirement. The above constraints together enforce global constraints G; to enforce local constraints L,
we use pseudo-Boolean constraints (using the efficient SAT encodings described in [47]) to assert: >, cpu(v) < cpu(s) A
> ram(v) <ram(s) A)_, storage(v) < storage(s). A satisfying solution to our running example, implementing all of the
above constraints, is shown in Fig. 5.

7 Converting a single-source, multi-destination flow problem into a single-source, single-destination maximum flow problem is a well-known transfor-
mation, and safely preserves the maximum possible flow to each destination.

S. Bayless et al. / Artificial Intelligence 278 (2020) 103196 9

G1 ToR G2 ToR

2) (0 RO o 3 LW

VM, | lvan| [vM]| | |[vi] VM| [v]
S || @

Fig. 5. A satisfying assignment to these constraints (showing only the edges that are assigned to ‘true’). Notice that the e,s assighments must be the same
in the two graphs. The capacity assignments c are each at least large enough to allow for the required flow between the assigned VMs (but may be larger
than required, as is the case for c(ToR, S2)), and the individual capacities assigned to each edge across the two graphs sum to at most the bandwidth
available on each edge of the data center (4, in this case).

Note that these encodings are novel contributions and critical to NETSOLVER-SMT’s performance; however, they are em-
pirically efficient only because MoNOSAT (unlike other SMT solvers) has built-in support for network flow constraints. As
we show next, carefully crafted encodings alone, such as the one developed in Z3-AR [21], are not competitive. Instead,
fundamental improvements in the constraint solver, such as the ones we use in MONOSAT, are necessary.

4.2.3. Reusing constraints

As with the ILP-based approach, it's important to use incremental solving in the SMT-based approach as well. The
preceding discussion assumes that the VDC topology is constant and known in advance. However, in a real data center
environment, it is typically the case that one will want to allocate VDCs of differing topologies. We briefly summarize here
how we extend the above encoding to support this use case (which we will demonstrate in Section 5).

Many SAT solvers, including MoNOSAT, support an ‘assumption’ mechanism [48] allowing for a formula to be repeatedly
solved under multiple, differing restricted portions of the search space (that is, under an assumed set of assignments). In
order to support allocating VDCs of differing topologies, without needing to re-encode the entire set of constraints in a new
solver at each allocation (which would be prohibitively expensive), we initially encode a VDC topology that is the superset
of all the VDCs to be allocated. Then, for each individual VDC to allocate, we use the assumption mechanism to temporarily
disable portions of that superset VDC topology in the formula, such that only the edges corresponding to the current VDC to
be allocated remain enabled in the solvers search space. In this way we can efficiently reuse the same solver to perform each
allocation, while supporting VDCs of multiple sizes (as well as supporting the de-allocation of previously allocated VDCs).

5. Evaluation

We now present results from an extensive empirical evaluation demonstrating that our approach offers substantial ad-
vantages compared to state-of-the-art methods for VDC allocation. Specifically, we compare the performance of the ILP and
SMT versions of NETSOLVER to that of SecondNet’s VDCAlloc [9] — a seminal, sound VDC allocation algorithm with end-to-
end bandwidth guarantees — and the Z3-based abstraction-refinement procedure from [21], which resembles our approach
in that it makes use of a constraint solver (SMT). In each experiment, the algorithms repeatedly allocate VDCs to the DC
until they are unable to make further allocations (or until a 1 CPU hour timeout is reached). This metric, the number of
total VDC allocations, was also used in prior work [9,21] and is important in practice, as it captures data center utilization.
Except where noted, experiments were run on a server with a 2.40 GHz (10 MB L3 cache) Intel Xeon E5-2407 v2 processor
with 8 cores across 2 NUMA nodes and hyperthreading disabled. The server uses Ubuntu 16.04.6 LTS with 96 GB RAM that
is uniformly distributed (48 GB each) across both NUMA nodes. All experiments are limited to 80 GB RAM and 1 hour of
CPU-time. No experiment actually consumed 80 GB of RAM.

SecondNet’s VDCAlloc algorithm (‘SecondNet’, except where ambiguous) is an incomplete, heuristic-driven algorithm that
can find VDC allocations for physical networks with hundreds of thousands of servers. As SecondNet is based on bipartite
matching, it fundamentally cannot allocate more than one VM in each VDC to any given server. Furthermore, because it
performs allocation in an incomplete, greedy fashion, especially in heavily utilized networks, it can fail to find a feasible al-
location. As we will demonstrate, under many realistic circumstances, this happens quite frequently, leading to substantially
lower DC utilization than can be achieved with a complete method, such as NETSOLVER.

The above-mentioned, constraint-solving-based work [21] introduced two approaches for performing single-path VDC
allocation with bandwidth guarantees, using the general-purpose SMT solver Z3 [49]. Like almost all SMT solvers, Z3 has
no built-in support for network flow predicates. Therefore, in order to use Z3 for VDC allocation, the global bandwidth

10 S. Bayless et al. / Artificial Intelligence 278 (2020) 103196

Left Scale, Solid Bars, VDC Allocations Right Log Scale, Symbols, Time (seconds) Per Allocation

Z3-AR SecondNet NetSolver-SMT NetSolver-ILP Z3-AR A SecondNet ® NetSolver-SMT % NetSolver-ILP
100 10?
1~
75} 1100 =
o §
410 g
50} * * z
2 * a* a* @ . m% 00 g
£ = A A A £
g 25f 1102 £
2] =
= S
T LA A A 10° §
8 (a) 200 servers, 4 cores §
S 4000 ‘ ‘ 102 7
= Q
g 3000} 10" £
2 AWy AW, ANy d
g * m* W x 110° g
2 2000 @ =
J10t 8
A B
1000} A A 11025
| | | || [-
Topology 1 Topology 2 Topology 3 Topology 1 Topology 2 Topology 3
9VMs 9VMs 9VMs 15VMs 15VMs 15VMs
VDC type
(b) 2000 servers, 16 cores
v 4000n 1200
a A—A SecondNet
> 2 3000}, 1 900] ** Netsolverip i
5.8 B8 NetSolver-SMT
g ‘5 2000} 1 600k Z3-AR]
=)
'g = 1000 1 300} |
=
4 0

0 900 1800 2700 3600 °0 900 1800 2700 3600
CPU time (s) CPU time (s)
(c) Allocations over time, 2000 servers with Top.1 9VMs (left) and Top.3 15VMs (right)

Fig. 6. Total number of consecutive VDCs allocated by different algorithms on various tree topologies from [21]. Above, we report the median running
time for allocating individual VDCs; below, we report allocations over time for two selected instances. SecondNet is in some cases an order of magnitude
faster than NETSOLVER, and both are consistently much faster than Z3. In many cases, NETSOLVER makes substantially more allocations than SecondNet, with
NETSOLVER-ILP outperforming NETSOLVER-SMT on larger instances. (All figures are in color in the web version of this article.)

and connectivity constraints have to be expressed using a lower-level logical formulation. The first such encoding presented
by [21] (which we call Z3-generic) can handle any data center topology but scales extremely poorly [21]. The second
approach (which we call Z3-AR) makes use of an optimized abstraction-refinement technique; while substantially more
scalable than the generic encoding, it is restricted to data centers with tree topologies. In preliminary experiments (not
reported here), we confirmed that Z3-generic performed poorly, often failing to find any allocations within a 1-hour timeout
on the benchmarks used in our experiments.

5.1. Comparison on trees from [21]

Our first experiment reproduces and extends an experiment from [21], in which a series of identical VDCs is allocated
one-by-one to tree-structured data centers, until the solver is unable to make further allocations (or a timeout of 1 CPU
hour is reached). In this experiment, there are 6 VDC instances considered: three consisting of 9 VMs each, and three con-
sisting of 15 VMs each. Each VDC has a unique, randomly generated topology.® We obtained the original implementation
of Z3-AR from the authors for this experiment, along with a version of SecondNet they implemented with support for
the tree-structured data centers considered here. In this experiment, the VDCs always have identical structure; this is a
restriction introduced here for compatibility with the solvers from [21]. This restriction makes the experiment less repre-
sentative of real-world use cases, and it also allows all three of the constraint based approaches (Z3-AR, NETSOLVER-SMT,
and NETSOLVER-ILP) to avoid substantial costs that would otherwise be incurred to support changing VDC topologies. In our
subsequent experiments, below, we will consider cases where VDC topologies are non-constant.

Fig. 6 summarizes our results, showing the total number of consecutive VDCs allocated within 1 CPU hour. In Fig. 63, we
used the 200-server/4-cores-per-server physical data center from [21]. In Fig. 6b, we considered a larger data center with

8 Note that here and in the remainder of this paper, we allocate individual VDCs one at a time, without looking ahead at the remaining VDCs that have
yet to be allocated. This online allocation process can potentially result in a sub-optimal total number of allocations, even though our approach is complete
for individual VDC allocations. Our approach is similar in this respect to the previous works [21,9] that we compare to.

S. Bayless et al. / Artificial Intelligence 278 (2020) 103196 11

2000 16-core servers. Fig. 6¢ shows the allocations made over time by each approach, for two representative VDCs for the
2000 server, 16-core case.

We note that, although all three solvers perform similarly on the small tree-structured data centers (with SecondNet,
being heuristic and incomplete, faster than NETSOLVER, and NETSOLVER faster than Z3-AR), on the larger data center, NET-
SOLVER-ILP greatly outperforms SecondNet and Z3-AR, often allocating two or even three times as many VDCs on the same
infrastructure. In most cases, NETSOLVER-ILP performs better than NETSOLVER-SMT, but both versions of NETSOLVER scale to
thousands of servers, with median per-instance allocation times of a few seconds or less per VDC. On instances with smaller
VDCs, NETSOLVER-SMT tends to have both faster runtimes and more allocations than NETSOLVER-ILP, while on instances with
larger VDCs, NETSOLVER-ILP performs substantially better than NETSOLVER-SMT, sometimes achieving more than double the
allocations of NETSOLVER-SMT.

5.2. Comparison on FatTree and BCube from [9]

The second experiment we conducted is a direct comparison against the original SecondNet implementation (which
we also used for all comparisons reported later). Note that the implementation of Z3-generic, and both the theory and
implementation of Z3-AR, are restricted to tree topologies, so they could not be included in these experiments.

The SecondNet benchmark instances are extremely large - in one case exceeding 100000 servers — but also extremely
easy to allocate: the available bandwidth per link is typically > 50x the requested communication bandwidths in the
VDC, so with only 16 cores per server, the bandwidth constraints are mostly irrelevant. For such easy allocations, the fast,
incomplete approach that SecondNet uses is the better solution. Accordingly, we scaled the SecondNet instances down to
432-1024 servers, a realistic size for many real-world data centers. For these experiments, we generated sets of 10 VDCs
each of several sizes (6, 9, 12 and 15 VMs), following the methodology described in [21]. These VDCs have proportionally
greater bandwidth requirements than those originally considered by SecondNet, requiring 5-10% of the smallest link-level
capacities. The resulting VDC instances are large enough to be representative of many real-world use cases, while also
exhibiting non-trivial bandwidth constraints. For each of these sets of VDCs, we then repeatedly allocated instances (in
random order) until the data center is saturated.’

Like most SAT-solvers, MONOSAT (and consequently, the SMT version of NETSOLVER) exposes a large number of parame-
ters in the form of command line options that can affect performance, often in non-obvious ways. Previous research [50]
has shown that for many important applications, choosing good parameter settings can have a substantial impact on per-
formance. For this experiment, we used SMAC, a prominent, state-of-the-art general-purpose algorithm configurator [11], to
automatically search for a good configuration of NETSOLVER, resulting in a 14% decrease in average running time on these
instances. We also used this configured version of NETSOLVER for the experiments on commercial instances shown in Fig. 8,
where it resulted in a 17% decrease in running time. Our training set for configuration consisted of a generated set of
physical (BCube and FatTree) and virtual data centers, each differing in size or topology from the ones used for evaluating
NETSOLVER in this section. Configuration was performed over a combined total of 1680 CPU hours. We provide further details
on how we used SMAC in Appendix A.

Fig. 7 shows the total number of allocations made by SecondNet and NETSOLVER on two data centers: (a) FatTree topology
with 432 servers, and (b) BCube topology with 512 servers. For each data center, we also show the median CPU time
required to allocate each VDC, in seconds. Further results can be found in the Appendix B, Table 8.!°

5.3. Comparison on commercial networks

The above comparisons consider how NETSOLVER compares to existing VDC allocation tools on several artificial (but
representative) network topologies from the VDC literature. To address whether there are real-world VDC applications where
NETSOLVER performs not only better than existing tools, but is also fast enough to be used in practice, we also considered a
deployment of a standard Hadoop virtual cluster, on a set of actual data center topologies (see Fig. 8). We collaborated with
the private cloud provider ZeroStack Inc. to devise an optimal virtual Hadoop cluster to run Terasort.'! Each Hadoop virtual
network consists of a single master VM connected to 3-11 slave VMs.'> We considered 5 different VM sizes, ranging from
1 CPU and 1 GB RAM, to 8 CPUs and 16 GB of RAM; for our experiments, the slave VMs were selected at random from this
set, with the master VM also randomized but always at least as large as the largest slave VM. The Hadoop master has tree
connectivity with all slaves, with either 1 or 2 Gbps links connecting the master to each slave (as Fig. 1 VDC).

9 Qur intent in this experiment is to simulate an unpredictable online workload, in which allocation requests must be processed in the order they arrive.
An alternative that we have not yet explored would be to batch allocation requests, allowing one to re-order them heuristically, at the cost of increased
scheduling latency.

10 In these experiments, all solvers are restricted to a single CPU core. However, as Gurobi supports parallel execution, we also tried running this experi-
ment with Gurobi’s multi-threaded support enabled, using up to 8 CPU cores. We found that the results were similar to those for single-threaded execution
(and in particular, neither consistently better nor worse), so we report only the latter.

11 The Sort Benchmark Committee: http://sortbenchmark.org/.

12 Many industrial VDCs have fewer than 15 VMs; e.g., [51] states that 80% of Bing services use fewer than 10 VMs. NETSOLVER performs well with up to
30 VM.

http://sortbenchmark.org/

12

S. Bayless et al. / Artificial Intelligence 278 (2020) 103196

Left Scale, Solid Bars, VDC Allocations

SecondNet NetSolver-SMT

NetSolver-ILP A SecondNet ®m

Right Log Scale, Symbols, Time (seconds) Per Allocation
NetSolver-SMT # NetSolver-ILP

1200 10°
] 1 ~
900+ N 410 §
m % " {10° §
, 600¢ 12
é 300 " 'qé
g I 41022
— =
= ota A A A | ‘ 10—3 g
8 (a) FatTree Physical Data Center, 432 16-core servers _8
> 1600 ; ‘ 1023
ot
5 B g
8 1200f =, L * a
g m *x {10° &
Z 800 -
{1075
D
400} ‘ ’ 11022
A A A al | 10-3
6VMs 9VMs 12VMs 15VMs
VDC type
(b) BCube Physical Data Center, 512 16-core servers
8 720 720 a4 SecondNet
> Z 540} 4 540} *=* NetSolver-ILp i
GS B8 NetSolver-SMT
5 ‘5 360} 4 360} E
£ = 180 1 180 1
2 0 0 . . ! .
0 900 1800 2700 3600 0 900 1800 2700 3600
CPU time (s) CPU time (s)

(c) Allocations over time, FatTree 12VMs (left) and BCube 12VMs (right)

Fig. 7. Total number of consecutive VDCs allocated by different algorithms and time required per allocation on FatTree and BCube topologies from [9].
Above, we report the median running time for allocating individual VDCs; below, we report allocations over time for two selected instances. See Table 8
for further results.

The physical data center topology was provided by another company, which requested to remain anonymous. This
company uses a private cloud deployed across four data centers in two geographic availability zones (AZs): us-west and
us-middle. Each data center contains between 280 and 1200 servers, spread across 1 to 4 clusters with 14 and 40 racks.
Each server has been scaled down to 8 cores, 16 GB RAM, 20 Gbps network bandwidth (via two 10 Gbps links). The net-
work in each data center has a leaf-spine topology, where all ToR switches connect to two distinct aggregation switches
over 40 Gbps links each (a total of 2 links with 80 Gbps; one on each aggregation switch) and aggregation switches are
interconnected with four 40 Gbps links each. For each cluster, there is a gateway switch with a 240 Gbps link connected to
each aggregation switch. All data centers use equal-cost multi-path (ECMP) to take advantage of multiple paths.

A VDC is allocated inside one AZ: VMs in one VDC can be split across two clusters in an AZ, but not across two AZs. Fig. 8
summarizes VDC allocation results per AZ; complete results for each AZ can be found in the Appendix, Tables 12-16."> More
generally, executing NETSOLVER on distinct physical network units, such as an AZ, improves its scalability. This also works
well in practice, as modern data centers are modular by design. For example, one of the largest data center operators in
the world, Facebook, designed its Altoona data center with over 100 000 servers using pods, with each pod containing fewer
than 1000 servers [52].

We applied SecondNet and NETSOLVER in this setting, consecutively allocating Hadoop VDCs of several sizes, ranging
from 4 to 12 VMs, until no further allocations could be made. Note that, in addition to using a realistic physical topology,
the CPU/memory, bandwidth values, and the VDCs being allocated are all real-world VDCs derived from real Hadoop jobs.
By contrast, previous experiments used artificial VDCs from the Z3-AR paper [21]. Again, we could not run Z3-AR in this
setting, as it is restricted to tree-topology data centers.

In Fig. 8, we show the results for the largest of these data centers (results for the smaller DCs were similar). As ob-
served in our previous experiments, although SecondNet was much faster than either version of NETSOLVER, NETSOLVER'S
per-instance allocation time was typically just a few seconds, which is reasonable for long-running applications, such as the
Hadoop jobs considered here. Again, NETSOLVER was able to allocate many more VDCs than SecondNet (here, 1.5-2 times

13 NETSOLVER is not limited to allocating to a single AZ and can support multi-AZ allocation, assuming it is aware of the capacity of each AZ, including
inter-AZ network bandwidth.

S. Bayless et al. / Artificial Intelligence 278 (2020) 103196

13

Left Scale, Solid Bars, VDC Allocations
NetSolver-ILP

SecondNet

NetSolver-SMT

A SecondNet m

Right Log Scale, Symbols, Time (seconds) Per Allocation
NetSolver-SMT % NetSolver-ILP

160 10!
120} * mx m X 10° 5
Y 5]
mx S E
. 801 {107 g
.5 2 2
S 40t 110° §
3 -
= =
= ola A A A A]_0'3 g
8 (a) US-Middlel, 800 servers §
1=
% 480F T T = T * 10 <
p < m ¥ mx | * 0 8
£ 360 B q10° >
: 2
Z 240l 410" ¢
=
120} 1107 &
=
olka A A A A -3
Hadoop 4VMs Hadoop 6VMs Hadoop 8VMs Hadoop 10VMs Hadoop 12VMs
VDC type
(b) US-Westl, 1200 servers
o 100p . 300
a A—4A SecondNet
> % 75} #*—+ NetSolver-ILP 1 225)
o L B8 NetSolver-SMT
— ‘5 50 1 150 B
L
£= 25 { 75 E
S
4 0 0 . . .
0 35 70 105 0 260 520 780 1040
CPU time (s) CPU time (s)

(c) Allocations over time, US-Middlel 10VMs (left) and US-Westl 10VMs (right)

Fig. 8. Total number of consecutive VDCs allocated by different algorithms and time required per allocation on commercial data center topologies. Above,
we report median running times for allocating individual VDCs; below, we show allocations over time for two selected instances. See Tables 12-16 for
further results.

as many), across a range of DC and VDC sizes, including a commercial DC with more than 1000 servers. Moreover, with
increasing virtual network size, NETSOLVER was able to allocate many more virtual machines, while respecting end-to-end
bandwidth constraints. Often NETSOLVER allocated several times as many VDCs as SecondNet, and in extreme cases, it found
hundreds of allocations, while SecondNet was unable to make any allocations (not shown for brevity). Similarly, keeping
the virtual network the same size, but doubling the bandwidth requirements of each virtual machine greatly decreased the
number of allocations made by SecondNet, while NETSOLVER showed considerably more robust performance in these more
congested settings.

Overall, NETSOLVER was not only able to find many more allocations than SecondNet in this realistic setting, but NET-
SOLVER’s median allocation time, 1-30 CPU seconds, shows that it can be practically useful in a real, commercial setting, for
data centers and VDCs of this size. This provides strong evidence that NETSOLVER can find practical use in realistic settings
where large or bandwidth-hungry VDCs need to be allocated. It also demonstrates the practical advantage of a (fast) com-
plete algorithm like NETSOLVER over a much faster but incomplete algorithm like SecondNet: for bandwidth-heavy VDCs,
even with arbitrary running time, SecondNet’s VDCAlloc was unable to find the majority of the feasible allocations.

The experiments on BCube, FatTree, and the commercial networks reinforce our observations from the earlier exper-
iments with artificial tree topologies: both versions of NETSOLVER improve greatly on state-of-the-art VDC allocation as
compared to SecondNet or Z3. Further, the ILP version of NETSOLVER generally out-performs the SMT version, consistently
finding 10% to 30% more allocations.

5.4. Comparison to virtual network embedding (VNE) approaches

In addition to the VDC allocation tools we considered above, we also compare to several state-of-the-art virtual network
embedding tools, as implemented in the VNE testing framework ALEVIN [36]. We provide these comparisons mainly for
reference, as the VNE tools we consider here were neither designed nor optimized for allocating to these large and sparely
connected networks. As VNE algorithms are technically capable of performing VDC allocation, it is relevant to ask how
they perform in this setting. However, it is also important to recognize that these experiments do not reflect how VNE
algorithms might compare to VDC algorithms when applied to VNE instances. A more extensive discussion of the VNE
literature is beyond the scope of this work, but we refer readers to [35] for a comprehensive survey.

14

S. Bayless et al. / Artificial Intelligence 278 (2020) 103196

Left Scale, Solid Bars, VDC Allocations

Right Log Scale, Symbols, Time (seconds) Per Allocation

GAR-SP GAR-PS SecondNet GAR-SP GAR-PS A SecondNet
NetSolver-SMT NetSolver-ILP ® NetSolver-SMT * NetSolver-ILP

2500 10°

| 1
2000 » 10 g
1500} * . 10° §
m* - m u g
2 1000} m* m* 10t&
S 2

=

g 500 1078
= ‘ =
= 0 Ll Ll [I i rria A]_0'3.2
8 (a) US-West1, 1200 servers §
> 600 10° 3
s Q
5 >00F 10 &8
2 >
£ 400f o %
2 10 3
300 * * * 15
* 410" &
200} * Y '8
100} ‘ ‘ 107 2

0 ol ‘\A- [i 111 4 lem e 1073

Hadoop Hadoop Hadoop Hadoop Hadoop Hadoop
4VMs 1Gbps 4VMs 2Gbps 10VMs 1Gbps 10VMs 2Gbps 15VMs 1Gbps 15VMs 2Gbps

VDC type
(b) US-West2, 280 servers

Fig. 9. Virtual Network Embedding (as implemented in the testing framework ALEVIN [36]) applied to VDC allocation. The VNE solvers perform poorly in
this setting, achieving a small fraction of the allocations that NETSOLVER-SMT or NETSOLVER-ILP achieves, while also running an order of magnitude slower.

The VNE experimental framework we tested [36] uses a GUI, and so we employed a (significantly faster) 3.4 GHz Intel
Core-i7-2600K processor with 32 GB of RAM for these VNE experiments.

In Fig. 9, we show two variants of the ‘Greedy Allocation Resources’ algorithm from [16]. The PS (‘path-splitting’) variant
supports multi-path allocation, while the SP (‘shortest-paths’) variant does not. Both of these are greedy, incomplete, linear
programming based algorithms, and are appropriate to consider as they are two of the fastest and simplest VNE algorithms
from the literature. Unlike SecondNet, both of these algorithms do support allocating multiple VMs per server. We applied
these algorithms to two of the largest (1200 servers) and smallest (280 servers) commercial topologies from the previous
experiment, on the same VDC instances.'* In Fig. 9, we can see that these two VNE algorithms perform significantly worse
than both SecondNet’s VDCAlloc and NETSOLVER, in many cases finding less than a quarter of the allocations of either tool,
and, in the case of GAR-PS (the path splitting variant), taking more than 10 times as much time to perform these allocations.

We also tested several variants of three other families of state-of-the-art VNE algorithms from the ALEVIN framework:
RW-MM-SP/PS [17], DVINE [18], and ASID [19]. Unfortunately, none of these were able find any allocations (within several
hundred seconds). This strongly suggests that at least the VNE algorithms we evaluated are not sufficiently scalable for
virtual data center allocation. Our findings here are consistent with those reported in [9].

5.5. Allocation robustness

In the above experiments, we showed that across many conditions, NETSOLVER was able to make many (often hun-
dreds) more allocations than SecondNet or Z3-AR. One may wonder whether these additional allocations are the result of
NETSOLVER having a better ability to solve challenging allocations quickly (completeness and efficiency), or if NETSOLVER is
somehow making “smarter” allocations early on that leave more space for later VDC allocations.

In the experiments where Z3-AR makes many fewer allocations (Fig. 6b), Z3-AR’s problem is excessively slow run times,
allocating only a handful of VDCs in data centers with room for hundreds or thousands. In those cases, both NETSOLVER and
SecondNet can make hundreds of further allocations starting from where Z3-AR was cut off.

The robustness question is more apropos versus SecondNet. We found conclusive evidence that good early allocations
cannot be entirely responsible for NETSOLVER’s performance, by observing that NETSOLVER can continue to allocate VDCs in
cases where SecondNet can no longer make any further allocations. We repeated the experiments from Fig. 7 by first using
SecondNet to allocate as many VDCs as it can into the data center. Then, starting from that already partially utilized data
center, we used NETSOLVER to allocate further VDCs. The results of this experiment are shown in Fig. 10. Similarly to the
earlier experiment, NETSOLVER can still allocate hundreds of additional VDCs starting from SecondNet’s final allocation.

14 Note that due to limitations in the ALEVIN platform, for these experiments, we consider just a single VDC instance of each size, rather than a set of
such instances.

S. Bayless et al. / Artificial Intelligence 278 (2020) 103196 15

Left Scale, Solid Bars, VDC Allocations Right Log Scale, Symbols, Time (seconds) Per Allocation
I SecondNet [NetSolver-SMT EEENetSolver-ILP A SecondNet M NetSolver-SMT * NetSolver-ILP
10°
10! @
=
" 10° §
g L&
= 107 3
g 2 8
= 10 =
2 10° §
a oe . 5]
> (a) Additional allocations by NetSolver-SMT , 2
% 1600 T T 10° F
5 Q
o} 1
2 100 A
£ * x * *x * g
Z * 10° %
= -3
107 §
=
400 102 g
ol A AL A AL A AL A 10-3
FatTree BCube FatTree BCube FatTree BCube FatTree BCube
6 VMs 9 VMs 12 VMs 15 VMs
VDC type

(b) Additional allocations by NetSolver-ILP

Fig. 10. Additional VDC allocations made by NETSOLVER-SMT (green) and NETSOLVER-ILP (blue), after SecondNet (red) has allocated its maximum number of
VDCs. These experiments used the same VDCs and physical topologies as in Fig. 7. In many cases, NETSOLVER allocated hundreds of additional VDCs after
SecondNet could not make further allocations.

The most interesting comparison is between NETSOLVER-ILP and NETSOLVER-SMT. In this case, both solvers are quite fast,
and both solvers are complete in the sense that they will find an allocation if one exists. Therefore, in the cases where both
solvers could find no more allocations, the additional allocations for NETSOLVER-ILP must be due to NETSOLVER-ILP somehow
finding “smarter” allocations. In close examinations of the output of some of our experiments, we indeed found this to
be the case, with NETSOLVER-ILP packing early allocations more tightly, thereby consuming less overall bandwidth with the
early allocations, whereas NETSOLVER-SMT makes more spread-out allocations that consume more overall bandwidth.

For example, consider one of the largest examples from Fig. 8: 12 machine VDCs placed in the US-West 1 data center,
with 1200 servers. Here, in the first 100 VDCs allocated by NETSOLVER-ILP, just 130 connections are to a top-of-rack switch,
and just 71 connections pass between racks (for example, passing through gateway or aggregation switches).!> As all VMs
are placed on servers, and all servers are contained in racks, anytime that connected VMs in a VDC are placed on different
servers, connections to the top-of-rack switch will be required. Similarly, anytime that VMs from a VDC are placed on
multiple racks, connections between top-of-rack switches will be required. In contrast to NETSOLVER-ILP, NETSOLVER-SMT’s
first 100 allocations require 603 connections to the top-of-rack switch, and 449 connections between rack switches.

We hypothesize that this is due to the different approaches to incremental solving in ILP and SMT: an ILP solver will
typically attempt to re-use a previous solution, whereas an SMT solver’s main re-use strategy is to retain learned clauses.
Therefore, during the early, highly unconstrained phase of the experiments, NETSOLVER-ILP will tend to allocate VDCs re-
peatedly onto the same machines, packing them in more tightly, whereas NETSOLVER-SMT spreads the allocations more
arbitrarily around the data center. This suggests an obvious way to tune NETSOLVER-SMT heuristically, but more generally, it
suggests a direction to explore for improving incremental SMT solving.

6. Extensions

Because NETSOLVER is built on constraint solving, we can easily extend it to enforce constraints beyond the ones used for
the basic VDC allocation problem. Using such additional constraints, we can deal with advanced aspects of VDC allocation
that occur in realistic data center management situations. Here, we consider three such extensions: soft-affinity, server
usage minimization, and no-hotspot (see Fig. 11). These constraints go beyond what previous VDC allocation algorithms
support and represent substantially more challenging allocation objectives than standard VDC allocation. Technically, they
are soft constraints, and NETSOLVER is not guaranteed to find optimal solutions with respect to them, but instead heuristically
maximizes the degree to which they are satisfied. We now describe each extension and, as before, evaluate the number of
VDC allocations and median per-VDC allocation time for NETSOLVER with each type of constraint. Since comparable VDC
allocation techniques lack these capabilities, we do not compare to existing techniques.

15 Note that as each placement is for 12 VMs with multiple connections between them, there are many more total connections between VMs than there
are VDCs allocated.

16 S. Bayless et al. / Artificial Intelligence 278 (2020) 103196

J s J - L J J | /\J \
114 Pk \0/4 2/4. \1/4 RN 2/4 1/4 \0/4 ' 24
i I . \ \
Affinity ' ’ | \ N ,' \
| \ AN / ‘\
\ k \ E—n
vDC vDC vDC
(a) affinity (b) min-server (c) no-hotspot

Fig. 11. Extensions to NETSOLVER. Three extensions are considered: affinity constraints between VMs (a); minimizing the number of utilized servers (b); and
hot-spot minimization (c), which avoids placing VMs on highly utilized servers. Grey boxes in servers (top) indicate previously allocated VMs. Red boxes in
VDC (bottom) indicate VMs to allocate. Red striped boxes indicate placements satisfying each constraint.

6.1. Affinity constraints

The first constraint we consider is an affinity constraint, consisting of a set of virtual machines in the VDC which should,
if possible, be allocated to the same server (Fig. 11a). This has been used in practice to substantially improve data locality
in the context of cluster scheduling [53,54]. While NETSOLVER provides good support for hard affinity and anti-affinity
constraints (the virtual machines in the affinity set must or must-not be allocated on the same server), in many realistic
settings, a soft affinity constraint may be more useful, so we consider the latter instead.

Formally, we consider one or more affinity sets A consisting of virtual machines {VMy, VM,, ...}. The goal is to prefer-
entially place VMs in A on the same servers. For each affinity set A, and each server s € S, we add a new Boolean literal
(0/1-integer variable), As, which is true (1) if one of the VMs from A is assigned to server s, and false (0) if it contains no
VMs from the affinity set, e.g.:

As=maxAy s
veA

(Recall from Section 4.1 that Ay s is a 0/1-integer variable indicating that VM v has been assigned to server s.) or

As = \/ €y.s

vEA

(Recall from Section 4.2.2 that e, s is a Boolean literal indicating that VM v has been assigned to server s.). We then use
MONOSAT'® and Gurobi’s built-in optimization support to minimize the number of servers that are allocated for the affinity
set (this number must be at least 1, if the set is non-empty):

minimize(z Ag).

seS

In the case where there are multiple affinity constraints, we assume that they are provided in order of importance and
enforce them lexicographically.

The affinity constraints for the VDCs in our evaluation try to maximize the number of slave VMs that are co-located with
the master VM (thus reducing network traffic by keeping the communication local to the server). Such a constraint is useful
for our sample Terasort workload, as slaves can take advantage of data locality with the master, i.e., they can locally fetch
generated raw data (to be sorted) and complete the Terasort workload faster.

6.2. Server usage minimization

Our second optimization constraint minimizes the total number of utilized servers (Fig. 11b). A server that has no virtual
machines allocated to it can be put into a low-power mode to save energy.

As in our experiments in Section 5, we assume a setting in which many VDCs will be allocated in consecutively (and
sometimes deallocated). As we are considering repeated VDC allocation, at the beginning of each new allocation, each server
may either already have some VMs assigned to it, or not. We want to preferentially allocate VMs to servers that already
host VMs (from previous allocations), and minimize the number of VMs allocated to previously unused servers. This soft
constraint can be enforced and optimized in much the same way as the (soft) affinity constraint, but has different semantics.

Formally, we introduce, for each server s € S, two Boolean literals: Us; and P;. The variable Us is true iff server s is used
in the current allocation, i.e., it has at least one VM allocated to it, e.g.,

16 MoNOSAT internally implements optimization as a sequence of increasingly constrained decision problems, forming a binary search over bitvector or
Boolean values.

S. Bayless et al. / Artificial Intelligence 278 (2020) 103196 17

Left Scale, Solid Bars, VDC Allocations Right Log Scale, Symbols, Time (seconds) Per Allocation

affinity min-server no-hotspot + affinity X min-server ¢ no-hotspot
2500 . T T T T
2000 ¢ ¢ ¢] v 1102
[+ X + =
. 110t B
1500} S
3
2 1000 110° 3
2 £
= 500+ 5
2 | 1101 §
= 0 i [. . ! =
8 (a) NetSolver-SMT, US-West1, 1200 servers §
g 2500 . T T T o 7102;
o T + X Q
: 2000 a
2 + 1102 -
£ 1500F X 5
= ’ ’ ‘ . 2
#1000} 1100 &
‘ X It
500
+[X —+[X ¢] 10-1E

0 1)) I
Hadoop Hadoop Hadoop Hadoop Hadoop Hadoop
4VMs, 1G 4VMs, 2G 10VMs, 1G 10VMs, 2G 15VMs, 1G 15VMs, 2G
VDC type
(b) NetSolver-ILP, US-West1, 1200 servers

Fig. 12. Allocating Hadoop instances with the additional optimization constraints described in Fig. 11. These optimization constraints are significantly more
expensive to solve than the standard NETSOLVER constraints. We can see also that the ILP version of NETSOLVER generally performs substantially better than
the SMT version.

Us=max Ay s
veVM

for ILP, or

Us = \/ Cy.s

veVM

for SMT. The variable P; is true iff s already had at least one VM previously allocated to it before the current VDC allocation.
Then, we ask the solver to minimize the number of VMs used in this allocation that were not previously used:

minimize(Z(Us A —Py))

seS

In order to set Ps for each server, we rely on some additional record keeping (outside the constraints). Before solving,
we add the constraint (—P;) for each server s that previously had no VMs allocated to it, and the constraint (P) for each
server s that previously had at least one VM allocated to it.!”

6.3. Hotspot minimization

The final constraint we consider is balanced VM placement across all servers (Fig. 11c). Such placement avoids data center
hotspots where some servers consume much higher compute power as compared to others due to unevenly placed VMs.
In personal communication, data center operators noted that no-hotspot placement improves overall reliability and reduces
server failure rate. This is consistent with previous findings on data center operations [55].

In no-hotspot placement, NETSOLVER avoids, during each VDC allocation, placing VMs on servers that are already heavily
utilized. Formally, during each VDC allocation round, we want to minimize the number of utilized cores in the most utilized
server (among those servers that received allocations during this round). Note that this is not exactly the opposite of utilized
server minimization, since that constraint does not distinguish between highly and slightly utilized servers:

minimize(max(Z eys - cpu(v)))

seS
veVM

17 One could also consider a slightly simpler and logically equivalent formulation, in which the total number of utilized servers is minimized, rather
than minimizing only the servers in the current allocation. Restricting the encoding to only consider the servers in the current allocation allows to avoid
introducing an unbounded number of (mostly constant) variables into the solver.

18 S. Bayless et al. / Artificial Intelligence 278 (2020) 103196

In Fig. 12, we show results for both versions of NETSOLVER extended with these three soft constraints, applied to the
largest real-world data center topology (with 1200 servers), on the Hadoop VDC instances. In these experiments, NET-
SOLVER-ILP performed substantially better than NETSOLVER-SMT. For larger VDCs, NETSOLVER-SMT was unable to make any
allocations at all for the server utilization constraints even in cases where NETSOLVER-ILP was able to find dozens or
hundreds of allocations.'® Overall, it is clear that applying any of these three constraints makes the allocation process
significantly more expensive for NETSOLVER, and the costs of these extensions grow dramatically for larger VDCs. This is in
contrast to our findings for the (unaugmented) VDC allocation problem, for which we found that NETSOLVER scales well to
data centers with thousands of servers, and for VDCs with as many as 30 VMs.

These constraints are important to many data center operators, and, to the best of our knowledge, NETSOLVER is the first
VDC allocation tool (with end-to-end bandwidth guarantees) to support them.

7. Conclusions

We introduced a new, constraint-based VDC allocation method, NETSOLVER, for multi-path VDC allocation with end-
to-end bandwidth guarantees. Our approach differs from previous constraint-based approaches by making use of efficient
network flow encodings in the underlying constraint solvers. NETSOLVER scales well to data centers with 1000 or more
servers, while substantially improving data center utilization as compared to current methods. Notably, we have demon-
strated that in several realistic settings, NETSOLVER allocates 3 times as many virtual data centers as previous approaches,
with a runtime that is fast enough for practical use. We found that in most cases, the ILP NETSOLVER backend outperforms
the SMT NETSOLVER backend, often achieving 10% to 20% more allocations while requiring half the time or less per alloca-
tion. In some cases, the ILP backend achieved two or more times as many allocations as the SMT backend. We also found
that both versions of NETSOLVER greatly outperform the other approaches we compared to.

NETSOLVER overcomes major limitations of current state-of-the-art approaches for VDC allocation with hard band-
width guarantees: Unlike SecondNet, our approach is complete and, as a result, is able to continue making allocations
in bandwidth-constrained networks; unlike the abstraction-refinement techniques from [21], NETSOLVER supports arbitrary
data center topologies (as well as being much faster). Our constraint-based approach represents the first complete VDC
allocation algorithm supporting multi-path bandwidth allocation for arbitrary network topologies - an important capability
in modern data centers.

Finally, as NETSOLVER is built on-top of constraint solvers, it is easily extensible. We have demonstrated that it can handle
additional VDC allocation constraints not supported by other approaches, yet relevant in practice, such as maximization of
data locality with VM affinities, minimization of the total number of utilized servers, and load balancing with hotspot
avoidance. While these constraints make VDC allocation substantially more challenging, our approach can still efficiently
allocate VDCs with up to 15 VMs in realistic scenarios.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

We thank the authors of [9] and [21] for making their implementations available to us, and especially Yifei Yuan for his
extensive assistance. This research was funded by NSERC discovery grants to Ivan Beschastnikh, Holger H. Hoos and Alan J.
Hu. Nodir Kodirov is supported by a UBC four-year doctoral fellowship (4YF).

Appendix A. Automated algorithm configuration

As described in Section 5, we used automatic algorithm configuration to optimize NETSOLVER-SMT’s performance for the
experiments reported in Figs. 7 and 8. Here we provide details on the configuration process.

NETSOLVER-SMT has a large set of parameters that affect its performance, including 23 Boolean, 1 integer-valued and 2
real-valued parameters. Most of these parameters are exposed by the underlying SAT solver, where they control settings
such as the frequency of restarts in the solver. Other settings control the way the problem instance is translated into an
SMT formula in NETSOLVER-SMT, for example determining how Pseudo-Boolean constraints are encoded. These settings can
significantly impact NETSOLVER-SMT’s running time.

To find a good configuration of these settings, we used SMAC, a well-known, state-of-the-art automatic algorithm config-
uration procedure [11]. Given an algorithm, a space of parameter configurations (induced by exposed parameters and their
permissible values), as well as a set of training instances, SMAC searches among the space of configurations for one that
performs well across the training instances. For our training instances, we produced a set of 80 BCube and FatTree data

18 Interestingly, NETSOLVER-SMT using the earlier MonoSAT version 1.4 performed better on this experiment than using the current MonoSAT 1.6. Although
MonoSAT 1.6 has better overall performance, the changes evidently hurt this experiment, highlighting the challenge of balancing different optimizations.

S. Bayless et al. / Artificial Intelligence 278 (2020) 103196 19

center instances (varying the numbers of servers in each), as well as a set of 100 randomly generated VDC instances with
9-15 VMs. None of these instances are otherwise used in the experiments reported in this article. Mirroring our experimen-
tal setup described in Section 5, in each invocation of NETSOLVER-SMT by SMAC, NETSOLVER-SMT repeatedly allocates VDCs
from that set of 100 (in random order) to one of the 80 data center topologies until the data center is saturated (or until
a cut-off time of 10000 seconds is reached). We then used SMAC to minimize the average runtime (treating timeouts as
taking 10 times the cut-off time).

We performed 10 separate, independent runs of SMAC with different random seeds, each with a budget of 7 CPU days
(for a total of 1680 CPU hours), resulting in 10 optimized parameter configurations. We then validated each of these con-
figurations on a disjoint set of 80 data centers and a disjoint set of 100 VDCs (generated in the same way as the previously
described training instances and not containing any of the instances used in our later experiments), selecting from those
10 configurations the one with the best performance on this validation set. This configuration of NETSOLVER-SMT was then
used for the experimental results described in Section 5, Figs. 7 and 8, as well as Tables 8 and 12. We found that, compared
to running NETSOLVER-SMT with its default parameters, the configured version was able to solve the instances in Table 8
14% faster on average, and was able to solve the instances in Table 12 17% faster on average.

Appendix B. Additional data on experimental results (Tables 2-16)

Table 2

Experiments on data centers with tree topologies from [21]. This table shows the total number of VDC
allocations (#VDC) and the total CPU time in seconds required by each algorithm to allocate those VDCs.
Additionally, we show the minimum (Min), Average (Avg), median (Mdn) and Maximum (Max) CPU time
in seconds per VDC allocation. Each algorithm was limited to 3600 seconds of CPU time; overtime data
points are listed as >3600 s. The full experimental setup is described in Section 5. Results continue on
following pages.

Topology 1, with 9 VMs

#VDC Total (s) Min (s) Avg (s) Mdn (s) Max (s)
Physical Data Center of 200 servers with 4 cores each
73-AR 88 51.436 0.364 0.584 0.587 0.846
SecondNet 88 0.226 <0.001 0.003 0.002 0.013
NETSOLVER-SMT 89 4921 0.042 0.055 0.046 0.810
NETSOLVER-ILP 88 12.204 0.097 0114 0118 0.123
Physical Data Center of 200 servers with 16 cores each
Z3-AR 355 215.457 0.359 0.607 0.617 0.874
SecondNet 313 0.764 0.002 0.002 0.003 0.003
NETSOLVER-SMT 356 16.045 0.040 0.045 0.042 0.814
NETSOLVER-ILP 355 44.068 0.095 0.118 0.120 0.126
Physical Data Center of 400 servers with 16 cores each
73-AR 711 881.982 0.678 1.240 1.226 7.787
SecondNet 628 3.213 0.003 0.005 0.005 0.007
NETSOLVER-SMT 712 72117 0.093 0.101 0.098 1.649
NETSOLVER-ILP 711 176.631 0.192 0.242 0.245 0.256
Physical Data Center of 2000 servers with 16 cores each
73-AR 158 3586.688 19.224 22.701 22.685 23.662
SecondNet 3140 68.015 0.013 0.022 0.022 0.031
NETSOLVER-SMT 3556 2012.584 0.512 0.566 0.551 8.751
NETSOLVER-ILP 3005 3598.621 0.934 1190 1.196 1.259

Table 3

Continuation of Table 2.

Topology 2, with 9 VMs
#VDC Total (s) Min (s) Avg (s) Mdn (s) Max (s)

Physical Data Center of 200 servers with 4 cores each

Z3-AR 88 72.421 0.458 0.823 0.828 1.217
SecondNet 88 0.093 <0.001 <0.001 <0.001 0.005
NETSOLVER-SMT 89 7.848 0.070 0.088 0.073 1.292
NETSOLVER-ILP 88 12.994 0.100 0.122 0.125 0.132
Physical Data Center of 200 servers with 16 cores each

73-AR 281 3597.849 1124 12.804 2.413 363.489
SecondNet 171 0.470 <0.001 0.003 0.003 0.003
NETSOLVER-SMT 352 26.839 0.066 0.076 0.072 1.277
NETSOLVER-ILP 354 44.096 0.095 0.118 0.120 0.131

(continued on next page)

20

S. Bayless et al. / Artificial Intelligence 278 (2020) 103196

Table 3 (continued)

Topology 2, with 9 VMs

#VDC Total (s) Min (s) Avg (s) Mdn (s) Max (s)
Physical Data Center of 400 servers with 16 cores each
73-AR 89 3543.388 2.752 39.813 3.032 401.203
SecondNet 342 1.635 0.003 0.005 0.005 0.007
NETSOLVER-SMT 705 113.263 0.141 0.161 0.155 2.528
NETSOLVER-ILP 711 181.286 0.203 0.249 0.251 0.268
Physical Data Center of 2000 servers with 16 cores each
73-AR 92 3561.564 31.964 38.713 36.456 120.569
SecondNet 1712 35.664 0.012 0.021 0.021 0.031
NETSOLVER-SMT 3150 3598.026 0.770 1.142 1.025 13.597
NETSOLVER-ILP 2656 3598.639 1.299 1.346 1.336 1414
Table 4
Continuation of Table 2.
Topology 3, with 9 VMs
#VDC Total (s) Min (s) Avg (s) Mdn (s) Max (s)
Physical Data Center of 200 servers with 4 cores each
Z3-AR 88 75.205 0.491 0.855 0.845 1.212
SecondNet 87 0.174 <0.001 0.002 <0.001 0.010
NETSOLVER-SMT 89 7.025 0.060 0.079 0.064 1.068
NETSOLVER-ILP 88 12.978 0.102 0.123 0.125 0.132
Physical Data Center of 200 servers with 16 cores each
73-AR 61 339.435 1127 5.565 1.278 62.278
SecondNet 129 0.509 0.002 0.004 0.004 0.006
NETSOLVER-SMT 350 22921 0.053 0.065 0.061 1.071
NETSOLVER-ILP 355 46.795 0.101 0.126 0.126 0.134
Physical Data Center of 400 servers with 16 cores each
73-AR 86 3481516 2.689 40.483 3.023 490.405
SecondNet 257 1.942 0.003 0.008 0.008 0.011
NETSOLVER-SMT 684 104.888 0.116 0.153 0.144 2.076
NETSOLVER-ILP 711 183.422 0.206 0.252 0.253 0.264
Physical Data Center of 2000 servers with 16 cores each
73-AR 94 3554.965 31.788 37.819 35.689 96.954
SecondNet 1286 37.396 0.013 0.029 0.029 0.046
NETSOLVER-SMT 2480 3598.481 0.610 1451 1.236 11.014
NETSOLVER-ILP 2772 3599.038 1.219 1.290 1277 1410
Table 5
Continuation of Table 2.
Topology 1, with 15 VMs
#VDC Total (s) Min (s) Avg (s) Mdn (s) Max (s)
Physical Data Center of 200 servers with 4 cores each
Z3-AR 53 130.090 1.023 2.455 2.347 4.595
SecondNet 48 1.472 0.006 0.031 0.035 0.053
NETSOLVER-SMT 54 10.950 0.142 0.203 0.154 2.320
NETSOLVER-ILP 53 19.274 0.237 0.261 0.263 0.278
Physical Data Center of 200 servers with 16 cores each
73-AR 28 481.402 3.243 17193 3.754 246.589
SecondNet 56 1.893 0.009 0.034 0.037 0.042
NETSOLVER-SMT 165 43.675 0.132 0.265 0.214 2314
NETSOLVER-ILP 205 62.503 0.223 0.278 0.277 0.453
Physical Data Center of 400 servers with 16 cores each
73-AR 62 2948.420 7.209 47.555 7.768 1562.491
SecondNet 109 13.356 0.016 0.123 0.130 0.155
NETSOLVER-SMT 312 253.934 0.271 0.814 0.556 5.750
NETSOLVER-ILP 422 250.751 0.446 0.568 0.565 1.267
Physical Data Center of 2000 servers with 16 cores each
Z3-AR 50 3569.764 65.582 71.395 71.686 73.675
SecondNet 539 1931.105 0.070 3.583 3.586 4.293
NETSOLVER-SMT 571 3596.354 1394 6.298 4383 49.902
NETSOLVER-ILP 1205 3597.799 2.831 2.940 2,942 3.049

Table 6
Continuation of

S. Bayless et al. / Artificial Intelligence 278 (2020) 103196

Table 2.

Topology 2, with 15 VMs

21

#VDC Total (s) Min (s) Avg (s) Mdn (s) Max (s)
Physical Data Center of 200 servers with 4 cores each
73-AR 53 122.701 0.990 2.315 2.236 3.591
SecondNet 51 1.567 0.006 0.031 0.037 0.049
NETSOLVER-SMT 54 10.873 0.147 0.201 0.156 2374
NETSOLVER-ILP 53 20.023 0.249 0.273 0.276 0.290
Physical Data Center of 200 servers with 16 cores each
Z3-AR 39 3573.899 3.342 91.638 7160 1594.074
SecondNet 59 2.092 0.009 0.035 0.038 0.042
NETSOLVER-SMT 153 66.725 0.141 0.436 0.223 3.026
NETSOLVER-ILP 210 58.558 0.217 0.253 0.255 0.270
Physical Data Center of 400 servers with 16 cores each
73-AR 27 2886.366 7371 106.902 7.835 1586.927
SecondNet 117 15.524 0.014 0.133 0.138 0.153
NETSOLVER-SMT 283 637.132 0.289 2.251 0.693 51.426
NETSOLVER-ILP 414 242.050 0.520 0.559 0.561 0.613
Physical Data Center of 2000 servers with 16 cores each
Z3-AR 50 3574.869 65.324 71.497 71.893 75.121
SecondNet 582 2052.790 0.071 3.527 3.550 4.052
NETSOLVER-SMT 430 3588.706 1.577 8.346 4279 90.796
NETSOLVER-ILP 1144 3597.381 2.923 3.096 3.029 3.342

Table 7
Continuation of Table 2.

Topology 3, with 15 VMs

#VDC Total (s) Min (s) Avg (s) Mdn (s) Max (s)
Physical Data Center of 200 servers with 4 cores each
Z3-AR 53 121.831 0.997 2.299 2.286 3.495
SecondNet 52 1.594 0.005 0.031 0.037 0.053
NETSOLVER-SMT 54 10.857 0.142 0.201 0.154 2.240
NETSOLVER-ILP 53 18.794 0.219 0.252 0.254 0.268
Physical Data Center of 200 servers with 16 cores each
Z3-AR 20 3205.922 3.278 160.296 3.532 3128.527
SecondNet 57 1910 0.007 0.034 0.038 0.039
NETSOLVER-SMT 132 58.942 0.133 0.447 0.229 2416
NETSOLVER-ILP 213 62.049 0.217 0.266 0.268 0.281
Physical Data Center of 400 servers with 16 cores each
73-AR 31 1443.791 8.095 46.574 8.456 748.569
SecondNet 114 13.522 0.014 0.119 0.129 0.134
NETSOLVER-SMT 264 426.637 0.271 1.616 0.758 14.437
NETSOLVER-ILP 310 194.811 0.440 0.594 0.559 0.868
Physical Data Center of 2000 servers with 16 cores each
Z3-AR 52 3566.684 64.684 68.590 68.715 87.359
SecondNet 567 1953.754 0.074 3.446 3.509 4112
NETSOLVER-SMT 398 3595.583 1.418 9.034 4.576 92.755
NETSOLVER-ILP 1041 3595.818 2.295 3.400 3.383 3.900

Table 8

Experiments on FatTree and BCube data center topologies from [9]. This table shows the total number of VDC
allocations (#VDC) and the total CPU time in seconds required by each algorithm to allocate those VDCs. Addi-
tionally, we show the minimum (Min), Average (Avg), median (Mdn) and Maximum (Max) CPU time in seconds
per VDC allocation. The full experimental setup is described in Section 5. Results continue on following pages.

VDCs with 6 VMs

#VDC Total (s) Min (s) Avg (s) Mdn (s) Max (s)
FatTree Physical Data Center of 128 servers with 16 cores each
SecondNet 209 0.012 <0.001 <0.001 <0.001 <0.001
NETSOLVER-SMT 342 96.260 0.189 0.281 0.263 1.535
NETSOLVER-ILP 333 113.660 0.235 0.341 0.349 0.445
FatTree Physical Data Center of 432 servers with 16 cores each
SecondNet 718 0.054 <0.001 <0.001 <0.001 <0.001
NETSOLVER-SMT 1152 1249.125 0.609 1.084 0.992 5.310
NETSOLVER-ILP 1152 1415.767 0.848 1.229 1.271 1.720

(continued on next page)

S. Bayless et al. / Artificial Intelligence 278 (2020) 103196

Table 8 (continued)

VDCs with 6 VMs

#VDC Total (s) Min (s) Avg (s) Mdn (s) Max (s)
FatTree Physical Data Center of 1024 servers with 16 cores each
SecondNet 1595 0.118 <0.001 <0.001 <0.001 <0.001
NETSOLVER-SMT 1251 3597.369 1.501 2.876 2.538 12.986
NETSOLVER-ILP 1274 3597.346 2.018 2.823 2.890 3.499
BCube Physical Data Center of 512 servers with 16 cores each
SecondNet 1360 0.194 <0.001 <0.001 <0.001 <0.001
NETSOLVER-SMT 1355 2573113 0.735 1.899 1.229 22152
NETSOLVER-ILP 1365 1929.239 1.011 1413 1452 1.919
BCube Physical Data Center of 1000 servers with 16 cores each
SecondNet 2660 0.511 <0.001 <0.001 <0.001 0.002
NETSOLVER-SMT 214 3571.800 1.475 16.691 4.206 135.497
NETSOLVER-ILP 1258 3597.378 2.008 2.859 2.968 3.451

Table 9

Continuation of Table 8, showing results for VDCs with 9 VMs.

VDCs with 9 VMs
#VDC Total (s) Min (s) Avg (s) Mdn (s) Max (s)

FatTree Physical Data Center of 128 servers with 16 cores each

SecondNet 114 0.009 <0.001 <0.001 <0.001 <0.001
NETSOLVER-SMT 226 114.566 0.266 0.507 0.478 2.518
NETSOLVER-ILP 215 118.594 0.352 0.551 0.566 0.746
FatTree Physical Data Center of 432 servers with 16 cores each
SecondNet 347 0.034 <0.001 <0.001 <0.001 <0.001
NETSOLVER-SMT 761 1731.223 0.903 2.275 1.958 11452
NETSOLVER-ILP 768 1393.752 1152 1.815 1.847 2417
FatTree Physical Data Center of 1024 servers with 16 cores each
SecondNet 785 0.094 <0.001 <0.001 <0.001 <0.001
NETSOLVER-SMT 461 3597.070 2.286 7.803 6.073 62.231
NETSOLVER-ILP 779 3595.779 2.931 4.616 4.643 6.058
BCube Physical Data Center of 512 servers with 16 cores each
SecondNet 501 0.059 <0.001 <0.001 <0.001 <0.001
NETSOLVER-SMT 507 3596.435 1173 7.094 3.805 75.544
NETSOLVER-ILP 910 2000.569 1.477 2.198 2.249 3.508
BCube Physical Data Center of 1000 servers with 16 cores each
SecondNet 1653 0.501 <0.001 <0.001 <0.001 0.003
NETSOLVER-SMT 46 3537.341 2216 76.899 16.144 389.057
NETSOLVER-ILP 801 3596.705 2.826 4.490 4.581 5.896
Table 10

Continuation of Table 8, showing results for VDCs with 12 VMs.

VDCs with 12 VMs
#VDC Total (s) Min (s) Avg (s) Mdn (s) Max (s)

FatTree Physical Data Center of 128 servers with 16 cores each

SecondNet 60 0.007 <0.001 <0.001 <0.001 <0.001
NETSOLVER-SMT 150 222.579 0.392 1.484 1.163 5.355
NETSOLVER-ILP 148 135.489 0.693 0.915 0.920 1163
FatTree Physical Data Center of 432 servers with 16 cores each

SecondNet 196 0.027 <0.001 <0.001 <0.001 <0.001
NETSOLVER-SMT 482 3578.014 1.366 7.423 5.072 56.351
NETSOLVER-ILP 562 1761317 2.312 3134 3172 6.418
FatTree Physical Data Center of 1024 servers with 16 cores each

SecondNet 435 0.071 <0.001 <0.001 <0.001 <0.001
NETSOLVER-SMT 229 3569.541 3.206 15.588 11.930 74.653
NETSOLVER-ILP 485 3595.888 5.742 7414 7.505 8.589
BCube Physical Data Center of 512 servers with 16 cores each

SecondNet 267 0.048 <0.001 <0.001 <0.001 <0.001
NETSOLVER-SMT 450 3598.757 1.759 7.997 6.658 41.041
NETSOLVER-ILP 654 2567.049 3.099 3.925 3.778 31.076
BCube Physical Data Center of 1000 servers with 16 cores each

SecondNet 466 0.095 <0.001 <0.001 <0.001 <0.001
NETSOLVER-SMT 61 3580.793 3.237 58.702 30.438 335.214

NETSOLVER-ILP 491 3595.093 6.042 7.322 7.389 8.332

S. Bayless et al. / Artificial Intelligence 278 (2020) 103196

Table 11
Continuation of Table 8, showing results for VDCs with 15 VMs.

VDCs with 15 VMs
#VDC Total (s) Min (s) Avg (s) Mdn (s) Max (s)

FatTree Physical Data Center of 128 servers with 16 cores each

SecondNet 38 0.006 <0.001 <0.001 <0.001 <0.001
NETSOLVER-SMT 112 530.380 0.525 4.736 2.738 35.364
NETSOLVER-ILP 127 173.856 1.022 1.369 1.340 3.572
FatTree Physical Data Center of 432 servers with 16 cores each

SecondNet 117 0.021 <0.001 <0.001 <0.001 <0.001
NETSOLVER-SMT 176 3596.489 2.001 20.435 15.689 83.388
NETSOLVER-ILP 453 2208.468 3.592 4.875 4.644 27.885
FatTree Physical Data Center of 1024 servers with 16 cores each

SecondNet 262 0.057 <0.001 <0.001 <0.001 <0.001
NETSOLVER-SMT 81 3583.999 4.547 44.247 31.697 171315
NETSOLVER-ILP 327 3598.403 7.867 11.004 10.751 13.091
BCube Physical Data Center of 512 servers with 16 cores each

SecondNet 144 0.027 <0.001 <0.001 <0.001 <0.001
NETSOLVER-SMT 127 3574.325 3.347 28.144 18.470 296.543
NETSOLVER-ILP 530 3514.333 4.366 6.631 5.285 232.300
BCube Physical Data Center of 1000 servers with 16 cores each

SecondNet 302 0.090 <0.001 <0.001 <0.001 0.002
NETSOLVER-SMT 46 3423.108 4.765 74.415 58.549 258.313
NETSOLVER-ILP 345 3589.471 8.069 10.404 10.169 12.470

Table 12

Experiments on commercial data center topologies. This table shows the total number of VDC allocations (#VDC)
and the total CPU time in seconds required by each algorithm to allocate those VDCs. Additionally, we show the
minimum (Min), Average (Avg), median (Mdn) and Maximum (Max) CPU time in seconds per VDC allocation. The
full experimental setup is described in Section 5. Results continue on following pages.

VDCs with 4 VMs

#VDC Total (s) Min (s) Avg (s) Mdn (s) Max (s)
US-Middle1 Data Center, 4 clusters, 24 racks, 384 servers
SecondNet 100 0.006 <0.001 <0.001 <0.001 <0.001
NETSOLVER-SMT 144 53.654 0.279 0.373 0.328 2.409
NETSOLVER-ILP 158 68.919 0.404 0.436 0.435 0.473
US-Middle2 Data Center, 1 cluster, 40 racks, 800 servers
SecondNet 204 0.009 <0.001 <0.001 <0.001 <0.001
NETSOLVER-SMT 307 243.606 0.631 0.794 0.721 4981
NETSOLVER-ILP 331 297.718 0.805 0.899 0.903 0.989
US-West1 Data Center, 2 clusters, 60 racks, 1200 servers
SecondNet 305 0.015 <0.001 <0.001 <0.001 <0.001
NETSOLVER-SMT 462 586.680 1.004 1.270 1155 7.584
NETSOLVER-ILP 499 680.962 1.255 1.364 1374 1.487
US-West2 Data Center, 1 cluster, 14 racks, 280 servers
SecondNet 71 0.003 <0.001 <0.001 <0.001 <0.001
NETSOLVER-SMT 104 27.990 0.201 0.269 0.228 1.738
NETSOLVER-ILP 112 33.808 0.280 0.302 0.303 0.327

Table 13

Continuation of Table 12, showing results for VDCs with 6 VMs.

VDCs with 6 VMs
#VDC Total (s) Min (s) Avg (s) Mdn (s) Max (s)

US-Middle1 Data Center, 4 clusters, 24 racks, 384 servers

SecondNet 82 0.005 <0.001 <0.001 <0.001 <0.001
NETSOLVER-SMT 116 73.146 0.400 0.631 0.548 3.669
NETSOLVER-ILP 137 90.664 0.614 0.662 0.668 0.688
US-Middle2 Data Center, 1 cluster, 40 racks, 800 servers

SecondNet 146 0.011 <0.001 <0.001 <0.001 <0.001
NETSOLVER-SMT 249 360.209 0.879 1.447 1190 8.529
NETSOLVER-ILP 287 385.045 1.189 1.341 1.348 1.400

(continued on next page)

S. Bayless et al. / Artificial Intelligence 278 (2020) 103196

Table 13 (continued)

VDCs with 6 VMs
#VDC Total (s) Min (s) Avg (s) Mdn (s) Max (s)

US-West1 Data Center, 2 clusters, 60 racks, 1200 servers

SecondNet 217 0.019 <0.001 <0.001 <0.001 <0.001
NETSOLVER-SMT 379 905.496 1.342 2.389 1.975 13.741
NETSOLVER-ILP 437 917.736 1.883 2.100 2.105 2.208
US-West2 Data Center, 1 cluster, 14 racks, 280 servers

SecondNet 53 0.003 <0.001 <0.001 <0.001 <0.001
NETSOLVER-SMT 84 42917 0.299 0.511 0.384 2.649
NETSOLVER-ILP 97 42.933 0.407 0.442 0.445 0.464

Table 14

Continuation of Table 12, showing results for VDCs with 8 VMs.

VDCs with 8 VMs
#VDC Total (s) Min (s) Avg (s) Mdn (s) Max (s)

US-Middle1 Data Center, 4 clusters, 24 racks, 384 servers

SecondNet 53 0.005 <0.001 <0.001 <0.001 <0.001
NETSOLVER-SMT 93 103.128 0.531 1.109 0.725 6.957
NETSOLVER-ILP 111 94.669 0.809 0.853 0.855 0.891
US-Middle2 Data Center, 1 cluster, 40 racks, 800 servers

SecondNet 120 0.008 <0.001 <0.001 <0.001 <0.001
NETSOLVER-SMT 186 478.705 1183 2.574 1.619 26.338
NETSOLVER-ILP 230 403.041 1.655 1.752 1.754 1.843
US-West1 Data Center, 2 clusters, 60 racks, 1200 servers

SecondNet 180 0.012 <0.001 <0.001 <0.001 <0.001
NETSOLVER-SMT 286 1171.278 1.819 4.095 2.563 42.955
NETSOLVER-ILP 346 978.825 2.632 2.829 2.834 2.984
US-West2 Data Center, 1 cluster, 14 racks, 280 servers

SecondNet 42 0.003 <0.001 <0.001 <0.001 <0.001
NETSOLVER-SMT 67 48.530 0.385 0.724 0.513 4.105
NETSOLVER-ILP 83 49.793 0.555 0.600 0.601 0.647

Table 15

Continuation of Table 12, showing results for VDCs with 10 VMs.

VDCs with 10 VMs
#VDC Total (s) Min (s) Avg (s) Mdn (s) Max (s)

US-Middle1 Physical DC, 4 clusters, 24 racks, 384 servers

SecondNet 48 0.005 <0.001 <0.001 <0.001 <0.001
NETSOLVER-SMT 67 69.605 0.598 1.039 0.837 6.019
NETSOLVER-ILP 92 99.813 1.022 1.085 1.087 1133
US-Middle2 Physical DC, 1 cluster, 40 racks, 800 servers

SecondNet 80 0.006 <0.001 <0.001 <0.001 <0.001
NETSOLVER-SMT 143 308.535 1333 2.158 1.832 12.597
NETSOLVER-ILP 193 445.922 2115 2310 2.331 2.404
US-West1 Physical DC, 2 clusters, 60 racks, 1200 servers

SecondNet 120 0.009 <0.001 <0.001 <0.001 <0.001
NETSOLVER-SMT 209 815.794 2.163 3.903 3.294 24.980
NETSOLVER-ILP 287 990.454 3.218 3.451 3.466 3.596
US-West2 Physical DC, 1 cluster, 14 racks, 280 servers

SecondNet 28 0.002 <0.001 <0.001 <0.001 <0.001
NETSOLVER-SMT 50 38.824 0.446 0.776 0.538 4.362

NETSOLVER-ILP 66 49.241 0.693 0.746 0.749 0.779

S. Bayless et al. / Artificial Intelligence 278 (2020) 103196 25

Table 16
Continuation of Table 12, showing results for VDCs with 12 VMs.

VDCs with 12 VMs
#VDC Total (s) Min (s) Avg (s) Mdn (s) Max (s)

US-Middle1 Physical DC, 4 clusters, 24 racks, 384 servers

SecondNet 48 0.005 <0.001 <0.001 <0.001 <0.001
NETSOLVER-SMT 65 96.038 0.728 1478 1.166 7146
NETSOLVER-ILP 81 104.445 1179 1.289 1.297 1.350
US-Middle2 Physical DC, 1 cluster, 40 racks, 800 servers

SecondNet 80 0.007 <0.001 <0.001 <0.001 <0.001
NETSOLVER-SMT 134 475.928 1.752 3.552 2.639 23.144
NETSOLVER-ILP 168 464.098 2.563 2.762 2.778 2.899
US-West1 Physical DC, 2 clusters, 60 racks, 1200 servers

SecondNet 120 0.011 <0.001 <0.001 <0.001 <0.001
NETSOLVER-SMT 191 3195.215 2.904 16.729 4.516 800.931
NETSOLVER-ILP 254 1078.694 3.755 4247 4.250 4.550
US-West2 Physical DC, 1 cluster, 14 racks, 280 servers

SecondNet 28 0.002 <0.001 <0.001 <0.001 <0.001
NETSOLVER-SMT 46 970.648 0.564 21.101 0.853 919.691
NETSOLVER-ILP 59 53.903 0.845 0913 0918 0.958

References

[1] M.R. Prasad, A. Biere, A. Gupta, A survey of recent advances in SAT-based formal verification, Int. J. Softw. Tools Technol. Transf. 7 (2) (2005) 156-173,
https://doi.org/10.1007/s10009-004-0183-4.

[2] C. Cadar, D. Dunbar, D. Engler, KLEE: unassisted and automatic generation of high-coverage tests for complex systems programs, in: Proceedings of
the 8th USENIX Conference on Operating Systems Design and Implementation, USENIX Association, Berkeley, CA, USA, 2008, pp. 209-224, http://
dl.acm.org/citation.cfm?id=1855741.1855756.

[3] J. Rintanen, Madagascar: efficient planning with SAT, in: The 2011 International Planning Competition, 2011, p. 61.

[4] A. Biere, D. Kroning, Sat-based model checking, in: Handbook of Model Checking, Springer, 2018, pp. 277-303.

[5] Gurobi, Gurobi Optimizer Reference Manual, 2014.

[6] S. Bayless, N. Bayless, H. Hoos, A. Hu, SAT modulo monotonic theories, in: Proceedings of the 29th AAAI Conference on Artificial Intelligence, 2015.

[7] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Ratnasamy, I. Stoica, Faircloud: sharing the network in cloud computing, in: Proceedings of the
ACM Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication (SIGCOMM), ACM, 2012, pp. 187-198.

[8] J. Lee, Y. Turner, M. Lee, L. Popa, S. Banerjee, J.-M. Kang, P. Sharma, Application-driven bandwidth guarantees in datacenters, ACM SIGCOMM Comput.
Commun. Rev. 44 (2014) 467-478.

[9] C. Guo, G. Lu, HJ. Wang, S. Yang, C. Kong, P. Sun, W. Wu, Y. Zhang, Secondnet: a data center network virtualization architecture with bandwidth
guarantees, in: Proceedings of the 6th International Conference on Emerging Networking Experiments and Technologies, Co-NEXT '10, ACM, 2010,
p. 15.

[10] S. Bayless, N. Kodirov, I. Beschastnikh, H.H. Hoos, A.J. Hu, Scalable constraint-based virtual data center allocation, in: Proceedings of the 26th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), 2017.

[11] E Hutter, H.H. Hoos, K. Leyton-Brown, Sequential model-based optimization for general algorithm configuration, in: Proceedings of the 5th Learning
and Intelligent Optimization Conference (LION '11), vol. 5, 2011, pp. 507-523.

[12] AN. Tantawi, A scalable algorithm for placement of virtual clusters in large data centers, in: 2012 IEEE 20th International Symposium on Modeling,
Analysis & Simulation of Computer and Telecommunication Systems (MASCOTS), IEEE, 2012, pp. 3-10.

[13] H. Ballani, P. Costa, T. Karagiannis, A. Rowstron, Towards predictable datacenter networks, ACM SIGCOMM Comput. Commun. Rev. 41 (2011) 242-253.

[14] M.E. Zhani, Q. Zhang, G. Simona, R. Boutaba, Vdc planner: dynamic migration-aware virtual data center embedding for clouds, in: 2013 IFIP/IEEE
International Symposium on Integrated Network Management (IM 2013), IEEE, 2013, pp. 18-25.

[15] M. Rost, C. Fuerst, S. Schmid, Beyond the stars: revisiting virtual cluster embeddings, ACM SIGCOMM Comput. Commun. Rev. 45 (3) (2015) 12-18.

[16] M. Yu, Y. Yi, J. Rexford, M. Chiang, Rethinking virtual network embedding: substrate support for path splitting and migration, ACM SIGCOMM Comput.
Commun. Rev. 38 (2) (2008) 17-29.

[17] X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, J. Wang, Virtual network embedding through topology-aware node ranking, ACM SIGCOMM Comput.
Commun. Rev. 41 (2) (2011) 38-47.

[18] N.M.K. Chowdhury, M.R. Rahman, R. Boutaba, Virtual network embedding with coordinated node and link mapping, in: Proceedings of the IEEE Inter-
national Conference on Computer Communications (INFOCOM), IEEE, 2009, pp. 783-791.

[19] J. Lischka, H. Karl, A virtual network mapping algorithm based on subgraph isomorphism detection, in: Proceedings of the 1st ACM Workshop on
Virtualized Infrastructure Systems and Architectures, ACM, 2009, pp. 81-88.

[20] T. Huang, C. Rong, Y. Tang, C. Hu,]. Li, P. Zhang, Virtualrack: bandwidth-aware virtual network allocation for multi-tenant datacenters, in: 2014 IEEE
International Conference on Communications (ICC), IEEE, 2014, pp. 3620-3625.

[21] Y. Yuan, A. Wang, R. Alur, B.T. Loo, On the feasibility of automation for bandwidth allocation problems in data centers, in: Formal Methods in Computer-
Aided Design (FMCAD), 2013, IEEE, 2013, pp. 42-45.

[22] X. Meng, V. Pappas, L. Zhang, Improving the scalability of data center networks with traffic-aware virtual machine placement, in: Proceedings of the
IEEE International Conference on Computer Communications (INFOCOM), IEEE, 2010, pp. 1-9.

[23] D. Kakadia, N. Kopri, V. Varma, Network-aware virtual machine consolidation for large data centers, in: Proceedings of the Third International Workshop
on Network-Aware Data Management, ACM, 2013, p. 6.

[24] H. Ballani, D. Gunawardena, T. Karagiannis, Network Sharing in Multi-Tenant Datacenters, Tech. rep., https://www.microsoft.com/en-us/research/
publication/network-sharing-in- multi-tenant-datacenters/, February 2012.

[25] K. LaCurts, J.C. Mogul, H. Balakrishnan, Y. Turner, Cicada: Introducing Predictive Guarantees for Cloud Networks, vol. 14, 2014, pp. 14-19.

[26] S. Angel, H. Ballani, T. Karagiannis, G. O'Shea, E. Thereska, End-to-end performance isolation through virtual datacenters, in: Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation (OSDI), 2014, pp. 233-248.

https://doi.org/10.1007/s10009-004-0183-4
http://dl.acm.org/citation.cfm?id=1855741.1855756
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib72696E74616E656E323031316D616461676173636172s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib626965726532303138736174s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib6775726F6269s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib426179426179486F4875s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib66616972636C6F7564s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib66616972636C6F7564s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib636C6F75646D6972726F72s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib636C6F75646D6972726F72s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib7365636F6E646E6574s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib7365636F6E646E6574s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib7365636F6E646E6574s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib6261796C657373323031377363616C61626C65s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib6261796C657373323031377363616C61626C65s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib6875747465723230313173657175656E7469616Cs1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib6875747465723230313173657175656E7469616Cs1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib74616E74617769323031327363616C61626C65s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib74616E74617769323031327363616C61626C65s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib62616C6C616E6932303131746F7761726473s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib7A68616E6932303133766463s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib7A68616E6932303133766463s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib726F7374323031356265796F6E64s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib79753230303872657468696E6B696E67s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib79753230303872657468696E6B696E67s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib6368656E67323031317669727475616Cs1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib6368656E67323031317669727475616Cs1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib63686F776468757279323030397669727475616Cs1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib63686F776468757279323030397669727475616Cs1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib6C697363686B61323030397669727475616Cs1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib6C697363686B61323030397669727475616Cs1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib6875616E67323031347669727475616C7261636Bs1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib6875616E67323031347669727475616C7261636Bs1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib666D6361643133s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib666D6361643133s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib6D656E6732303130696D70726F76696E67s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib6D656E6732303130696D70726F76696E67s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib6B616B61646961323031336E6574776F726Bs1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib6B616B61646961323031336E6574776F726Bs1
https://www.microsoft.com/en-us/research/publication/network-sharing-in-multi-tenant-datacenters/
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib636963616461s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib70756C736172s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib70756C736172s1
http://dl.acm.org/citation.cfm?id=1855741.1855756
https://www.microsoft.com/en-us/research/publication/network-sharing-in-multi-tenant-datacenters/

26 S. Bayless et al. / Artificial Intelligence 278 (2020) 103196

[27] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, M. Handley, Improving datacenter performance and robustness with multipath TCP, ACM
SIGCOMM Comput. Commun. Rev. 41 (2011) 266-277.

[28] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu, A. Fingerhut, F. Matus, R. Pan, N. Yadav, G. Varghese, et al., Conga: distributed
congestion-aware load balancing for datacenters, ACM SIGCOMM Comput. Commun. Rev. 44 (2014) 503-514.

[29] A. Vahdat, A look inside Google’s data center network, youtube.com/watch?v=FaAZAII2x0w. (Accessed 26 November 2017).

[30] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, S. Lu, BCube: a high performance, server-centric network architecture for modular data
centers, ACM SIGCOMM Comput. Commun. Rev. 39 (4) (2009) 63-74.

[31] A. Greenberg, J.R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D.A. Maltz, P. Patel, S. Sengupta, VL2: a scalable and flexible data center network, ACM
SIGCOMM Comput. Commun. Rev. 39 (2009) 51-62.

[32] TRILL: transparent interconnection of lots of links, en.wikipedia.org/wiki/TRILL_(computing). (Accessed 26 November 2017).

[33] N.G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K.K. Ramakrishnan, J.E. van der Merive, A flexible model for resource management in virtual private
networks, ACM SIGCOMM Comput. Commun. Rev. 29 (1999) 95-108.

[34] A. Belbekkouche, M.M. Hasan, A. Karmouch, Resource discovery and allocation in network virtualization, [EEE Commun. Surv. Tutor. 14 (4) (2012)
1114-1128.

[35] A. Fischer,].F. Botero, M.T. Beck, H. De Meer, X. Hesselbach, Virtual network embedding: a survey, IEEE Commun. Surv. Tutor. 15 (4) (2013) 1888-1906.

[36] A. Fischer, J.F. Botero Vega, M. Duelli, D. Schlosser, X. Hesselbach Serra, H. De Meer, Alevin—a framework to develop, compare, and analyze virtual
network embedding algorithms, in: Electronic Communications of the EASST, 2011, pp. 1-12.

[37] M.E. Bari, R. Boutaba, R. Esteves, L.Z. Granville, M. Podlesny, M.G. Rabbani, Q. Zhang, M.F. Zhani, Data center network virtualization: a survey, IEEE
Commun. Surv. Tutor. 15 (2) (2013) 909-928.

[38] A. Gupta,]. Kleinberg, A. Kumar, R. Rastogi, B. Yener, Provisioning a virtual private network: a network design problem for multicommodity flow, in:
Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, ACM, 2001, pp. 389-398.

[39] W. Szeto, Y. Iraqi, R. Boutaba, A multi-commodity flow based approach to virtual network resource allocation, in: Global Telecommunications Confer-
ence (GLOBECOM), vol. 6, IEEE, 2003, pp. 3004-3008.

[40] S. Even, A. Itai, A. Shamir, On the complexity of time table and multi-commodity flow problems, in: Proceedings of the 16th Annual Symposium on
Foundations of Computer Science, IEEE, 1975, pp. 184-193.

[41] M.Y. Sir, LE. Senturk, E. Sisikoglu, K. Akkaya, An optimization-based approach for connecting partitioned mobile sensor/actuator networks, in: 2011
IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), IEEE, 2011, pp. 525-530.

[42] D.E. Kaufman, J. Nonis, R.L. Smith, A mixed integer linear programming model for dynamic route guidance, Transp. Res., Part B, Methodol. 32 (6) (1998)
431-440.

[43] IBM, ILOG CPLEX Optimization Studio 12.6.1: multi-commodity flow cuts, https://www.ibm.com/support/knowledgecenter/SSSA5P_12.6.1/ilog.odms.
cplex.help/CPLEX/UsrMan/topics/discr_optim/mip/cuts/37_mcf.html.

[44] H. Marchand, A. Martin, R. Weismantel, L. Wolsey, Cutting planes in integer and mixed integer programming, Discrete Appl. Math. 123 (1-3) (2002)
397-446.

[45] S. Bayless, SAT Modulo Monotonic Theories, Ph.D. thesis, University of British Columbia, 2017.

[46] R. Bar-Yehuda, S. Even, A local-ratio theorem for approximating the weighted vertex cover problem, North-Holl. Math. Stud. 109 (1985) 27-45.

[47] N. Eén, N. Sorensson, Translating pseudo-Boolean constraints into SAT, J. Satisf. Boolean Model. Comput. 2 (2006) 1-26.

[48] N. Sorensson, N. Een, Minisat - a SAT solver with conflict-clause minimization, in: SAT 2005, vol. 53, 2005, pp. 1-2.

[49] L. De Moura, N. Bjerner, Z3: an efficient SMT solver, in: Tools and Algorithms for the Construction and Analysis of Systems, 2008, pp. 337-340.

[50] F. Hutter, M. Lopez-Ibanez, C. Fawcett, M. Lindauer, H.H. Hoos, K. Leyton-Brown, T. Stiitzle, Aclib: a benchmark library for algorithm configuration, in:
International Conference on Learning and Intelligent Optimization, Springer, 2014, pp. 36-40.

[51] P. Bodik, I. Menache, M. Chowdhury, P. Mani, D.A. Maltz, 1. Stoica, Surviving failures in bandwidth-constrained datacenters, in: Proceedings of the ACM
SIGCOMM 2012 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, ACM, 2012, pp. 431-442.

[52] A. Andreyev, Introducing data center fabric, the next-generation Facebook data center network, code.facebook.com/posts/360346274145943. (Ac-
cessed 26 November 2017).

[53] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, A. Goldberg, Quincy: fair scheduling for distributed computing clusters, in: Proceedings of the
ACM SIGOPS 22nd Symposium on Operating Systems Principles, ACM, 2009, pp. 261-276.

[54] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, 1. Stoica, Delay scheduling: a simple technique for achieving locality and fairness in
cluster scheduling, in: Proceedings of the 5th European Conference on Computer Systems, ACM, 2010, pp. 265-278.

[55] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, V. Sekar, Making middleboxes someone else’s problem: network processing as a cloud
service, ACM SIGCOMM Comput. Commun. Rev. 42 (4) (2012) 13-24.

http://refhub.elsevier.com/S0004-3702(19)30195-X/bib6D70746370s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib6D70746370s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib636F6E6761s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib636F6E6761s1
http://youtube.com/watch?v=FaAZAII2x0w
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib67756F323030396263756265s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib67756F323030396263756265s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib766C32s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib766C32s1
http://en.wikipedia.org/wiki/TRILL_(computing)
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib6475666669656C6431393939666C657869626C65s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib6475666669656C6431393939666C657869626C65s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib62656C62656B6B6F75636865323031327265736F75726365s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib62656C62656B6B6F75636865323031327265736F75726365s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib66697363686572323031337669727475616Cs1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib6669736368657232303131616C6576696Es1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib6669736368657232303131616C6576696Es1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib626172693230313364617461s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib626172693230313364617461s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib67757074613230303170726F766973696F6E696E67s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib67757074613230303170726F766973696F6E696E67s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib737A65746F323030336D756C7469s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib737A65746F323030336D756C7469s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib6576656E31393735636F6D706C6578697479s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib6576656E31393735636F6D706C6578697479s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib736972323031316F7074696D697A6174696F6Es1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib736972323031316F7074696D697A6174696F6Es1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib6B6175666D616E313939386D69786564s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib6B6175666D616E313939386D69786564s1
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.6.1/ilog.odms.cplex.help/CPLEX/UsrMan/topics/discr_optim/mip/cuts/37_mcf.html
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib6D61726368616E643230303263757474696E67s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib6D61726368616E643230303263757474696E67s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib73616D6261796C657373746865736973s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib626172313938356C6F63616Cs1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib65656E323030367472616E736C6174696E67s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib736F72656E73736F6E323030356D696E69736174s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib5A33s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib6875747465723230313461636C6962s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib6875747465723230313461636C6962s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib62696E672D766463s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib62696E672D766463s1
http://code.facebook.com/posts/360346274145943
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib497361726432303039s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib497361726432303039s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib5A61686172696132303130s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib5A61686172696132303130s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib61706C6F6D62s1
http://refhub.elsevier.com/S0004-3702(19)30195-X/bib61706C6F6D62s1
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.6.1/ilog.odms.cplex.help/CPLEX/UsrMan/topics/discr_optim/mip/cuts/37_mcf.html

	Scalable constraint-based virtual data center allocation
	1 Introduction
	2 Related work
	3 The multi-path VDC allocation problem
	4 NetSolver
	4.1 Encoding multi-path VDC allocation in ILP
	4.2 Encoding multi-path VDC allocation into SMT
	4.2.1 Multi-commodity ﬂow in MonoSAT
	4.2.2 Multi-path VDC allocation in MonoSAT
	4.2.3 Reusing constraints

	5 Evaluation
	5.1 Comparison on trees from [21]
	5.2 Comparison on FatTree and BCube from [9]
	5.3 Comparison on commercial networks
	5.4 Comparison to virtual network embedding (VNE) approaches
	5.5 Allocation robustness

	6 Extensions
	6.1 Afﬁnity constraints
	6.2 Server usage minimization
	6.3 Hotspot minimization

	7 Conclusions
	Acknowledgements
	Appendix A Automated algorithm conﬁguration
	Appendix B Additional data on experimental results (Tables table:tree-9vm,appTab3,appTab4,appTab5,appTab6,appTab7,table:fattree-bcube-6and9vms,appTab9,appTab10,appTab11,table:real-4to8vms,appTab13,appTab14,table:real-10and12vms,appTab16)
	References

